首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
Frame pin‐supported wall structure is a kind of rocking structure, which releases constraints at the bottom of the wall. The wall is affiliated to the frame and can rotate around the hinge. Previous studies have investigated seismic performance (such as deformation pattern and plastic hinge distribution) of frame pin‐supported wall structure. Strength demand of this system was investigated through static pushover analysis. However, dynamic characteristics, especially higher mode effects, remain to be quantified. As demonstrated in several researches, higher mode effects have non‐negligible effects on seismic response. For this purpose, a distributed model for analyzing higher mode effects in frame pin‐supported wall structure was proposed, where the pin‐supported wall and the frame were simplified as a bending beam and a shear beam, respectively. The model was solved by differential equations derived from equilibrium and compatibility. Displacement and inner force distribution of frame pin‐supported wall structure in higher modes were quantified according to the model. Influence of critical parameters, such as wall stiffness and structure period, was assessed on higher mode effects. It was demonstrated that response in higher modes cannot be neglected in the design of frame pin‐supported wall structure. Capacity design based on the fundamental mode is not conservative, especially in the wall. Furthermore, pin‐supported walls tend to force the frame to vibrate in the rocking mode and suppress higher mode effects in the frame. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes an analytical investigation on a reinforced concrete lateral load resisting structural system comprising a pin‐supported (base‐rocking) shear wall coupled with a moment frame on 1 or both sides of the wall. Yielding dampers are used to provide supplemental energy dissipation through the relative displacements at the vertical connections between the wall and the frames. The study extends a previous linear‐elastic model for pin‐supported wall‐frame structures by including the effects of the dampers. A closed‐form solution of the lateral load behavior of the structure is derived by approximating the discrete wall‐frame‐damper interactions with distributed (ie, continuous) properties. The validity of the model is verified by comparing the closed‐form results with computational models using OpenSees program. Then, a parametric analysis is conducted to investigate the effects of the wall, frame, and damper stiffness on the behavior of the structure. It is found that the damper stiffness significantly affects the distribution of shear forces and bending moments over the wall height. Finally, the performance‐based plastic design approach extended to the wall‐frame‐damper system is proposed. Case studies are carried out to design 2 damped pin‐supported wall‐frame structures using the proposed approach. Nonlinear dynamic time‐history analyses are conducted to verify the effectiveness of this method. Results indicate that the designed structures can achieve the performance level with the story drift ratios less than target values, and weak‐story failure mechanism is not observed. The approach can be used in engineering applications.  相似文献   

3.
Gaps between beam‐to‐column interfaces in a post‐tensioned (PT) self‐centering frame with more than one column are constrained by columns, which causes beam compression force different from the applied PT force. This study proposes an analytical method for evaluating column bending stiffness and beam compression force by modeling column deformation according to gap‐openings at all stories. The predicted compression forces in the beams are validated by a cyclic analysis of a three‐story PT frame and by cyclic tests of a full‐scale, two‐bay by first‐story PT frame, which represents a substructure of the three‐story PT frame. The proposed method shows that compared with the strand tensile force, the beam compression force is increased at the 1st story but is decreased at the 2nd and 3rd stories due to column deformation compatibility. The PT frame tests show that the proposed method reasonably predicts beam compression force and strand force and that the beam compression force is 2 and 60% larger than the strand force with respect to a minor restraint and a pin‐supported boundary condition, respectively, at the tops of the columns. Therefore, the earlier method using a pin‐supported boundary condition at upper story columns represents an upper bound of the effect and is shown to be overly conservative for cases where a structure responds primarily in its first mode. The proposed method allows for more accurate prediction of the column restraint effects for structures that respond in a pre‐determined mode shape which is more typical of low and mid‐rise structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
An application of a pin‐supported wall‐frame system in retrofitting an eleven‐story steel reinforced concrete frame is introduced. The retrofit aims at enhancing integrity and avoiding weak story failure in an existing moment‐resisting frame. Seismic performance of the building before and after the retrofit is assessed through nonlinear dynamic analysis. The results show that the pin‐supported walls are effective in controlling the deformation pattern of the ductile frame and hence in avoiding weak story failure. With the well‐controlled deformation pattern, carefully arranged energy dissipating devices are able to concentrate energy dissipations so that damage to the rest of the structure can be significantly reduced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper reports a study for the seismic performance of one large‐scaled (1/15) model of 30‐story steel‐reinforced concrete frame‐concrete core wall mixed structure. The study was implemented by both shaking table tests, in which the similarity ratio for lateral and gravitational accelerations was kept to 1:1, and numerical nonlinear dynamic analysis. The test observations presented herein include story displacement, interstory drift, natural vibration periods, and final failure mode. The numerical analysis was performed to simulate the shaking table test procedure, and the numerically obtained responses were verified by the test results. On the basis of the numerical results, the progressions of structural stiffness, base shear, and overturning moment were investigated, and the distributions of base shear and overturning moment between frame and core wall were also discussed. The test demonstrates the seismic performance of the steel‐reinforced concrete frame‐core wall mixed structure and reveals the potential overturning failure mode for high rise structures. The nonlinear analysis results indicate that the peripheral frames could take more shear forces after core wall damaged under severe earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g.  相似文献   

7.
