首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Multichannel analysis of surface wave method with the autojuggie   总被引:2,自引:0,他引:2  
The shear (S)-wave velocity of near-surface materials and its effect on seismic-wave propagation are of fundamental interest in many engineering, environmental, and groundwater studies. The multichannel analysis of surface wave (MASW) method provides a robust, efficient, and accurate tool to observe near-surface S-wave velocity. A recently developed device used to place large numbers of closely spaced geophones simultaneously and automatically (the ‘autojuggie’) is shown here to be applicable to the collection of MASW data. In order to demonstrate the use of the autojuggie in the MASW method, we compared high-frequency surface-wave data acquired from conventionally planted geophones (control line) to data collected in parallel with the automatically planted geophones attached to steel bars (test line). The results demonstrate that the autojuggie can be applied in the MASW method. Implementation of the autojuggie in very shallow MASW surveys could drastically reduce the time required and costs incurred in such surveys.  相似文献   

2.
Controls on event runoff coefficients in the eastern Italian Alps   总被引:3,自引:0,他引:3  
Analyses of event runoff coefficients provide essential insight on catchment response, particularly if a range of catchments and a range of events are compared by a single indicator. In this study we examine the effect of climate, geology, land use, flood types and initial soil moisture conditions on the distribution functions of the event runoff coefficients for a set of 14 mountainous catchments located in the eastern Italian Alps, ranging in size from 7.3 to 608.4 km2. Runoff coefficients were computed from hourly precipitation, runoff data and estimates of snowmelt. A total of 535 events were analysed over the period 1989–2004. We classified each basin using a “permeability index” which was inferred from a geologic map and ranged from “low” to “high permeability”. A continuous soil moisture accounting model was applied to each catchment to classify ‘wet’ and ‘dry’ initial soil moisture conditions. The results indicate that the spatial distribution of runoff coefficients is highly correlated with mean annual precipitation, with the mean runoff coefficient increasing with mean annual precipitation. Geology, through the ‘permeability index’, is another important control on runoff coefficients for catchments with mean annual precipitation less than 1200 mm. Land use, as indexed by the SCS curve number, influences runoff coefficient distribution to a lesser degree. An analysis of the runoff coefficients by flood type indicates that runoff coefficients increase with event snowmelt. Results show that there exists an intermediate region of subsurface water storage capacity, as indexed by a flow–duration curve-based index, which maximises the impact of initial wetness conditions on the runoff coefficient. This means that the difference between runoff coefficients characterised by wet and dry initial conditions is negligible both for basins with very large storage capacity and for basins with small storage capacity. For basins with intermediate storage capacities, the impact of the initial wetness conditions may be relatively large.  相似文献   

3.
基于辛算法模拟探地雷达在复杂地电模型中的传播   总被引:2,自引:2,他引:0       下载免费PDF全文
近年来,探地雷达(GPR)凭借其快速、高效、无破损等特点,已经广泛应用于浅地层目标探测中.数值模拟是研究探地雷达电磁波在地下结构中传播规律的有效手段.辛算法是一种保持Hamilton系统总能量不变的时域数值计算方法.本文提出了基于一阶显式辛分块龙格库塔方法的探地雷达数值模拟方法.通过对比本文算法与时域有限差分方法计算结果可知,在同等计算精度下,本文算法可以节省25%的计算时间.并基于本文算法对两个复杂GPR模型进行正演模拟,得到模拟GPR探测wiggle图,这有助于更好的理解和分析实测雷达数据.  相似文献   

4.
Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the ‘internal surf zone” where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect ‘events’, periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by ‘events’ are described. The motion along the slope may be a consequence of (a) instabilities advected by the flow (b) internal waves propagating along-slope or (c) internal waves approaching the slope from oblique directions. The propagation of several of the observed ‘events’ can only be explained by (c), evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional ‘surface wave’ surf zone, with waves steepening as they approach the slope at oblique angles.  相似文献   

5.
探地雷达应用概述   总被引:13,自引:16,他引:13       下载免费PDF全文
以ASTM标准规范为基础对探地雷达(Ground Penetrating Radar 以下简称GPR)的地下探测方法的应用做了比较系统的概述,主要内容包括:部分专业术语的解释;测试过程中雷达探测深度及其中心频率、垂直分辨率、水平分辨率等的关系,测试过程中常见的天线移动方式,以及雷达波速的预测几种方法,数据显示方式;雷达数据解释和数据处理的一般过程及方法.目前我国尚没有关于GPR的国家规范或行业标准,文章对GPR的使用及规范的编制具有一定的参考意义.  相似文献   

