首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents in-situ seismic performance tests of a bridge before its demolition due to accumulated scouring problem. The tests were conducted on three single columns and one caisson-type foundation. The three single columns were 1.8 m in diameter,reinforced by 30-D32 longitudinal reinforcements and laterally hooped by D16 reinforcements with spacing of 20 cm. The column height is 9.54 m,10.59 m and 10.37 m for Column P2,P3,and P4,respectively. Column P2 had no exposed foundation and was subjected to pseudo-dynamic tests with peak ground acceleration of 0.32 g first,followed by one cyclic loading test. Column P3 was the benchmark specimen with exposed length of 1.2 m on its foundation. The exposed length for Column P4 was excavated to 4 m,approximately 1/3 of the foundation length,to study the effect of the scouring problem to the column performance. Both Column P3 and Column P4 were subjected to cyclic loading tests. Based on the test results,due to the large dimension of the caisson foundation and the well graded gravel soil type that provided large lateral resistance,the seismic performance among the three columns had only minor differences. Lateral push tests were also conducted on the caisson foundation at Column P5. The caisson was 12 m long and had circular cross-sections whose diameters were 5 m in the upper portion and 4 m in the lower portion. An analytical model to simulate the test results was developed in the OpenSees platform. The analytical model comprised nonlinear flexural elements as well as nonlinear soil springs. The analytical results closely followed the experimental test results. A parametric study to predict the behavior of the bridge column with different ground motions and different levels of scouring on the foundation are also discussed.  相似文献   

2.
在桩基础桥墩滞回特性的模型试验基础上,提出了用Clough模型模拟基础(地基)的恢复力特性。桥墩采用Takeda恢复力模型。用强震记录与人工合成地震动作为输入对铁路简支梁桥进行了非线性地震反应分析,讨论了不同地震动输入及不同地震强度时基础非线性对桥梁地震反应的影响。研究结果表明,考虑基础的非线性一般会使墩顶位移增大,而墩底的曲率明显减小,且随着地震动强度的增加,基础的非线性影响更加明显。  相似文献   

3.
随着国内外大跨桥梁特别是跨海桥梁建设的迅速发展,沉井基础在桥梁基础中所占的比例越来越大。虽然沉井基础作为1种刚性基础具有良好的力学性能,然而震害实践表明沉井基础在地震作用下也并非万无一失。通过分析国内外典型桥梁沉井基础的震害特征发现,沉井基础的地震破坏与桩基础有显著差异,且与埋置深度有直接关系;研究表明:地震作用下沉井基础的破坏机理及地基承载力与静力作用下明显不同,但目前在该方面的研究还较为欠缺;总结和对比了现有几种沉井基础-土相互作用研究方法,并分析了几种研究方法的优缺点和适用场合;同时也归纳和对比了各国抗震规范对桥梁沉井基础的基本规定、适用范围、计算方法和构造规定等方面的内容。最后结合现有的研究现状对沉井基础抗震性能研究的发展方向进行了展望,此外,随着我国跨海、跨江及跨库区大跨桥梁建设的发展,地震力和波浪力等多灾害因素共同作用下深水沉井基础桥梁破坏机理及设计方法的研究势在必行。  相似文献   

4.
With the launch of the high‐speed train project in California, the seismic risk is a crucial concern to the stakeholders. To investigate the seismic behavior of future California High‐Speed Rail (CHSR) bridge structures, a 3D nonlinear finite‐element model of a CHSR prototype bridge is developed. Soil‐structure and track‐structure interactions are accounted for in this comprehensive numerical model used to simulate the seismic response of the bridge and track system. This paper focuses on examining potential benefits and possible drawbacks of the a priori promising application of seismic isolation in CHSR bridges. Nonlinear time history analyses are performed for this prototype bridge subjected to two bidirectional horizontal historical earthquake ground motions each scaled to two different seismic hazard levels. The effect of seismic isolation on the seismic performance of the bridge is investigated through a detailed comparison of the seismic response of the bridge with and without seismic isolation. It is found that seismic isolation significantly reduces the deck acceleration and the force demand in the bridge substructure (i.e., piers and foundations), especially for high‐intensity earthquakes. However, seismic isolation increases the deck displacement (relative to the pile cap) and the stresses in the rails. These findings imply that seismic isolation can be promisingly applied to CHSR bridges with due consideration of balancing its beneficial and detrimental effects through using appropriate isolators design. The optimum seismic isolator properties can be sought by solving a performance‐based optimum seismic design problem using the nonlinear finite‐element model presented herein. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
上部结构对桩基础地震应力影响的模型试验研究   总被引:3,自引:1,他引:3  
本文通过振动台模型试验,研究了地震作用下群桩基础应变幅值的分布规律以及上部结构对桩应变幅值分布的影响。研究表明,上部结构使桩的应变幅值大大增加,改变了桩应变幅值变化的趋势。在桩基础设计中应考虑上部结构对桩基础的影响。  相似文献   