This paper presents results from a numerical investigation into the seismic retrofit of a soft story frame using a novel gapped‐inclined brace (GIB) system. The GIB system consists of a pinned brace and a gap element that is added to the first story columns of the frame. The inclusion of GIB elements in addition to increasing the lateral capacity of columns at the first story increases the post‐yield stiffness ratio of the system and reduces the P‐delta effects on the columns, while not increasing the first story lateral resistance or stiffness. This allows for the isolating benefits of the soft story to protect the upper floors of the structure from damage while avoiding excessive deformations and reducing the propensity for collapse. A six‐story RC frame with masonry infills on all floors except for the first floor is studied. The dynamic response of the retrofitted building using the GIB system is investigated numerically and is compared with the response of the original un‐retrofitted building and the same building in which masonry infills are added to the first story to mitigate the soft story response. Results from the nonlinear time‐history analyses indicate that the GIB system could provide a reliable seismic retrofit mechanism for soft story buildings, which greatly reduces the likelihood of collapse by increasing the displacement capacity of the soft storey and by reducing P‐delta effects, while minimizing the overall damage and losses in the building by taking advantages of the isolation that is provided by the soft story to the rest of the structure located above. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
传统抗弯钢框架的梁柱节点通常设计为刚性连接,这种刚性节点具有很大的抗弯刚度,然而节点延性不足,罕遇地震作用导致节点脆性断裂。研究学者提出了多种解决该问题的思路,例如半刚性连接节点、节点加强或削弱方法使塑性铰外移等。本文提出了一种简化的梁柱节点连接方式-铰接连接,改变梁柱节点的传力方式,在节点处设置隅撑提供框架的抗侧刚度,控制结构的失效模式。本文设计了三组抗弯钢框架和铰接隅撑钢框架,分别为3层、5层和8层结构,通过Pushover分析和非线性动力时程分析,对比二者之间的承载力、刚度、延性和层间侧移等抗震性能。研究结果表明:铰接隅撑钢框架具有和传统抗弯钢框架相似的抗侧刚度,且承载能力略高。罕遇地震作用下,铰接隅撑钢框架的层间侧移较小。传统抗弯钢框架失效模式为梁端出现塑性铰,而铰接隅撑钢框架的塑性区域转移至隅撑与梁连接部位。  相似文献   

9.
