首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Tarim River lies in the inland area of Northwest China, which has a semiarid or arid climate. Because of relatively scarce precipitation in this area, the main water resource is runoff from a mountainous drainage basin. It is very important to ascertain variations of regular hydrologic and meteorological time series data. Through the use of monthly precipitation and hydrologic data in the three headstream mountain areas of the Tarim River over the past 50 years, this work analyzes the variation of a drought–flood index and annual runoff volume, along with spatio-temporal structures of the index related to runoff at multiple time scales, via non-parametric testing and a wavelet transform method. Wavelet transform can clearly demonstrate many characteristics of the time series, including trend, shift, and major periods. Based on the analysis, the following conclusions can be drawn: (1) the drought–flood indices showed increasing trends for the Aksu and Yarkand rivers, and rose non-significantly for Hotan River. The indices of the three headstreams changed remarkably (p < 0.05) in 1986. The curves of wavelet variance show that significant periods of the indices are 4 and 8 years for Aksu and Hotan rivers, and 8 and 10 years for Yarkand River; (2) runoff of the Aksu and Hotan rivers had significant periods of 6 and 8 years, plus 3 and 9 years for Hotan River; (3) there was significant correlation between the drought–flood indices and annual runoff volume in the three headstreams. The results provide important information toward achieving predictability of flood and drought in Northwest China.  相似文献   

2.
长江流域陆地水储量与多源水文数据对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王文  王鹏  崔巍 《水科学进展》2015,26(6):759-768
从趋势性、滞后性及相关性三方面,对2002—2013年间GRACE重力卫星反演的长江上游与中游陆地水储量与模型模拟土壤含水量、实测降水和实测径流数据进行了对比分析,并从干旱强度及发展时间两方面评估了标准化陆地水储量指数SWSI、标准化降水指数SPI、标准化径流指数SRI和标准化土壤含水量指数SSMI对区域性干旱的表征能力.结果表明:长江上游地区陆地水储量与降水、径流和土壤水蓄量均无显著变化,而中游地区陆地水储量则与水库蓄量同样具有显著性增加,反映人类活动对中游地区陆地水储量变化有很大影响;各指标指示的各等级干旱月份数量基本相当,但各指标反映的特旱具体月份有较大差别,基于GRACE数据构建的SWSI指标对特大干旱的指示性不好;对比各指标对上游与中游地区干旱事件发展时间,体现出水文干旱、农业干旱对气象干旱存在一定的迟滞关系.  相似文献   

3.
In this study, application of a class of stochastic dynamic models and a class of artificial intelligence model is reported for the forecasting of real-time hydrological droughts in the Black River basin in the USA. For this purpose, the Standardized Hydrological Drought Index (SHDI) was adopted in different time scales to represent the hydrological drought index. Six probability distribution functions (PDF) were fitted to the discharge time series to obtain the best fit for SHDI calculation. Then, a dynamic linear spatio-temporal model (DLSTM) and artificial neural network (ANN) were used to forecast SHDI. Although results indicated that both models were able to forecast SHDI in different time scales, the DLSTM was far superior in longer lead times. The DLSTM could forecast SHDI up to 6 months ahead while ANN was only capable of forecasting SHDI up to 2 months ahead appropriately. For short lead times (1–6 months), the DLSTM has performed nearly perfect in test phase and CE oscillates between 0.97 and 0.86 while for ANN modeling, CE is between 0.72 and 0.07. However, the performance of DLSTM and ANN reduced considerably in medium lead times (7–12 months). Overall, the DLSTM is a powerful tool for appropriately forecasting SHDI at short time scales; a major advantage required for drought early warning systems.  相似文献   