6.
By means of a simplified three degrees of freedom model, seismic behavior of reinforced concrete bridge piers and foundations were evaluated based on pseudo‐dynamic (PsD) tests for cases where pier strengthening and foundation strengthening are implemented. In addition, analysis based on PsD test results was conducted to investigate the influence of pier strengthening on seismic damage to the foundation. The PsD tests and the analysis show that the foundation suffers increased hysteretic response when pier strengthening is applied. The results also show that the foundation strengthening can prevent foundation damage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand.  相似文献   

8.
This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral cap...  相似文献   

9.
城市独柱墩桥梁结构体系非线性抗震研究   总被引:1,自引:0,他引:1  
针对城市桥梁采用的独柱墩连续梁桥具有的缺点,提出了采用两跨T形刚构桥梁的结构形式。利用非线性时程分析方法,考虑钢筋混凝土桥墩材料的非线性,对两种桥梁结构在纵向地震动作用下的非线性地震反应行为进行了分析,得到了两种桥梁结构桥墩的弯矩、剪力、位移以及塑性铰转角时程。结果表明,在同一地震动作用下,T形刚构桥墩所受弯矩小于连续梁,所受剪力大于连续梁,桥墩塑性铰的转角远小于连续梁。因此,在同等损伤程度和保证桥墩抗剪能力的情况下,T形刚构比连续梁能够承受更强的地震。  相似文献   

10.
多年冻土区桩基础桥墩随机地震反应分析   总被引:3,自引:0,他引:3  
将随机振动理论、粘弹性边界条件的二维波动法以及结构动力分析有限元法结合起来,考虑场地地震动为零均值的高斯平稳随机过程,对青藏铁路多年冻土区桩基础桥墩进行了随机地震反应分析,计算了9度地震作用下桥墩随机地震响应最大值的均值和均方差,分析了冻土层及桥墩高度对桥墩随机地震响应的影响。  相似文献   

11.
液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展   总被引:20,自引:3,他引:20  
本文在全面归纳与总结液化场地桩-土-桥梁结构动力相互作用振动台试验及与之相关领域的国内外研究进展基础上,直接针对我国桥梁工程中的主要震害问题,提出在我国开展液化场地桩-土-桥梁结构动力相互作用振动台试验研究的必要性,并阐述作者对液化场地桩-土-张桥梁结构动力相互作用振动台试验中若干问题的认识。  相似文献   

12.
通过6个1:2缩尺的T形截面带暗支撑短肢剪力墙模型的低周反复荷载试验研究,分析比较了带暗支撑T形截面短肢剪力墙和普通T形截面短肢剪力墙的承载力、刚度及其衰减过程、延性、耗能、滞回特性及破坏特征。试验表明,加设钢筋混凝土暗支撑可显著提高T形截面短肢剪力墙的抗震性能。  相似文献   

13.
Seismic design of extended pile‐shafts requires a careful consideration of the influence of the surrounding soil on the overall response of the soil–pile system. In this paper, a procedure that incorporates soil properties into the process is developed for preliminary seismic design of extended pile‐shafts. The method follows the well‐accepted approach of using a force reduction factor to determine the lateral strength of the structure. The procedure involves an iterative process to arrive at the required amount of longitudinal reinforcement. Other outcomes of the procedure include the appropriate lateral stiffness and strength, as well as an estimation of the local curvature demand and ultimate drift ratio that can be used to ensure a satisfactory lateral response. The design procedure is capable of providing reliable results for a practical range of structural and soil properties. The versatility of the procedure is illustrated using two numerical examples of extended pile‐shafts constructed in different soil sites. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Seismic performance of an existing bridge with scoured caisson foundation   总被引:1,自引:0,他引:1  
A three-dimensional rigid body on the shape of a parallelepiped is modelled in order to rock on a side or a vertex of the base,in order to evaluate the seismic response of rigid blocks lying on a horizontal support.The center of mass of the body is considered as eccentric with respect to its geometric center.As seismic input,three Italian recorded accelerograms,with different spectral content,are used.The study is mainly conducted to highlight the differences between the seismic response of 2D and 3D models of rigid blocks,with the aim to understand if,in some cases,the use of the 3D model of rigid block is required to obtain safer results.In fact,the outcomes show that in some ranges of the geometrical and mechanical parameters that characterize the excitation and the body,a two-dimensional model,which is not able to consider the 3D rocking on a vertex,can provide unsafe results.In particular,it is found that the overturning process of the three-dimensional block can occur under excitations which are lower than those which overturn a corresponding two-dimensional block.  相似文献   

15.
本文以一实际长输管道悬索桥跨越工程为原型,制作了缩尺比例为1:8的试验模型,对试验模型的模态、抗震性能进行了白噪声和不同强度的El Centro波输入下的试验研究以及有限元分析。试验结果表明:试验模型的自振频率随地震强度的增加而降低,最大降低20%;试验模型的最大地震反应为塔架顶部的纵向振动,加速度达1.75g,折合原型为1.62g,动力放大系数为5.47。管道的地震反应以横向振动为主,最大加速度达1.21g,折合原型结构为1.12g,动力放大系数为2.63。试验过程中,输入的最大横向和竖向地震反应加速度折合原型均超过0.4g,但模型构件未发生破损,结构体系保持稳定,表明悬索跨越结构具有抗御地震烈度9度而保持使用功能的能力。不同强度的地震动作用下,钢索与管道的内力分配改变,钢索具有调节结构体系构件受力的重要机能,有限元分析结果与试验结果比较吻合。  相似文献   