A new method of retrofitting reinforced concrete (RC) frames with buckling‐restrained braces (BRBs) to improve frame strength, stiffness and energy dissipation is proposed. Instead of typical post‐installed anchors, load is transferred between the BRB and RC frame through compression bearing between an installed steel frame connected to the BRB, and high‐strength mortar blocks constructed at the four corners of the RC frame. This avoids complex on‐site anchor installation, and does not limit the allowable brace force by the anchor strength. Cyclic displacements of increasing amplitudes were imposed on two RC frame specimens retrofitted with different BRB strength capacities. In one of the frames, the bearing blocks were reinforced with wire mesh to mitigate cracking. A third RC frame was also tested as a benchmark to evaluate the retrofit strength and stiffness enhancements. Test results indicate that the proposed method efficiently transferred loads between the BRBs and RC frames, increasing the frame lateral strength while achieving good ductility and energy‐dissipating capacity. When the bearing block was reinforced with wire mesh, the maximum frame lateral strength and stiffness were more than 2.2 and 3.5 times the RC frame without the BRB respectively. The BRB imposes additional shear demands through the bearing blocks to both ends of the RC beam and column member discontinuity regions (D‐regions). The softened strut‐and‐tie model satisfactorily estimated the shear capacities of the D‐regions. A simplified calculation and a detailed PISA3D analysis were shown to effectively predict member demands to within 13.8% difference of the measured test results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the effect of the composite action on the seismic performance of steel special moment frames (SMFs) through collapse. A rational approach is first proposed to model the hysteretic behavior of fully restrained composite beam‐to‐column connections, with reduced beam sections. Using the proposed modeling recommendations, a system‐level analytical study is performed on archetype steel buildings that utilize perimeter steel SMFs, with different heights, designed in the West‐Coast of the USA. It is shown that in average, the composite action may enhance the seismic performance of steel SMFs. However, bottom story collapse mechanisms may be triggered leading to rapid deterioration of the global strength of steel SMFs. Because of composite action, excessive panel zone shear distortion is also observed in interior joints of steel SMFs designed with strong‐column/weak‐beam ratios larger than 1.0. It is demonstrated that when steel SMFs are designed with strong‐column/weak‐beam ratios larger than 1.5, (i) bottom story collapse mechanisms are typically avoided; (ii) a tolerable probability of collapse is achieved in a return period of 50 years; and (iii) controlled panel zone yielding is achieved while reducing the required number of welded doubler plates in interior beam‐to‐column joints. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
本文针对钢板剪力墙结构自振周期缺乏研究的现状,将钢板剪力墙简化为Timoshenko梁,提出了考虑周边框架影响的钢板剪力墙等效抗剪刚度计算的方法,然后根据Southwell-Dunkerley理论,给出了钢板剪力墙结构基本自振周期的简化计算公式。然后,通过56个算例比较分析了本文公式计算结果与有限元计算结果发现:本文公式计算结果与有限元结果之比的平均值为1.015,标准差为0.049,说明本文公式具有足够的可靠性。接着,又对结构高度、均布质量、等效抗剪、抗弯刚度、钢板的高厚比、高宽比等参数进行了分析,分析结果表明:随着结构高度与均布质量开方的乘积增大,结构的基本自振周期增长;层数相同时,随着等效抗剪刚度、抗弯刚度的增大,周期有减小的趋势;层数相同时,随着钢板高厚比与高宽比乘积的增大,周期增长。  相似文献   

12.
Brittle fractures were observed at the welded beam‐to‐column connections of a number of steel moment frame buildings following the M6.7 1994 Northridge earthquake. Such fractures cause a rapid loss of connection strength and stiffness, as well as a sudden release of the strain energy stored by the connection at the time of fracture. Immediately following the fracture, a number of highly transient phenomena occur locally in the members adjacent to the connection, as well as globally in the structure as a whole. Four significant local phenomena were observed locally during shaking table tests of a one‐third scale, two‐story, one‐bay steel moment frame in which quasi‐brittle beam‐to‐column fractures occurred: (a) change in beam deflected shape; (b) change in moment distribution in adjacent members; (c) generation and propagation of elastic waves; and (d) initiation of dynamic modal response at the member level. Owing to the highly transient nature of these phenomena, they were observed to have second‐order effects on overall behavior of the system. In comparison, the reductions in local strength and stiffness caused by the fractures had much more significant effects on system behavior. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The inelastic seismic torsional response of simple structures is examined by means of shear‐beam type models as well as with plastic hinge idealization of one‐story buildings. Using mean values of ductility factors, obtained for groups of ten earthquake motions, as the basic index of post‐elastic response, the following topics are examined with the shear‐beam type model: mass eccentric versus stiffness eccentric systems, effects of different types of motions and effects of double eccentricities. Subsequently, comparisons are made with results obtained using a more realistic, plastic hinge type model of single‐story reinforced concrete frame buildings designed according to a modern Code. The consequences of designing for different levels of accidental eccentricity are also examined for the aforementioned frame buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Cyclic loading tests were performed on three one‐storey steel frames and four three‐storey concrete‐filled tube (CFT) moment frames reinforced with a new type of earthquake‐resisting element consisting of a steel plate