首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Wetlands are now being integrated into oil sands mining landscape closure design plans. These wetland ecosystems will be constructed within a regional sub‐humid climate where snowfall represents ~25% of annual precipitation. However, few studies focus on the distribution of snow and, hence, the storage of winter precipitation in reclaimed oil sands landscapes. In this study, the distribution, ablation and fate of snowmelt waters are quantified within a constructed watershed in a post‐mining oil sands environment. Basin‐averaged peak SWE was 106 mm, with no significant difference between reclaimed slopes with vegetation and those that were sparsely vegetated or bare. Snow depth was greatest and more variable near the toe of slopes and became progressively shallower towards the crest. Snow ablation started first on the vegetated slope, which also exhibited the maximum observed ablation rates. This enhanced melt was attributed to increased absorption of short‐wave radiation by vegetation stems and branches. Recharge to reclaimed slopes and a constructed aquifer during the snowmelt period was minimal, as the presence of ground frost minimized infiltration. Accordingly, substantial surface run‐off was observed from all reclaimed slopes, despite being designed to reduce run‐off and increase water storage. This could result in increased flashiness of downstream watercourses during the spring freshet that receive run‐off from post‐mining landscapes where large reclaimed slopes are prolific. Run‐off ratios for the reclaimed slopes were between 0.7 and 0.9. Thus, it is essential to consider snow dynamics when designing landscape‐scale constructed ecosystems. This research demonstrates that the snowmelt period hydrology within reclaimed landscapes is fundamentally different from that reported for natural settings and represents one of the first studies on snow dynamics in constructed watershed systems in the post‐mined oil sands landscape. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Many studies attribute the effects of vegetation in reducing soil erosion rates to the effects of the above‐ground biomass. The effects of roots on topsoil resistance against concentrated flow erosion are much less studied. However, in a Mediterranean context, where the above‐ground biomass can temporarily disappear because of fire, drought or overgrazing, and when concentrated flow erosion occurs, roots can play an important role in controlling soil erosion rates. Unfortunately, information on Mediterranean plant characteristics, especially root characteristics, growing on semi‐natural lands, and knowledge of their suitability for gully erosion control is often lacking. A methodological framework to evaluate plant traits for this purpose is absent as well. This paper presents a methodology to assess the suitability of plants for rill and gully erosion control and its application to 25 plant species, representative for a semi‐arid Mediterranean landscape in southeast Spain. In this analysis determination of suitable plants for controlling concentrated flow erosion is based on a multi‐criteria analysis. First, four main criteria were determined, i.e. (1) the potential of plants to prevent incision by concentrated flow erosion, (2) the potential of plants to improve slope stability, (3) the resistance of plants to bending by water flow and (4) the ability of plants to trap sediments and organic debris. Then, an indicator or a combination of two indicators was used to assess the scores for the four criteria. In total, five indicators were selected, i.e. additional root cohesion, plant stiffness, stem density, the erosion‐reducing potential during concentrated flow and the sediment and organic debris obstruction potential. Both above‐ and below‐ground plant traits were taken into account and measured to assess the scores for the five indicators, i.e. stem density, sediment and organic debris obstruction potential, modulus of elasticity of the stems, moment of inertia of the stems, root density, root diameter distribution, root area ratio and root tensile strength. The scores for the indicators were represented on amoeba diagrams, indicating the beneficial and the weak plant traits, regarding to erosion control. The grasses Stipa tenacissima L. and Lygeum spartum L. and the shrub Salsola genistoides Juss. Ex Poir. amongst others, were selected as very suitable plant species for rill and gully erosion control. Stipa tenacissima can be used to re‐vegetate abandoned terraces as this species is adapted to drought and offers a good protection to concentrated flow erosion and shallow mass movements. Lygeum spartum can be used to vegetate concentrated flow zones or to obstruct sediment inflow to channels at gully outlets. Stipa tenacissima and Salsola genistoides can be used to stabilize steep south‐facing slopes. The methodology developed in this study can be applied to other plant species in areas suffering from rill and gully erosion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Soil erosion plays an important role in plant colonization of semi‐arid degraded areas. In this study, we aimed at deepening our knowledge of the mechanisms that control plant colonization on semi‐arid eroded slopes in east Spain by (i) determining topographic thresholds for plant colonization, (ii) identifying the soil properties limiting plant establishment and (iii) assessing whether colonizing species have specific plant traits to cope with these limitations. Slope angle and aspect were surrogates of erosion rate and water availability, respectively. Since soil erosion and water availability can limit plant establishment and both can interact in the landscape, we analysed variations in colonization success (vegetation cover and species number) with slope angle on 156 slopes, as a function of slope aspect. After determining slope angle thresholds for plant colonization, soil was sampled near the threshold values for soil analysis [nitrogen, phosphorous, calcium carbonate (CaCO3), water