4.
This article investigates whether the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global terrestrial Drought Severity Index (DSI) had the capability of detecting regional drought over subtropical southwestern China. Monthly, remotely sensed DSI data with 0.05° spatial resolution were used to characterize the extent, duration, and severity of drought from 2000 to 2010. We reported that southwestern China suffered from incipient to extreme droughts from November 2009 to March 2010 (referred to as the “drought period”). The area affected by drought occupied approximately 74 % of the total area of the study region, in which a moderate drought, severe drought, and an extreme drought accounted for 20, 12.7, and 13.2 % of the total area, respectively; particularly in March 2010, droughts of severe and extreme intensity covered the largest areas of drought, which were 16.1 and 18.6 %, respectively. Spatially, eastern Yunnan, western Guizhou, and Guangxi suffered from persistent droughts whose intensities ranged from mild to extreme during the drought period. Pearson’s correlation analyses were performed between DSI and the in situ meteorological station-based Standardized Precipitation Index (SPI) for validating the monitoring results of the DSI. The results showed that the DSI corresponded favorably with the time scales of the SPI; meanwhile, the DSI showed its highest correlation (mean: r = 0.58) with a three-month SPI. Furthermore, similar spatial patterns and temporal variations were found between the DSI and the three-month SPI, as well as the agro-meteorological drought observation data, when monitoring drought. Our analysis suggests that the DSI can be used for near-real-time drought monitoring with fine resolution across subtropical southwestern China, or other similar regions, based solely on MODIS-derived evapotranspiration/potential evapotranspiration and Normalized Difference Vegetation Index data.  相似文献   

5.
To establish the drought index objectively and reasonably and evaluate the hydrological drought accurately, firstly, the optimal distribution was selected from nine distributions (normal, lognormal, exponential, gamma, general extreme value, inverse Gaussian, logistic, log-logistic and Weibull), then the Optimal Standardized Streamflow Index (OSSI) was calculated based on the optimal distribution, and last, the spatiotemporal evolution of hydrological drought based on the OSSI series was investigated through the monthly streamflow data of seven hydrological stations during the period 1961–2011 in Luanhe River basin, China. Results suggest: (1) the general extreme value and log-logistic distributions performed prominently in fitting the monthly streamflow of Luanhe River basin. (2) The main periods of hydrological drought in Luanhe River basin were 148–169, 75–80, 42–45, 14–19 and 8–9 months. (3) The hydrological drought had an aggravating trend over the past 51 year and with the increase in timescale, the aggravating trend was more serious. (4) The lower the drought grade was, the broader the coverage area. As for the Luanhe River basin, the whole basin suffered the mild and more serious drought, while the severe and more serious drought only cover some areas. (5) With the increase in time step, the frequency distribution of mild droughts across the basin tended to be concentrated, the frequency of extreme droughts in middle and upper reaches tended to increase and the frequency in downstream tends to decrease. This research can provide powerful references for water resources planning and management and drought mitigation.  相似文献   

6.
Snowcover dynamics and associated accumulation and depletion of snowcover along with its spatial and temporal scale mainly constitute hydrological phenomena of the given basin and are mostly controlled by the local climate variables. Snow accumulation and melting time and duration determine the cyclic volume of water resources and downstream availability. In this study, snowcover area (SCA) was extracted from remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) snow products (MOD10A2) for the period 2000–2016. Data for hydro-meteorological parameters was obtained from relevant departments acquired through their field stations. The analysis of 16-year satellite data shows that there is a slight increase in cryospheric area at high altitude. In Astore basin, the study concluded that 15–20% of the basin area is covered by glacier and snowcover may reach around 90–95% of the basin area due to accumulation of seasonal snow from the westerly wind circulation. Analysis of hydro-meteorological parameters showed significant correlation between temperatures (Tmax, Tmin) and river runoff while no significant correlation was observed between river runoff and rainfall. Similarly, significant inverse correlation was found between river runoff and Astore mean snowcover. At sub-altitudinal zone level (zones 1, 2, 3), river runoff has significant correlation with snowcover. Analysis of 20-year climate data along with river runoff depicts that river runoff is a general phenomenon of snowmelt when minimum temperature starts to rise above 4 °C during mid of April. The study highlights the importance and interdependence of meteorological parameters and snowcover dynamics in determining the hydrological characteristics of Astore Basin.  相似文献   