16.
This study focuses on understanding and evaluating the effect of vehicle bridge interaction (VBI) on the response and fragility of bridges subjected to earthquakes. A comprehensive study on the effect of VBI on bridge seismic performance is conducted, providing metamodels for seismic response and fragility estimates for bridges in the presence of various types of vehicles. For this purpose, the performance of multispan simply supported concrete girder bridges with varying design and geometric parameters is assessed with 3 different types of stationary trucks placed atop them. To delineate the effects of VBI and additional truck mass, the trucks are modeled in 2 different ways—with additional masses and suspension springs (ie, with VBI) and using additional masses only (without VBI). The results provide insight on VBI effects, such as the fact that when bridge and vehicle mode shapes are in‐phase, the component responses increase and vice versa; additionally, the presence of a heavy axle near a bent increases component responses. Sensitivity analyses are also performed to determine the bridge parameters that significantly alter the component responses in the presence of vehicles. Furthermore, differences in component responses and fragilities highlight that modeling vehicles with additional masses alone is not sufficient to model the effect of truck presence on the seismic response of bridges. Finally, this study concludes that depending on the characteristics of the bridge and the vehicle, presence of a vehicle atop the bridge during an earthquake may be either beneficial or detrimental to bridge performance.  相似文献   

17.
This paper presents a wide parametric study aimed at elucidating the influence, on the computed seismic response of bridge piers, of two related aspects of the model: (1) the adoption of the classical hysteretic or the causal Biot's damping models for the soil and (2) the use of two different lumped parameter models of different complexity and accuracy to approximate the impedances of the pile foundation. A total of 2072 cases, including different superstructures, pile foundations, soil deposits, and seismic input signals, are studied. The results are presented so that the influence of the different parameters involved in the analysis can be assessed. From an engineering point of view, both lumped parameter models provide, in general, sufficiently low errors. The choice of the most adequate model for each case will depend not only on the configuration of the structure and the soil-foundation system but also on the assumed soil damping model, whose influence on the computed seismic responses is relevant in many cases. The nonphysical behaviour provided by the classical hysteretic damping model for the soil at zero frequency generates issues in the process of fitting the impedance functions. It is also found that larger deck displacements are predicted by Biot's model due to the higher damping at low frequencies provided by the classical hysteretic damping model.  相似文献   

18.
To explore the seismic performance of a high-rise pile cap foundation with riverbed scour, a finite element model for foundations is introduced in the OpenSees finite element framework. In the model, a fiber element is used to simulate the pile shaft, a nonlinear p-y element is used to simulate the soil-pile interaction, and the p-factor method is used to reflect the group effects. A global and local scour model is proposed, in which two parameters, the scour depth of the same row of piles and the difference in the scour depth of the upstream pile and the downstream pile, are included to study the influence of scour on the foundation. Several elasto-plastic static pushover analyses are performed on this finite element model. The analysis results indicate that the seismic capacity (or supply) of the foundation is in the worst condition when the predicted deepest global scout depth is reached, and the capacity becomes larger when the local scour depth is below the predicted deepest global scout depth. Therefore, to evaluate the seismic capacity of a foundation, only the predicted deepest global scout depth should be considered. The method used in this paper can be also applied to foundations with other soil types.  相似文献   

19.
Presence of vehicles on a bridge has been observed many times during past earthquakes. Although in practice, the engineers may or may not include the live load contribution to seismic weight in design, current bridge design codes do not specify a certain guideline. A very limited research has been conducted to address this issue from design point of view. The focus of this research is to experimentally assess the effect of a vehicle on the seismic response of a bridge through a large‐scale model. In this scope, a 12‐meter long bridge, having a one lane deck with concrete slab on steel girders, has been shaken under five different ground motions obtained from recent earthquakes that occurred in Turkey, in its transverse direction, both with and without a vehicle on top of the deck. The measured results have indicated that top slab transverse acceleration and bearing displacements can reduce up to 18.7% in presence of a vehicle during seismic tests, which is an indication of reduction in substructure forces. The main reason for the reduction in seismic response of the bridge in the presence of live load can be ascribed to the increase in damping of the system due to mass damper‐like action induced by the vehicle. This beneficial effect cannot be observed in vertical seismic response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
对4个1/2缩尺的长肢一字形截面柱构件进行了低周反复荷载下的抗震性能试验研究,构件截面高厚比分别为4.0、4.5与5.0,分别按柱子配筋与按剪力墙配筋两种配筋方式进行设计。通过试验分析了长肢一字形截面柱的承载力、刚度、延性、耗能、滞回特性等,并提出了抗震设计建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号