6.
Implementation of ADI-FDTD subgrids in ground penetrating radar FDTD models   总被引:1,自引:0,他引:1  
Realistic numerical modeling of ground penetrating radar (GPR) using the finite-difference time-domain (FDTD) method could greatly benefit from the implementation of subgrids – supporting finer spatial resolution – into the conventional FDTD mesh. This is particularly important, when parts of the computational domain need to be modeled in detail or when there are features or regions in the overall computational mesh with values of high dielectric constant supporting propagation of waves at very short wavelengths. A scheme that simplifies the process of implementing these subgrids into the traditional FDTD method is presented. This scheme is based on the combination of the standard FDTD method and the unconditionally stable alternating-direction implicit (ADI) FDTD technique. Because ADI-FDTD is unconditionally stable its time-step can be set to any value that facilitates the accurate calculation of the fields. By doing so, the two grids can efficiently communicate information across their boundary without requiring to use a costly time-interpolation scheme. This paper discusses the performance of ADI-FDTD subgrids when implemented into the traditional FDTD method, using different communication schemes for the information exchange at the boundary of the two grids. The developed algorithm, can handle cases where the subgrid crosses dielectrically inhomogeneous media. In addition, results from the comparison between the proposed scheme and a commonly employed purely FDTD subgridding technique are presented.  相似文献   

7.
在采用有限差分方法开展探地雷达复杂目标体精细结构模拟时,为了提高计算精度,常采用非均匀网格对目标区域划分小尺寸的网格,以压制离散网格频散现象和保证有限差分方法的稳定性.常规非均匀网格和自适应亚网格技术在网格剖分数量和粗细网格边界处理上难以达到计算效率和计算精度的均衡.本文根据隐形斗篷(invisible cloak)理论,将基于变换光学(Transformation optics)理论应用于有限差分探地雷达数值计算中.该理论的主要思想是基于目标参数变化而保持电磁场的传播不变性,在坐标变换后,Maxwell方程的形式可以维持不变,而使得相对介电常数与磁导率的表达式变得复杂.通过这种方式可以虚拟地扩大目标体所占的网格节点数,减少背景介质区域的网格数,不增加模型空间的网格总数.另外,这种网格划分方式不但提高了计算效率,同时也可以克服亚网格技术边界反射误差的影响.本文推导实现了基于变换光学的二维有限差分方法,通过典型探地雷达模型测试,对比分析了该方法与常规有限差分、变网格有限差分和自适应亚网格有限差分的优缺点.计算结果验证了基于变换光学的有限差分可用于探地雷达目标精细结构模拟,具有较高的计算精度和计算效率.  相似文献   

8.
Estimating severity of liquefaction-induced damage near foundation   总被引:1,自引:2,他引:1  
An empirical procedure for estimating the severity of liquefaction-induced ground damage at or near foundations of existing buildings is established. The procedure is based on an examination of 30 case histories from recent earthquakes. The data for these case histories consist of observations of the damage that resulted from liquefaction, and the subsurface soil conditions as revealed by cone penetration tests. These field observations are used to classify these cases into one of three damaging effect categories, ‘no damage’, ‘minor to moderate damage’, and ‘major damage’. The potential for liquefaction-induced ground failure at each site is calculated and expressed as the probability of ground failure. The relationship between the probability of ground failure and the damage class is established, which allows for the evaluation of the severity of liquefaction-induced ground damage at or near foundations. The procedure presented herein represents a significant attempt to address the issue of liquefaction effect. Caution must be exercised, however, when using the proposed model and procedure for estimating liquefaction damage severity, because they are developed based on limited number of case histories.  相似文献   