holding capacity]. Plant traits expressing the plant colonizing capacity were analysed both in the pool of species colonizing the steep slopes just below the threshold and in the pool of species inhabiting gentler slopes and absent from the slopes just below the threshold. Results show that the slope angle threshold for plant colonization decreased from north to south. For the vegetation cover, threshold values were 63°, 50°, 46°, 41° for the north, east, west and south slope aspect classes, respectively, and 65°, 53°, 49° and 45° for the species richness and the same aspect classes. No differences existed in soil properties at slope angle threshold values among slope aspects and between slope positions (just below and above the threshold) within slope aspect classes. This suggests that variations between slope aspect classes in the slope angle threshold result from differences in the colonizing capacity of plants which is controlled by water availability. Long‐distance dispersal and mucilage production were preferably associated with the pool of colonizing species. These results are discussed in the perspective of a more efficient ecological restoration of degraded semi‐arid ecosystems where soil erosion acts as an ecological filter for plant establishment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Sediment transport in rill flows exhibits the characteristics of non‐equilibrium transport, and the sediment transport rate of rill flow gradually recovers along the flow direction by erosion. By employing the concept of partial equilibrium sediment transport from open channel hydraulics, a dynamic model of rill erosion on hillslopes was developed. In the model, a parameter, called the restoration coefficient of sediment transport capacity, was used to express the recovery process of sediment transport rate, which was analysed by dimensional analysis and determined from laboratory experimental data. The values of soil loss simulated by the model were in agreement with observed values. The model results showed that the length and gradient of the hillslope and rainfall intensity had different influences on rill erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Soil erosion is one of the most severe land degradation processes in the Mediterranean region. Although badlands occupy a relatively small fraction of the Mediterranean area, their erosion rates are very high. Many studies have investigated to what extent vegetation controls soil erosion rates. This study, however, deals with the impact of erosion on vegetation establishment. In semi‐arid badlands of the Mediterranean, soil water availability constitutes the main limiting factor for vegetation development. As a consequence, south‐facing slopes are typically less vegetated due to a very large water stress. However, these findings do not necessarily apply to humid badlands. The main objective of this paper is to determine the topographic thresholds for plant colonization in relation to slope aspect and to assess the spatial patterns of vegetation cover and species richness. We surveyed 179 plots on highly eroded badland slopes in the Central Pyrenees. We defined four aspect classes subdivided into slope angle classes. Colonization success was expressed in terms of vegetation cover and species richness. Slope angle thresholds for plant colonization were identified for each slope aspect class by means of binary logistic regressions. The results show that a critical slope angle exists below which plants colonize the badland slopes. Below this critical slope angle, plant cover and species richness increase with a decreasing slope angle. The largest critical slope angles in humid badlands are observed on south‐facing slopes, which contrasts with the results obtained in semi‐arid badlands. North‐facing slopes however are characterized by a reduced overall vegetation cover and species richness, and lower topographic threshold values. The possible underlying processes responsible for this slope‐aspect discrepancy in vegetation characteristics are discussed in terms of environmental variables that control regolith development, weathering and erosion processes. Moreover, possible restoration strategies through the use of vegetation in highly degraded environments are highlighted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Numerical modeling of gravitational erosion in rill systems   总被引:1,自引:0,他引:1  
A self-organizing model was developed for simulating rill erosion process on slopes with particular attention to the role of gravitational erosion.For a complete simulation circle,processes such as precipitation,infiltration,runoff,scouring,gravitational erosion and elevation variation were fully considered.Precipitation time(or runoff time) was regarded as iteration benchmark in the model.To specify the contribution of gravitational erosion to the process of rill formation and development,a gravitational erosion module was inserted into the model.Gravitational erosion in rill development was regarded as a Gaussian random process.A model was calibrated by our experimental data,and further validated satisfactorily with 22 runs of experimental results from different investigators. Systematic comparison was made between sediment yields with and without consideration of gravitational erosion module.It was demonstrated that the model could reasonably simulate the rill erosion process under a variety of slope gradients,rainfall intensities and soil conditions upon the gravitational erosion being considered.However,the role of gravitational erosion on sediment yields in rill systems varies significantly under different conditions,although it is of the utmost importance in steeper slopes.The process of gravitational erosion in rill development was studied by a newly-defined parameter a>,which is defined as the volume ratio of gravitational erosion over hydraulic-related erosion.The gravitational contribution to the total erosion could be over 50%for the rill systems with higher rainfall intensity and steeper slopes.  相似文献   

7.