shear wall with vertical slits. In this shear wall system, the steel plate segments between the slits behave as a series of flexural links, which provide fairly ductile response without the need for heavy stiffening of the wall. The steel shear walls and the moment frames behaved in a ductile manner up to more than 4% drift without abrupt strength degradation or loss of axial resistance. Results of these tests and complementary analysis provide a basis for an equivalent brace model to be employed in commercially available frame analysis programs. Test and analytical results suggest that the horizontal force is carried by the bolts in the middle portion of the wall–frame connection, while the vertical forces coupled with the moment in the connection are resisted by the bolts in the edge portion of the connection, for which the friction bolts in the connection should be designed. When sufficient transverse stiffening is provided, full plastic strength and non‐degrading hysteretic behaviour can be achieved for this new type of shear wall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
A summary of the development of a new coupled shear‐bending model for analysis of stacked wood shear walls and multi‐story wood‐frame buildings is presented in this paper. The model focuses on dynamic response of light‐frame wood structures under seismic excitation. The formulation is intended to provide a more versatile option than present pure shear models in that the new model is capable of accurately capturing the overall lateral response of each story diaphragm and separates the inter‐story shear deformation and the deformation associated with rotation of the diaphragm due to rod elongation, which is an analogue to the bending deformation in an Euler–Bernoulli beam model. Modeling the coupling of bending and shear deformation is shown to provide more accurate representation of stacked shear wall system behavior than a pure shear model, particularly for the upper stories in the assembly. The formulation is coupled with the newly developed evolutionary parameter hysteretic model for wood shear walls. Existing data from a shake table test of an isolated three‐story wood shear wall were used to verify the accuracy of the model prediction. The numerical results agreed very well with shake table test measurements. The influence of a continuous rod hold‐down system on the dynamic behavior of the three‐story stacked wood shear wall was also successfully simulated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The corner gusset plates in a steel braced frame can be subjected to forces not only from the brace but also from the effects of the frame actions. In this study, several finite element models are constructed to analyze the gusset‐to‐beam and gusset‐to‐column interface forces. It is found that the frame actions affect the gusset interface force distributions significantly. A simplified strut model to represent the gusset plate is adopted to evaluate the frame action forces. In addition, the generalized uniform force method is adopted as it provides more freedom for designers to configure the gusset plate shapes than using the uniform force method. In this paper, a performance‐based design method is proposed. The gusset interface force demands take into account the combined effect of the brace maximum axial force capacity and the peak beam shear possibly developed in the frame. The specimen design and key results of a series of full‐scale three‐story buckling‐restrained braced frame (BRBF) hybrid tests are discussed. The gusset interface cracks observed at inter‐story drift greater than 0.03 radians can be well predicted by using the proposed design method. The BRBF tests and analyses confirm that the proposed design method is reasonable. The effectiveness of varying the width of gusset edge stiffeners in reducing the gusset tip stress concentrations is also investigated. This paper concludes with recommendations for the seismic design of BRBF corner gusset plates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A ductile Vierendeel frame can be constructed by incorporating steel panel dampers (SPDs) into a moment‐resisting frame (MRF). Thus, the stiffness, strength, and ductility of the lateral force–resisting system can be enhanced. The proposed 3‐segment SPD possesses a center inelastic core (IC) and top and bottom elastic joints. This paper discusses the mechanical properties, capacity design method, and buckling‐delaying stiffeners for the SPDs through the use of cyclic loading tests on 2 specimens. Tests confirm that SPDs' cyclic force vs deformation relationships can be accurately predicted using either the Abaqus or PISA3D model analyses. The paper also presents the capacity design method for boundary beams connected to the SPDs of a typical SPD‐MRF. The seismic performance of an example 6‐story SPD‐MRF is evaluated using nonlinear response history analysis procedures and 240 ground accelerations at 3 hazard levels. Results indicate that under 80 maximum considered earthquake ground accelerations, the mean‐plus‐one standard deviation of the shear deformation of the ICs in the SPDs is 0.055 rad, substantially less than the 0.11 rad deformational capacity observed from the SPD specimens. The experimental cumulative plastic deformation of the proposed SPD is 242 times the yield deformation and is capable of sustaining a maximum considered earthquake at least 8 times before failure. This paper introduces the method of using one equivalent beam‐column element for effective modeling of the 3‐segment SPD. The effects of the IC's relative height and stiffness on the overall SPD's elastic and postelastic stiffness, elastic deformation limits, and inelastic deformational demands are discussed.  相似文献   

18.