9.
机载探地雷达可能解决危险环境或广域条件下的近地表探测问题,用于解决环境、生态或军事方面的问题.然而由于种种原因,该技术的发展却显得比较慢.为了推进该技术的发展,本文介绍了目前世界范围内机载探地雷达的进展,并利用时间域有限差分法对一些典型模型进行数值模拟,并用特定的偏移成像方法对模拟结果进行成像.目前存在的机载探地雷达主要有三种类型:第一种为将常规探地雷达天线悬挂在直升飞机上,第二种为针对机载探地雷达开发的雷达系统,第三种为具有探地能力的合成孔径雷达.数值模拟结果表明,不管是水平地面的情况下,还是起伏界面的情况下,机载探地雷达都能清楚探测一定深度范围内的地下目标.可见,机载探地雷达是存满希望的一种方法.  相似文献   

10.
This study considers the three-dimensional (3D) modelling of compact, at-surface conductive bodies on frequency domain airborne electromagnetic (AEM) survey data. The context is the use of AEM data for environmental and land quality applications. The 3D structures encountered are typically conductive, of limited thickness (<20 m) and form ‘point’ source locations carrying potential environmental risk. The scale of such bodies may generate single-profile, ‘bulls-eye’ anomalies. In attempts to recover geological information, such anomalies may be considered to represent noise. In environmental AEM, the correct interpretation of such features is important. The study uses a combination of theoretical models and trial-fixed-wing survey data obtained in populated areas of the UK. Scale issues are discussed in terms of the volumetric footprints of the induced electric field generated by systems flown at both low and high elevation. One of the primary uses of AEM survey data lies in the assessment of conductivity maps. These are typically obtained using one-dimensional (1D) conductivity models at individual measurement points. In order to investigate the limitations of this approach, 3D modelling of conductive structures with dimensions less than 350×350 m and thicknesses extending to 20 m has been carried out. A 1D half space inversion of the data obtained at each frequency is then used to assess the behaviour of the spatial information. The results demonstrate that half space conductivity values obtained over compact 3D targets generally provide only apparent conductivity results. For thin, at-surface bodies, conductivity values are biased to lower values than the true conductivity except at high frequency. The spatial perturbation to both coupling ratios and 1D conductivity models can be laterally extensive. The results from 3D modelling indicate that the use of horizontal derivatives applied to the conductivity models offers enhanced edge detection. The practical application of such derivatives to both regional- and local-scale survey data is presented.. The special case of a near-surface, metallic pipeline has been modelled. The problem constitutes an inductive limit (current gathering) response in which the perturbation is largely confined to the in-phase coupling ratios. The main perturbations, in data and conductivity models, are within about 40 m of each side of the pipeline. The maximum perturbation to the conductivity model is only a factor of 1.5 above background. Detailed survey data across a former compact landfill (about 100×100 m) are used to compare the model behaviour predicted by the 3D modelling with survey results. The survey, conducted at two separate altitudes, provides a demonstration of 3D effects on 1D survey models as a function of frequency and elevation. Although the nature of the landfill materials and their location are not known precisely, the mapping information appears realistic.  相似文献   

11.
Several new empirical equations of the frequency dependent duration of strong earthquake ground motion are presented. The duration is considered as being composed of two parts: (1) the duration of stong motion as it is observed at recording stations located on basement rocks, and (2) the prolongation of this duration for stations located on sediments. The first part, called the ‘basic duration’, is modelled in terms of the Modified Mercalli intensity and (in some cases) the hypocentral distance. The depth of the sediments under the station, the distance from the station to the rocks surrounding it, and the angular measure of the size of those rocks (as seen from the station) are chosen as the parameters for modelling the prolongation of the duration. The new empirical equations are compared (a) with each other, (b) with our previous models which used similar ‘prolongation’ terms, but the ‘basic duration’ was expressed in terms of the magnitude of the earthquake and the source-to-station distance, and (c) with models with ‘intensity-type’ ‘basic duration’, but with a simplified ‘prolongation’ term (the geological conditions at the stations are modeled by lumping all the sites into three groups: basement rock, sediments and intermediate geology). This collection of models is found to have good internal consistency. The choice of the proper model depends on the availability of the earthquake and site parameters. The residuals of the empirical regression equations are found to have similar distribution functions for all the models. An explicit functional form for such distributions is proposed, and the frequency dependent coefficients are found for all the models of duration. This allows one to predict (for each set of earthquake and site parameters) the probability of exceedance of any given level of duration of strong ground motion at a given frequency.  相似文献   