7.
In this study, a semi-distributed hydrologic model Soil and Water Assessment Tool (SWAT) has been employed for the Karnali River basin, Nepal to test its applicability for hydrological simulation. Further, model was evaluated to carry out the water balance study of the basin and to determine the snowmelt contribution in the river flow. Snowmelt Runoff Model (SRM) was also used to compare the snowmelt runoff simulated from the SWAT model. The statistical results show that performance of the SWAT model in the Karnali River basin is quite good (p-factor = 0.88 and 0.88, for daily calibration and validation, respectively; r-factor = 0.76 and 0.71, for daily calibration and validation, respectively). Baseflow alpha factor (ALPHA_BF) was found most sensitive parameter for the flow simulation. The study revealed that the average annual runoff volume available at the basin outlet is about 47.16 billion cubic metre out of which about 12% of runoff volume is contributed by the snowmelt runoff. About 25% of annual precipitation seems to be lost as evapotranspiration. The results revealed that both the models, SWAT and SRM, can be efficiently applied in the mountainous river basins of Nepal for planning and management of water resources.  相似文献   

8.
Terrestrial water storage (TWS), a sum total of water stored on or beneath the earth’s surface, transits in response to hydroclimatic processes such as precipitation, evapo-transpiration, runoff etc. and serves an indicator of hydrological condition of a region. We analyse spatio-temporal variance of water storage in Krishna Basin, India, derived from in-situ groundwater data and Gravity Recovery and Climate Experiment (GRACE) satellite data in order to determine physical causes of variations, and compare the variance with climatic factors such as Cumulative Rainfall Departure (CRD) and drought index i.e. Standardized Precipitation Index (SPI). GRACE satellite based TWS is found to reflect insitu groundwater changes and also shows a relationship with drought patterns as indicated by a good correlation with SPI. The largest part of TWS represents seasonal flux, and at an interannual scale, TWS depicts spatio-temporal variability in response to drought index viz. SPI. We infer that the groundwater storage derived from GRACE time-variable gravity solutions can be utilised to complement in-situ observations at basin scale and it reflects climatic forcing quite well.  相似文献   

9.
Drought is one of the most detrimental natural disasters. Studying the changing characteristics of drought is obviously of great importance to achieve the sustainable use of water resources at river basin scales. In this paper, the satellite-based Vegetation Condition Index (VCI) and Vegetation Health Index (VH) were firstly calculated by using NDVI and brightness of the Global Vegetation Index dataset derived from Advance Very High Resolution Radiometer for China in growing seasons over 1982–2005. Then, the long-term VCI and VH data were employed to study the variation of droughts in the ten basins covering the whole country. The linear trend of each pixel showed that most parts of China were getting wetter in growing seasons, and the drought areas defined by the number of drought pixels have decreased in most basins. The increasing trend of basin averaged values of VCI and VH also indicates the whole country was generally getting wetter. At last, to better understand the two remote sensing drought indices, the response of the growing-season VCI and VH was compared to that of the Palmer Drought Severity Index and 6-month Standard Precipitation Index. Significant spatial variability of the relationship between the VCI, VH, and the station-based meteorological drought indices was shown, and some more closely related areas were found. The study will be useful for water resources management for each basin in the future.  相似文献   

10.
From early November 2008 to February 2009, lack of rainfall led to severe drought in northern China. More than 9.3 million ha of wheat in six major crop production provinces, including Henan, Anhui, Shandong, Shanxi, Gansu, and Shaanxi, were hit by drought. Supported by Chinese HJ-1 satellite images together with NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data, dynamic monitoring of the drought was conducted. HJ-1 CCD data with 30-m resolution were used to identify cropland information. Spatialtemporal variation of drought was detected using Vegetation Index and Water Index time series data derived from MODIS visible, infrared, and short-wave infrared bands. The influences of drought were classified into five levels based on MODIS-derived 8-day composite Anomaly Water Index (AWI) and field survey data. The results indicated that the drought deteriorated beginning in November 2008 and became most serious in late January 2009. HJ-1 data together with MODIS data proved to be valuable data sources for monitoring soil moisture and drought at a both regional and national scale.  相似文献   