The application of geomorphic principles to land reclamation after surface mining has been reported in the literature since the mid‐1990s, mostly from Australia, Canada and the USA. This paper discusses the reclamation problems of contour mining and quarries on slopes, where steep gradients are prone to both mass movement and water erosion. To address these problems simultaneously, a geomorphic model for reclaiming surface mined slopes is described. Called the ‘highwall–trench–concave slope’ model, it was first applied in the 1995 reclamation of a quarry on a slope (La Revilla) in Central Spain. The geomorphic model does not reproduce the original topography, but has two very different sectors and objectives: (i) the highwall–trench sector allows the former quarry face to evolve naturally by erosion, accommodating fallen debris by means of a trench constructed at the toe of the highwall; (ii) the concave‐slope base sector, mimicking the landforms of the surrounding undisturbed landscape, promotes soil formation and the establishment of self‐sustaining, functional ecosystems in the area protected from sedimentation by the trench. The model improves upon simple topographic reconstruction, because it rebuilds the surficial geology architecture and facilitates re‐establishment of equilibrium slopes through the management and control of geomorphic processes. Thirteen years of monitoring of the geomorphic and edaphic evolution of La Revilla reclaimed quarry confirms that the area is functioning as intended: the highwall is backwasting and material is accumulating at the trench, permitting the recovery of soils and vegetation on the concave slope. However, the trench is filling faster than planned, which may lead to run‐off and sedimentation on the concave slope once the trench is full. The lesson learned for other scenarios is that the model works well in a two‐dimensional scheme, but requires a three‐dimensional drainage management, breaking the reclaimed area into several watersheds with stream channels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
On the Chinese Loess Plateau, serious slope and gully erosion have caused a decrease in soil water capacity and fertility, which has resulted in vegetation degradation and a reduction in agricultural productivity. Great efforts have been made to restore vegetation to control soil erosion, but the efficiency of artificial revegetation is not satisfactory. Natural revegetation is an alternative. However, while soil seed banks are an essential source for natural revegetation, their composition and distribution on eroded slopes remains unknown. In addition, whether or not seed loss during soil erosion limits vegetation colonization is also unknown. In this work, soil seed bank composition and distribution were studied in three situations. Specifically, three main microsites were selected as sampling plots: fish‐scale pits, as artificial deposited micro‐topography; under tussocks, as trap microsites; and open areas, as eroded areas. Soil samples were collected at depths of 0–2 cm, 2–5 cm and 5–10 cm. The soil seed bank was identified using germination experiments, and a total of 34 species were identified. The dominant species in the soil seed bank were annual/biennial herbs with an average proportion more than 90% and density reaching 19,000 seeds m‐2. The pioneer species Artemisia scoparia was especially abundant. The dominant later successional species, such as Lespedeza davurica, Artemisia giraldii, Artemisia gmelinii, Stipa bungeana and Bothriochloa ischcemum, were present in the soil at a density that ranged from 38 to 1355 seeds m‐2. Compared with the eroded open areas, the fish‐scale pits retained a higher density of seeds, and the tussocks retained a larger number of species. However, there was no