12.
Gulf Stream frontal disturbances cause nutrient-rich waters to frequently upwell and intrude onto the southeastern United States continental shelf between Cape Canaveral, Florida and Cape Hatteras, North Carolina. Phytoplankton response in upwelled waters was determined with three interdisciplinary studies conducted during April 1979 and 1980, and in summer 1978. The results show that when shelf waters are not stratified, upwelling causes productive phytoplankton (diatom) blooms on the outer shelf. Phytoplankton production averages about 2 g C m−2 d−1 during upwelling events, and ‘new’ production is 50% or more of the total. When shelf waters are stratified, upwelled waters penetrate well onto the shelf as a subsurface intrusion in which phytoplankton production averages about fives times higher than the nutrient-depleted overlying mixed layer. Phytoplankton within the intrusion deplete upwelled NO3 in about 7 to 10 days, at which point no further net increase in phytoplankton biomass occurs.Current meter records show that upwelling occurs roughly 50% of the time on the outer shelf during November to April (shelf not stratified), and we estimate that seasonal primary production in upwelled waters is 175 g C m−2 6 months−1 of which at least 50% is ‘new’ production. More than 90% of outer shelf primary and ‘new’ production occurs during upwelling and thus upwelling is the dominant process affecting primary productivity of the outer shelf. Our seasonal estimates of outer shelf primary and ‘new’ production are, respectively, three and ten times higher than previous estimates that did not account for upwelling.  相似文献   

13.
In this paper we present thermal characteristics of coal fires as measured during simulated fires under an experimental setting in Germany in July 2002. It is thus a continuation of the previously published paper “Thermal surface characteristics of coal fire 1: Results of in-situ measurement”, in which we presented temperature measurements of real subsurface coal fires in China [Zhang, J., Kuenzer, C., accepted for publication. Thermal Surface Characteristics of Coal Fires 1: Results of in-situ measurements. Accepted for publication at Journal of Applied Geophysics.]. The focus is on simulated coal fires, which are less complex in nature than fires under natural conditions. In the present study we simulated all the influences usually occurring under natural conditions in a controllable manner (uniform background material of known thermal properties, known ventilation pathways, homogeneous coal substrate), creating two artificial outdoor coal fires under simplified settings. One surface coal fire and one subsurface coal fire were observed over the course of 2 days. The set up of the fires allowed for measurements not always feasible under “real” in-situ conditions: thus compared to the in-situ investigations presented in paper one we could retrieve numerous temperature measurements inside of the fires. Single temperature measurements, diurnal profiles and airborne thermal surveying present the typical temperature patterns of a small surface-and a subsurface fire under undisturbed conditions (easily accessible terrain, 24 hour measurements period, homogeneous materials). We found that the outside air temperature does not influence the fire's surface temperature (up to 900 °C), while fire centre temperatures of up to 1200 °C strongly correlate with surface temperatures of the fire. The fires could heat their surrounding up to a distance of 4.5 m. However, thermal anomalies on the background surface only persist as long as the fire is burning and disappear very fast if the heat source is removed. Furthermore, heat outside of the fires is transported mainly by convection and not by radiation. In spatial thermal line scanner data the diurnal thermal patterns of the coal fire are clearly represented. Our experiments during that data collection also visualize the thermal anomaly differences between covered (underground) and uncovered (surface) coal fires. The latter could not be observed in-situ in a real coal fire area. Sub-surface coal fires express a much weaker signal than open surface fires and contrast only by few degrees against the background. In airborne thermal imaging scanner data the fires are also well represented. Here we could show that the mid-infrared domain (3.8 μm) is more suitable to pick up very hot anomalies, compared to the common thermal (8.8 μm) domain. Our results help to understand coal fires and their thermal patterns as well as the limitations occurring during their analysis. We believe that the results presented here can practicably help for the planning of coal fire thermal mapping campaigns — including remote sensing methods and the thermal data can be included into numerical coal fire modelling as initial or boundary conditions.  相似文献   

14.
The hypoplastic constitutive model is known for its numerous application to the problems of soil mechanics and also for its excessive ratcheting. The paper shows that this deficiency can be interpreted as Liapunov instability in dynamic case. This is demonstrated with a simple one-dimensional swinger. Infinitesimally small as well as finite oscillations are analytically examined and the variability of stiffness upon a single cycle is considered. Several methods to circumvent the problem of ratcheting are discussed: implementation of ‘elastic’ range by means of so-called intergranular strain, usage of overlay modelling with parallel coupling of hypoplastic materials as originally proposed by Valanis in his endochronic theory and a special coupling of hypoplastic models based on comparison of partial stiffnesses.  相似文献   