11.
In this study, an approach for runoff and recharge estimations that can be applied in arid regions which suffer from lack of data is presented. Estimating groundwater recharge in arid regions is an extremely important but difficult task, the main reason is the scarcity of data in arid regions. This is true for the Eastern Egyptian Desert where groundwater is used for irrigation purposes in agricultural reclamation along the Red Sea coast line. As a result of the scarcity of hydrologic information, the relation between rainfall and runoff was calculated depending on the paleo-flood hydrology information. Two models were used to calculate the rainfall–runoff relationships for El Hawashyia basin and Ghazala sub-basin. Two computer programs known as Gerinne (meaning channel in German) and SMADA6 (Stormwater Management and Design Aid, version 6) were conjunctively used for this purpose. As a result of the model applied to El Hawashyia basin, a rainfall event of a total of 18.3 mm with duration 3 h at the station of Hurghada, which has an exceedance probability of 5–10 %, produces a discharge volume of 10.2 × 106 m3 at the delta, outlet of the basin, as 4.7 mm of the rainfall infiltrates (recharge). For the Ghazala sub-basin, the model yields a runoff volume of 3.16 × 106 m3 transferred from a total rainfall of 25 mm over a period of 3 h, as 3.2 mm of it was lost as infiltration.  相似文献   

12.
Drought is a natural phenomenon which occurs in different climate regimes. In the present study, hydrological drought of the Roud Zard basin has been investigated based on run theory. Daily runoff data of Mashin hydrometery station during 1970 to 2012 was assessed using 70 % of mean daily runoff as threshold level. Results showed that the maximum drought duration of 309 days occurred in 1998 and 1999 and max drought deficit of 117.217 million cubic meters per second in 1983 with 275 days duration. Time series of the annual maxima values of duration and volume deficit showed similar trend of increase and decreasing. Burr statistical distribution, as the most suitable one fitted to the drought duration data, forecasted 339 days duration for drought event with 20 years return period and generalized extreme value forecasted 37.9 million cubic meters of deficit volume for this return period. Severity-duration-frequency (SDF) curves were prepared, classifying drought durations to four intervals and fitting statistical distribution to each. Resulted SDF curves showed that, in each period, increase of duration resulted in increased value of the volume deficit with a non-linear trend, though predicted drought volume with 20 years return period was 2.1 million cubic meters for 1 to 10 days duration, 6.9 for 11 to 30 days, 34.5 for 31 to 120 days, and 79.1 for more than 120 days duration drought event. Drought deficit volume increasing rate was also different in each class of duration interval. Drought SDF curves derived in this study can be used to quantify water deficit for natural stream and reservoir. SDFs could also be extended to allow for drought regional frequency analysis to be used in ungauged sites.  相似文献   

13.
环境变化下水文干旱研究是水科学研究领域的热点问题之一。根据荆南三口河系1956-2017年5个水文站和22个气象站实测数据,采用标准化径流指数(Standardized Runoff Index,SRI)、降水-径流多元非线性模型、累积量斜率变化率比较法辅以Mann-Kendall检验法等方法,分析环境变化前后荆南三口河系62年水文干旱演变特征,并定量分解气候变化(降水量、蒸发量)和人类活动对径流量衰减的影响。结果表明:荆南三口河系整体干旱频率较高,变化期干旱事件发生频次多且等级高,多尺度干旱平均频率达42.96%,稳定期极少出现干旱现象;三口地区年径流量、年蒸发量在长时间序列上均呈下降趋势,年降水量较为稳定,年径流量检验的突变年份为1970年、1985年和2003年;人类活动是促使三口河系年径流量逐渐衰减的主要原因,1971-1985年、1986-2003年和2004-2017年三个时期人类活动对径流量变化(水文干旱演变)影响的贡献率依次为91.14%、103.73%、78.33%。  相似文献   