serious reduction of the soil seed bank in the erosion areas. The present study indicates that, on these eroded slopes, the soil seed bank is not the key factor limiting the colonization of natural vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Hillslopes are thought to poorly record tectonic signals in threshold landscapes. Numerous previous studies of steep landscapes suggest that large changes in long‐term erosion rate lead to little change in mean hillslope angle, measured at coarse resolution. New LiDAR‐derived topography data enables a finer examination of threshold hillslopes. Here we quantify hillslope response to tectonic forcing in a threshold landscape. To do so, we use an extensive cosmogenic beryllium‐10 (10Be)‐based dataset of catchment‐averaged erosion rates combined with a 500 km2 LiDAR‐derived 1 m digital elevation model to exploit a gradient of tectonic forcing and topographic relief in the San Gabriel Mountains, California. We also calibrate a new method of quantifying rock exposure from LiDAR‐derived slope measurements using high‐resolution panoramic photographs. Two distinct trends in hillslope behavior emerge: below catchment‐mean slopes of 30°, modal slopes increase with mean slopes, slope distribution skewness decreases with increasing mean slope, and bedrock exposure is limited; above mean slopes of 30°, our rock exposure index increases strongly with mean slope, and the prevalence of angle‐of‐repose debris wedges keeps modal slopes near 37°, resulting in a positive relationship between slope distribution skewness and mean slope. We find that both mean slopes and rock exposure increase with erosion rate up to 1 mm/a, in contrast to previous work based on coarser topographic data. We also find that as erosion rates increase, the extent of the fluvial network decreases, while colluvial channels extend downstream, keeping the total drainage density similar across the range. Our results reveal important textural details lost in 10 or 30 m resolution digital elevation models of steep landscapes, and highlight the need for process‐based studies of threshold hillslopes and colluvial channels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Yuhan Huang  Fahu Li  Wei Wang  Juan Li 《水文研究》2020,34(20):3955-3965
Rill erosion processes on saturated soil slopes are important for understanding erosion hydrodynamics and determining the parameters of rill erosion models. Saturated soil slopes were innovatively created to investigate the rill erosion processes. Rill erosion processes on saturated soil slopes were modelled by using the sediment concentrations determined by sediment transport capacities (STCs) measurement and the sediment concentrations at different rill lengths. Laboratory experiments were performed under varying slope gradients (5°, 10°, 15°, and 20°) and unit-width flow rates (0.33, 0.67, and 1.33 × 10−3 m3 s−1 m−1) to measure sediment concentrations at different rill lengths (1, 2, 4, and 8 m) on saturated soil slopes. The measured sediment concentrations along saturated rills ranged from 134.54 to 1,064.47 kg/m3, and also increased exponentially with rill length similar to non-saturated rills. The model of the rill erosion process in non-saturated soil rills was applicable to that in saturated soil rills. However, the sediment concentration of the rill flow increased much faster, with the increase in rill length, to considerably higher levels at STCs. The saturated soil rills produced 120–560% more sediments than the non-saturated ones. Moreover, the former eroded remarkably faster in the beginning section of the rills, as compared with that on the non-saturated soil slopes. This dataset serves as the basis for determining the erosion parameters in the process-based erosion models on saturated soil slopes.  相似文献   

11.