15.
We present an analysis of the consequences of foreland basin development on thinned continental lithosphere, inherited from pre-orogenic phases of extension. Bathymetry at the transition from pre-orogenic extensional basin to foreland basin and compaction of pre-orogenic sediments contribute to the accommodation space for foreland basin sediments and thrust loads. In addition, the extension-induced transient thermal state of the lithosphere, results in ongoing thermal subsidence, and a flexural rigidity which changes through time. Quantitative modelling of the phase of extension and the foreland basin stage of the Aquitaine basin (southern France) shows that the inherited transient thermal state of the lithosphere contributes significantly to (1) the total foreland basin depth and width, (2) the post-compressional subsidence history, and (3) the cratonward onlap pattern. Accounting for the thermo-mechanical effects of pre-orogenic extension significantly reduces the estimates of both the flexural rigidity (30–43% for the Aquitaine basin) and the required topographic or thrust load (40% for the Aquitaine basin) at foreland basins. Emplacement of thrust loads below sea level, as expected in a pre-orogenic extensional basin setting, further reduces the required topographic load. This sheds light on the wide range of flexural rigidity values reported for continental lithosphere from foreland basin modelling studies, and explains, in many instances, the inferred ‘hidden load’ or subsurface load in flexural modelling studies at foreland basins. The present study has shown that pre-orogenic extension phases significantly affect the record of vertical motion and the stratigraphy of the Aquitaine basin and is probably important for foreland basin evolution in general.  相似文献   

16.
The attenuation of ground‐penetrating radar (GPR) energy in the subsurface decreases and shifts the amplitude spectrum of the radar pulse to lower frequencies (absorption) with increasing traveltime and causes also a distortion of wavelet phase (dispersion). The attenuation is often expressed by the quality factor Q. For GPR studies, Q can be estimated from the ratio of the real part to the imaginary part of the dielectric permittivity. We consider a complex power function of frequency for the dielectric permittivity, and show that this dielectric response corresponds to a frequency‐independent‐Q or simply a constant‐Q model. The phase velocity (dispersion relationship) and the absorption coefficient of electromagnetic waves also obey a frequency power law. This approach is easy to use in the frequency domain and the wave propagation can be described by two parameters only, for example Q and the phase velocity at an arbitrary reference frequency. This simplicity makes it practical for any inversion technique. Furthermore, by using the Hilbert transform relating the velocity and the absorption coefficient (which obeys a frequency power law), we find the same dispersion relationship for the phase velocity. Both approaches are valid for a constant value of Q over a restricted frequency‐bandwidth, and are applicable in a material that is assumed to have no instantaneous dielectric response. Many GPR profiles acquired in a dry aeolian environment have shown a strong reflectivity inside dunes. Changes in water content are believed to be the origin of this reflectivity. We model the radar reflections from the bottom of a dry aeolian dune using the 1D wavelet modelling method. We discuss the choice of the reference wavelet in this modelling approach. A trial‐and‐error match of modelled and observed data was performed to estimate the optimum set of parameters characterizing the materials composing the site. Additionally, by combining the complex refractive index method (CRIM) and/or Topp equations for the bulk permittivity (dielectric constant) of moist sandy soils with a frequency power law for the dielectric response, we introduce them into the expression for the reflection coefficient. Using this method, we can estimate the water content and explain its effect on the reflection coefficient and on wavelet modelling.  相似文献   

17.
Paleoreconstructions suggest that during the Last Glacial Maximum (LGM) the North Atlantic circulation was noticeably different from its present state. However, the glacial salt conveyor belt is believed to be similar to the present-day’s conveyor, albeit weaker and shallower because of an increased freshwater flux in high-latitudes. We present here the investigation of the conveyor operation based on ocean circulation modelling using two numerical models in parallel. The GFDL primitive equation model and a planetary geostrophic model are employed to address the problem of the paleocirculation modelling in cases of uncertain and sparse data comprising the glacial surface boundary conditions. The role of different simplifications that may be used in the ocean climate studies, including the role of grid resolution, bottom topography, coast-line, etc., versus glacial-interglacial changes of the ocean surface climatology is considered. The LGM reverse conveyor gyre appeared to be the most noticeable feature of the glacial-to-interglacial alteration of the ocean circulation. The reversed upper-ocean conveyor, weaker and subducting ‘normal’ conveyor in the intermediate depths, and the change of the deep-ocean return flow route are robust signatures of the glacial North Atlantic climate. The results are found to be ‘model-independent’ and fairly insensitive to all factors other than the onset of the glacial surface conditions.  相似文献   