14.
Drought identification and drought severity characterization are crucial to understand water scarcity processes. Evolution of drought and wetness episodes in the upper Nen River (UNR) basin have been analyzed for the period of 1951–2012 using meteorological drought indices and for the period of 1898–2010 using hydrological drought indices. There were three meteorological indices: one based on precipitation [the Standardized Precipitation Index (SPI)] and the other two based on water balance with different formulations of potential evapotranspiration (PET) in the Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, two hydrological indices, the Standardized Runoff Index and Standardized Streamflow Index, were also applied in the UNR basin. Based on the meteorological indices, the results showed that the main dry period of 1965–1980 and wet periods of 1951–1964 and 1981–2002 affected this cold region. It was also found that most areas of the UNR basin experienced near normal condition during the period of 1951–2012. As a whole, the UNR basin mainly had the drought episodes in the decades of 1910, 1920, 1970 and 2000 based on hydrological indices. Also, the severity of droughts decreased from the periods of 1898–1950 to 1951–2010, while the severity of floods increased oppositely during the same periods. A correlation analysis showed that hydrological system needs a time lag of one or more months to respond to meteorological conditions in this cold region. It was also found that although precipitation had a major role in explaining temporal variability of drought, the influence of PET was not negligible. However, the sole temperature driver of PET had an opposite effect in the UNR basin (i.e., misestimating the drought detection) and was inferior to the SPI, which suggests that the PET in the SPEI should be determined by using underlying physical principles. This finding is an important implication for the drought research in future.  相似文献   

15.
The amount and distribution of precipitation play crucial roles in the occurrence of drought in the Weihe River Basin (WRB), China. Using the precipitation data (1960–2010) of 21 meteorological stations, the spatial and temporal characteristics of short-, medium-, and long-term droughts on 3-, 6-, and 12-month time scales, respectively, were examined using the theory of runs and the Standardized Precipitation Index (SPI). The trends of the drought characteristics were analyzed by a modified Mann-Kendall (MMK) test method. Furthermore, comparative analysis of the SPI at different time scales was conducted. The results showed that (1) the main drought type was moderate drought, which occurred frequently in July and October; (2) the drought intensity and frequency were highest in the 1990s, and the drought severity and drought duration in the northwest was more serious than that in the east; (3) an increasing trend of short droughts appeared mainly in the spring and fall; an increasing trend of medium droughts mainly occurred in the 1990s and that of long-term droughts were mainly presented in the northwest region of the WRB; (4) SPI-3 can better reflect precipitation in the current month, SPI-6 has an advantage in characterizing drought persistence, and SPI-12 performs well in capturing extraordinary droughts; and (5) it was also observed that there is a strong relation between the precipitation distribution and drought zones in the basin, and the drought conditions changed continuously with the seasons depending upon the amount and spatial distribution of precipitation .  相似文献   

16.
挠力河流域湿地和耕地变化对径流深的影响研究   总被引:2,自引:1,他引:1  
运用线性、对数、指数和三次函数关系拟合挠力河流域1956~2000年湿地面积、耕地面积以及面降水量对径流深的影响,得出:①三次函数拟合的相关性最好;②湿地面积减少和耕地面积增加与径流深的相关性小于面降水量与径流深的相关性.通过分析湿地面积减少和耕地面积增大对径流递减贡献机理,认为湿地面积减少,降低了湿地冷湿效应,增加了陆面蒸发的潜力;湿地转变成耕地,改变了土壤对降水的再分配过程;耕地面积的扩大增大了土壤蒸发潜力;旱地改成水稻田增大了地表水的利用率和地下水的利用量,这些是流域地表径流深减小的原因.研究结论显示湿地面积的减少和耕地面积的增加对流域径流深的递减有较为明显的贡献;径流深的减小是流域呈干旱趋势的指征.  相似文献   

17.
李敏  张铭锋  朱黎明  黄金柏 《水文》2023,43(4):39-44
气象干旱发展到一定程度可以传递为水文干旱。以潘家口水库流域1961—2010年逐月平均降水数据和潘家口水库的入库径流序列为基础数据,分别计算了1、3、6、12个月时间尺度的标准化降水指数(SPI)和标准化径流指数(SRI),以表征研究区域的气象干旱和水文干旱。基于条件分布模型,分析了不同时间尺度的气象干旱传递到未来的不同等级和不同的预测期(或滞后期)的水文干旱的概率。结果表明,当SPI时间尺度较短或预测期(滞后期)较短时,其对应的SRI水文干旱等级越倾向于维持与SPI相同的干旱等级;随着SPI时间尺度的增长或预测期(滞后期)延长,其对应的SRI水文干旱等级略低于气象干旱或恢复到正常状态。  相似文献   