Soil erosion hinders the recovery and development of ecosystems in semiarid regions. Rainstorms, coupled with the absence of vegetation and improper land management, are important causes of soil erosion in such areas. Greater effort should be made to quantify the initial erosion processes and try to find better solutions for soil and water conservation. In this research, 54 rainfall simulations were performed to assess the impacts of vegetation patterns on soil erosion in a semiarid area of the Loess Plateau, China. Three rainfall intensities (15 mm h‐1, 30 mm h‐1 and 60 mm h‐1) and six vegetation patterns (arbors‐shrubs‐grass ‐A‐S‐G‐, arbors‐grass‐shrubs ‐A‐G‐S‐, shrubs‐arbors‐grass ‐S‐A‐G‐, shrubs‐grass‐arbors ‐S‐G‐A‐, grass‐shrubs‐arbors ‐G‐S‐A‐ and grass‐arbors‐shrubs ‐G‐A‐S‐) were examined at different slope positions (summits, backslopes and footslopes) in the plots (33.3%, 33.3%, 33.3%), respectively. Results showed that the response of soil erosion to rainfall intensity differed under different vegetation patterns. On average, increasing rainfall intensity by 2 to 4 times induced increases of 3.1 to 12.5 times in total runoff and 6.9 to 46.4 times in total sediment yield, respectively. Moreover, if total biomass was held constant across the slope, the patterns of A‐G‐S and A‐S‐G (planting arbor at the summit position) had the highest runoff (18.34 L m‐2 h‐1) and soil losses (197.98 g m‐2 h‐1), while S‐A‐G had the lowest runoff (5.51 L m‐2 h‐1) and soil loss (21.77 g m‐2 h‐1). As indicated by redundancy analysis (RDA) and Pearson correlation results, a greater volume of vegetation located on the back‐ and footslopes acted as effective buffers to prevent runoff generation and sediment yield. Our findings indicated that adjusting vegetation position along slopes can be a crucial tool to control water erosion and benefit ecosystem restoration on the Loess Plateau and other similar regions of the world. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
Many numerical landform evolution models assume that soil erosion by flowing water is either purely detachment‐limited (i.e. erosion rate is related to the shear stress, power, or velocity of the flow) or purely transport‐limited (i.e. erosion/deposition rate is related to the divergence of shear stress, power, or velocity). This paper reviews available data on the relative importance of detachment‐limited versus transport‐limited erosion by flowing water on soil‐mantled hillslopes and low‐order valleys. Field measurements indicate that fluvial and slope‐wash modification of soil‐mantled landscapes is best represented by a combination of transport‐limited and detachment‐limited conditions with the relative importance of each approximately equal to the ratio of sand and rock fragments to silt and clay in the eroding soil. Available data also indicate that detachment/entrainment thresholds are highly variable in space and time in many landscapes, with local threshold values dependent on vegetation cover, rock‐fragment armoring, surface roughness, soil texture and cohesion. This heterogeneity is significant for determining the form of the fluvial/slope‐wash erosion or transport law because spatial and/or temporal variations in detachment/entrainment thresholds can effectively increase the nonlinearity of the relationship between sediment transport and stream power. Results from landform evolution modeling also suggest that, aside from the presence of distributary channel networks and autogenic cut‐and‐fill cycles in non‐steady‐state transport‐limited landscapes, it is difficult to infer the relative importance of transport‐limited versus detachment‐limited conditions using topography alone. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we quantitatively test the hypothesis that soil freeze–thaw (FT) processes significantly increase the potential for upland hillslope erosion during run‐off events that follow thaw. We selected a highly frost‐susceptible silt to obtain an upper bound on FT effects, and completed three series of six experiments each to quantify differences in soil erosion and rill development in a bare soil following a single FT cycle. Each series represented a specific soil moisture range: 16–18 per cent, 27–30 per cent and 37–40 per cent by volume, with nominal flow rates of 0·4, 1·2 and 2·4 L/min and slopes of 8° and 15°. Each experiment used two identical soil bins: one a control (C) that remained unfrozen, and another that was frozen and thawed once. Standard soil characterization tests did not detect significant differences between the FT and C bins. We measured cross‐sectional geometry of an imposed straight rectangular rill before each experiment, sediment load during and rill cross‐sections after. Changes in cross section provided detailed measures of erosion at specific locations, while sediment load from time series run‐off samples integrated the rill erosion. Several parameters, including average maximum rill width, average maximum rill depth, rill cross‐section depth measures and sediment load, all followed similar trends. Each was greater in the FT than in the C, with values that generally increased with slope and flow. However, soil moisture was the only parameter that affected the FT/C ratios. Average sediment load grouped by soil moisture provided FT/C ratios of 2·4, 3·0 and 5·0 for low, mid and high moisture, respectively. In contrast, a ‘dry’ experiment at 4–5 per cent soil moisture had FT/C of 1·02 for sediment load. These results show a dramatic increase with soil moisture in the rate and quantity of bare soil eroded due to the FT cycle. As both FT and C results were highly sensitive to initial conditions, minimum differences in soil weight, bulk density and soil moisture through each series of experiments were required to achieve consistent results, indicating that rill erosion may be chaotic. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

14.