18.
We present both statistical and case studies of magnetosheath interaction with the high-latitude magnetopause on the basis of Interball-1 and other ISTP spacecraft data. We discuss those data along with recently published results on the topology of cusp-magnetosheath transition and the roles of nonlinear disturbances in mass and energy transfer across the high-latitude magnetopause. For sunward dipole tilts, a cusp throat is magnetically open for direct interaction with the incident flow that results in the creation of a turbulent boundary layer (TBL) over an indented magnetopause and downstream of the cusp. For antisunward tilts, the cusp throat is closed by a smooth magnetopause; demagnetized ‘plasma balls’ (with scale ∼ few RE, an occurrence rate of ∼25% and trapped energetic particles) present a major magnetosheath plasma channel just inside the cusp. The flow interacts with the ‘plasma balls’ via reflected waves, which trigger a chaotization of up to 40% of the upstream kinetic energy. These waves propagate upstream of the TBL and initiate amplification of the existing magnetosheath waves and their cascade-like decays during downstream passage throughout the TBL. The most striking feature of the nonlinear interaction is the appearance of magnetosonic jets, accelerated up to an Alfvenic Mach number of 3. The characteristic impulsive local momentum loss is followed by decelerated Alfvenic flows and modulated by the TBL waves; momentum balance is conserved only on time scales of the Alfvenic flows (1/fA ∼12 min). Wave trains at fA∼1.3 mHz are capable of synchronizing interactions throughout the outer and inner boundary layers. The sonic/Alfvenic flows, bounded by current sheets, control the TBL spectral shape and result in non-Gaussian statistical characteristics of the disturbances, indicating the fluctuation intermittency. We suggest that the multi-scale TBL processes play at least a comparable role to that of macro-reconnection (remote from or in the cusp) in solar wind energy transformation and population of the magnetosphere by the magnetosheath plasma. Secondary micro-reconnection constitutes a necessary chain at the small-scale (∼ion gyroradius) edge of the TBL cascades. The thick TBL transforms the flow energy, including deceleration and heating of the flow in the open throat, ‘plasma ball’ and the region downstream of the cusp.  相似文献   

19.
The aeromagnetic survey of Sardinia (western Mediterranean) delineated a large magnetic anomaly located in the western part of the island. The shape of the anomaly is improved and simplified by upward continuation, and modelling in terms of three-dimensional structure gives a westward remanent magnetization. Some tests have been carried out to suppress ambiguities on the magnetic dual aspect “magnetization distribution-shape of sources”. The optimal declination obtained after a few testings is 30° west which is ascribed to the rotation of Sardinia. This value confirms the results provided by paleomagnetic investigations and is significant because it characterizes a large and deep-rooted structure involved in the rotation of Sardinia. Our results thus illustrate another interesting application of aeromagnetic surveys.  相似文献   

20.
Using the method of characteristics to invert ground-based data of the ground magnetic field disturbance and of the ionospheric electric field, we obtain spatial distributions of ionospheric conductances, currents, and field-aligned currents (FACs) associated with a north-south auroral form that drifts westwards over northern Scandinavia around 2200 UT on December 2, 1977. This auroral form is one in a sequence of such north-south structures observed by all-sky cameras, and appears 14 min after the last of several breakups during that extremely disturbed night. Our analysis shows that the ionospheric Hall conductance reaches values above 200 S in the center of the form, and upward flowing FACs of up to 25 μA/m2 are concentrated near its westward and equatorward edge. The strong upward flowing FACs are fed by an area of more distributed, but still very strong downward-flowing FACs northeastward of the auroral form. In contrast to the conductances, the electric field is only slightly affected by the passage of the form. We point out similarities and differences of our observations and results to previously reported observations and models of ‘auroral fingers’, ‘north-south aurora’, and ‘auroral streamers’ which are suggested to be ionospheric manifestations of bursty bulk flows in the plasma sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号