18.
Drought is one of the most important natural hazards in Iran. It is especially more prevalent in arid and hyper arid regions where there are serious limitations in regard to providing sufficient water resources. On the other hand, drought modeling and particularly its prediction can play important role in water resources management under conditions of lack of sufficient water resources. Therefore, in this study, drought prediction in a hyper arid location of Iran (Ardakan region) has been surveyed based on the abilities of artificial neural. Standardized Precipitation Index (SPI) in different time scales (3, 6, 9, 12, and 24 monthly time series) computed based on the data gathered from four rain gauge stations. After evaluation and testing of different artificial neural networks (ANN) structures, gradient descent back propagation (traingd) network showed higher abilities than others. Then, the predictions of SPI time series with different monthly lag times (1:12 months) were tested. Generally, drought prediction by ANNs in the Ardakan region has shown considerable results with the correlation coefficient (R) more than 0.79 and in the most cases and it rises more than 0.90, which indicates the ANN’s ability of drought prediction.  相似文献   

19.
渭河源区典型小流域水沙演变规律分析   总被引:3,自引:1,他引:2  
根据渭河源区清源河典型小流域实测水文资料,分析了流域水文要素的年内和年际变化规律,流域降水、径流和泥沙主要集中在汛期,5-9月降水量占全年的78.5%,5-10月径流占全年的78.7%,5-8月输沙量占全年的88.9%。受上游修建水库、水土保持等人类活动的影响,流域汛期径流和泥沙1997-2013年比1980-1996年均减少了5.9%。流域面平均降水量、平均流量、平均输沙量年际变化不稳定,总体呈减少趋势,序列最大可能变异点分别为1995年、1994年和1997年。建立了流域年降水量与年径流深、次降水量P+Pa与次径流深相关模型,相关系数达到0.902和0.860。以年最大洪峰流量为参数,分别建立了流域年径流量与年输沙量、次径流量与次输沙量关系模型,相关系数达到0.835和0.917,公式模拟值与实测值接近,误差较小,可以作为以径流推算泥沙的重要依据。通过定性定量分析人类活动对流域径流、泥沙的影响程度,对区域抗旱防洪减灾、水资源管理、小流域治理及生态环境保护具有重要意义。  相似文献   

20.
The sustainability of water resources mainly depends on planning and management of land use; a small change in it may affect water yield largely, as both are linked through relevant hydrological processes, explicitly. However, human activities, especially a significant increase in population, in-migration and accelerated socio-economic activities, are constantly modifying the land use and land cover (LULC) pattern. The impact of such changes in LULC on the hydrological regime of a basin is of widespread concern and a great challenge to the water resource engineers. While studying these impacts, the issue that prevails is the selection of a hydrological model that may be able to accommodate spatial and temporal dynamics of the basin with higher accuracy. Therefore, in the present study, the capabilities of variable infiltration capacity hydrological model to hydrologically simulate the basin under varying LULC scenarios have been investigated. For the present analysis, the Pennar River Basin, Andhra Pradesh, which falls under a water scarce region in India, has been chosen. The water balance components such as runoff potential, evapotranspiration (ET) and baseflow of Pennar Basin have been simulated under different LULC scenarios to study the impact of change on hydrological regime of a basin. Majorly, increase in built-up (13.94% approx.) and decrease in deciduous forest cover (2.44%) are the significant changes observed in the basin during the last three decades. It was found that the impact of LULC change on hydrology is balancing out at basin scale (considering the entire basin, while routing the runoff at the basin outlet). Therefore, an analysis on spatial variation in each of the water balance components considered in the study was done at grid scale. It was observed that the impact of LULC is considerable spatially at grid level, and the maximum increase of 265 mm (1985–2005) and the decrease of 48 mm (1985–1995) in runoff generation at grid were estimated. On the contrary, ET component showed the maximum increase of 400 and decrease of 570 mm under different LULC change scenario. Similarly, in the base flow parameter, an increase of 70 mm and the decrease of 100 mm were observed. It was noticed that the upper basin is showing an increasing trend in almost all hydrological components as compared to the lower basin. Based on this basin scale study, it was concluded that change in the land cover alters the hydrology; however, it needs to be studied at finer spatial scale rather than the entire basin as a whole. The information like the spatial variation in hydrological components may be very useful for local authority and decision-makers to plan mitigation strategies accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号