The formation of erosion rills and gullies is a critical step in land surface development, but possibilities to study initial unaffected surface development under natural conditions and with well‐defined initial and boundary conditions are rare. The objective of this study was to characterize rill network development from ’point zero’ in the artificially‐created catchment ‘Hühnerwasser’. To ensure unaffected development, the study was largely restricted to the analysis of remotely‐sensed data. We analyzed a series of photogrammetry‐based digital elevation models (DEMs) for 10 points in time, over a period of five years and beginning with the initial state. The evolving erosion rill network was quantitatively described based on mapping from aerial photographs. DEMs and rill network maps were combined to specifically analyze the development of morphometry for different parts of the network and to characterize energy dissipation and connectivity. The restriction to remote‐sensing data did not allow for analyzing specific processes governing rill network development, nevertheless, two major development phases could be characterized. We observed a phase of growth of the rill network along with variations in drainage patterns during the first two years of development and a subsequent phase of reduction of its area along with comparably stable patterns. Region‐specific analysis of morphometry indicates that, besides effects of changing sediment characteristics and vegetation cover development, locally evolving hydro‐geomorphic feedback cycles influenced this development. Results show an increasing similarity of overall statistical characteristics (e.g. drainage density) for two parts of the catchment, but a persistent influence of initial conditions on specific rill geometry. The observed development towards higher orderliness and increased connectivity is consistent with experiments and concepts on drainage network evolution across scales; however, we did not observe major influences of rill piracy and cross grading or a reduction of energy dissipation with network development. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The use of loose spoils on steep slopes for surface coal mining reclamation sites has been promoted by the US Department of Interior, Office of Surface Mining for the establishment of native forest, as prescribed by the Forest Reclamation Approach (FRA). Although low‐compaction spoils improve tree survival and growth, erodibility on steep slopes was suspected to increase. This study quantified a combined KC factor (combining the effects of the soil erodibility K factor and cover management C) for low compaction, steep‐sloped (>20°) reclaimed mine lands in the Appalachian region, USA. The combined KC factor was used because standard Unit Plot conditions required to separate these factors, per Revised Universal Soil Loss Equation (RUSLE) experimental protocols, were not followed explicitly. Three active coal mining sites in the Appalachian region of East Tennessee, each containing four replicate field plots, were monitored for rainfall and sediment yields during a 14‐month period beginning June 2009. Average cumulative erosivity for the study sites during the monitoring period was measured as 5248.9 MJ·mm·ha?1·h?1. The KC ranged between 0.001 and 0.05 t·ha·h·ha?1·MJ?1·mm?1, with the highest values occurring immediately following reclamation site construction as rills developed (June – August 2009). The KC for two study sites with about an 18–20 mm spoil D84 were above 0.01 t·ha·h·ha?1·MJ?1·mm?1 during rill development, and below 0.003 t·ha·h·ha?1·MJ?1·mm?1 after August 2009 for the post‐rill development period. The KC values for one site with a 40 mm spoil D84 were never above 0.008 t·ha·h·ha?1·MJ?1·mm?1 and also on average were lower, being more similar to the other two sites after the rill development period. Based on an initial KC factor (Ke) measured during the first few storm events, the average C factor (Ce) was estimated as 0.58 for the rill development period and 0.13 for the post‐rill development period. It appears that larger size fractions of spoils influence KC and Ce factors on low‐compaction steep slopes reclamation sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Little Ice Age lateral moraines represent one of the most important sediment storages and dynamic areas in glacier forelands. Following glacier retreat, simultaneous paraglacial adjustment and vegetation succession affect the moraine slopes. Geomorphic processes (e.g. debris flows, interrill erosion, gullying, solifluction) disturb and limit vegetation development, while increasing vegetation cover decreases geomorphic activity. Thus, feedbacks between geomorphic and vegetation dynamics strongly control moraine slope