超高层结构地震剪力响应由振型分解反应谱法得到的结果经常不能满足规定的最小剪力系数要求。为此,文章简述剪力系数的概念和调整方法,以具有不同剪力系数的两个模型对比分析结构弹性、弹塑性地震响应差异,探讨剪力系数对超高层结构地震响应的影响。以通过强度和刚度调整使最小剪力系数满足规范要求的两个模型,分析不同调整方法引起的结构响应的合理性。结果表明:满足最小剪力系数的结构的弹性基底剪力大、层间位移角较小,结构的弹塑性位移响应也较小,受力状态优于不满足最小剪力系数的结构,安全性得到了提高。结构弹性倾覆力矩需求和弹塑性基底剪力按刚度调整大于按强度调整;结构弹塑性最大顶点位移和层间位移角响应相差不大,但出现刚度大\,层间位移角也大的与抗震理论相悖的情况;在满足抗震要求的情况下,构件的受力状态则是按强度调整更优,构件截面更加经济合理。  相似文献   

19.
This paper evaluates the seismic resistance of steel moment resisting frames (MRFs) with supplemental fluid viscous dampers against collapse. A simplified design procedure is used to design four different steel MRFs with fluid viscous dampers where the strength of the steel MRF and supplemental damping are varied. The combined systems are designed to achieve performance that is similar to or higher than that of conventional steel MRFs designed according to current seismic design codes. Based on the results of nonlinear time history analyses and incremental dynamic analyses, statistics of structural and non‐structural response as well as probabilities of collapse of the steel MRFs with dampers are determined and compared with those of conventional steel MRFs. The analytical frame models used in this study are reliably capable to simulate global frame collapse by considering full geometric nonlinearities as well as the cyclic strength and stiffness deterioration in the plastic hinge regions of structural steel members. The results show that, with the aid of supplemental damping, the performance of a steel MRF with reduced design base shear can be improved and become similar to that of a conventional steel MRF with full design base shear. Incremental dynamic analyses show that supplemental damping reduces the probability of collapse of a steel MRF with a given strength. However, the paper highlights that a design base shear equal to 75% of the minimum design base shear along with supplemental damping to control story drift at 2% (i.e., design drift of a conventional steel MRF) would not guarantee a higher collapse resistance than that of a conventional MRF. At 75% design base shear, a tighter design drift (e.g., 1.5% as shown in this study) is needed to guarantee a higher collapse resistance than that of a conventional MRF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Improving seismic performance is one of the critical objectives in earthquake engineering. With the development of economy and society, reparability and fast resilience of a structure are becoming increasingly important. Reinforced concrete (RC) frame structure is prone to soft story mechanism. As a result, deformation and damage are so concentrated that reparability is severely hampered. Rocking wall provides an available approach for deformation control in RC frame by introducing a continuous component along the height. Previous researches mostly focus on seismic responses of rocking wall frame structures, while damage mode and reparability have not been investigated in detail. In this study, a novel infilled rocking wall frame (IRWF) structure is proposed. A half‐scaled IRWF model was designed according to Chinese seismic design code. The model was subjected to cyclic pushover testing up to structure drift ratio of 1/50 (amplitude 1/50), and its reparability was evaluated thereafter. Retrofit was implemented by wrapping steel plates and installing friction dampers. The retrofitted model was further loaded up to amplitude 1/30. The IRWF model showed excellent reparability and satisfactory seismic performance on deformation control, damage mode, hysteresis behavior, and beam‐to‐column joint rotation. After retrofitting, capacity of the model was improved by 11% with limited crack distribution. The model did not degrade until amplitude 1/30, due to shear failure in frame beams. The retrofit procedure was proved effective, and reparability of the IRWF model was demonstrated. Seismic resilience tends to be achieved in the proposed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号