development. However, the conditions under which these biogeomorphic feedbacks can occur are insufficiently understood and major knowledge gaps remain. This study determines feedback conditions through the analysis of geomorphic and vegetation data from permanent plots in the Turtmann glacier foreland, Switzerland. Results from multivariate statistical analysis (i) confirm that Dryas octopetala L. is an alpine ecosystem engineer species which influences geomorphic processes on lateral moraines and thereby controls ecosystem structure and function, and (ii) demonstrate that biogeomorphic feedbacks can occur once geomorphic activity sufficiently decreases for D. octopetala to establish and cross a cover threshold. In the subsequent ecosystem engineering process, the dominant geomorphic processes change from flow and slide to bound solifluction. Increasing slope stabilization induces a decline in biogeomorphic feedbacks and the suppression of D. octopetala by shrubs. We conceptualize this relationship between process magnitude, frequency and species resilience and resistance to disturbances in a ‘biogeomorphic feedback window’ concept. Our approach enhances the understanding of feedbacks between geomorphic and alpine vegetation dynamics on lateral moraine slopes and highlights the importance of integrating geomorphic and ecological approaches for biogeomorphic research. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The traditional direct method (i.e. metric ruler and rillmeter) of monitoring rill erosion at plot scale is time consuming and invasive because it modifies the surface of the rilled area. Measuring rill features using a drone‐based technology is considered a non‐invasive method allowing a fast field relief. In the experimental Sparacia area a survey by a quadricopter Microdrones md4‐200 was carried out, and this relief allowed the generation of a Digital Elevation Model (DEM), with a mesh size of 1 cm and a resolution elevation equal to 2 mm, for three plots (L, G and C) affected by rill erosion. At first for the experimental L plot, which is 44 m long, the rill features were surveyed by a ‘manual’ method which was carried out by drawing on the PC screen the rill paths obtained by a visual orthophoto interpretation. This manual method was not applicable for the plots in which rills of limited depth occurred and were not detectable. Then, for both L plot and the other experimental plots having a length ranging from 22 to 44 m, an ‘automatic’ extraction method of rills from DEM was applied. Using an appropriate calculation routine, a vector coverage of transects orthogonal to the main flow direction (i.e. the maximum slope steepness path) was generated. The intersection of each plot DEM with the transect coverage allowed to obtain both the cross sections and the main rill morphological features. For the L plot the comparison between the rill morphological features obtained by the two different methods (manual, automatic) was carried out. Finally, the length–volume relationship and a dimensionless relationship proposed in literature were tested for all studied experimental plots. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This study aimed to investigate the changing characteristics of microrelief of purple soil and its erosional response during successive stages of water erosion, including splash erosion, sheet erosion, and rill erosion. Methods employed included a rainfall simulator and the use of a laser scanner to generate a digital elevation model. Three artificial tillage practices, including conventional tillage (CT), artificial digging (AD), and ridge tillage (RT), were used to simulate different microrelief patterns. Eighteen artificial rainfall experiments were conducted using three 2 × 1 m boxes with a rainfall intensity of 1.5 mm min?1 on a 15° slope. The results showed that the soil roughness (SR) index values for the tillage slopes were RT > AD > CT. The combined effects of detachment by raindrop impact and transport by run‐off decreased the SR index, whereas rill erosion increased the SR index during rainfall event. Microtopography and drainage networks have strong multifractal behaviours. The multifractal parameters of microtopography reflect the overall characteristics as well as the characteristics of the local soil surface. Within a certain range of threshold values, higher microrelief causes less soil erosion. However, when the parameters of spatial heterogeneity of microtopography exceed the threshold values, a higher degree of microrelief can increase soil erosion. These results help clarify the effect of microtopography on soil erosion and provide a theoretical foundation to guide future tillage practices on sloping farmland of purple soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号