首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
隐爆岩及其形成模式探讨   总被引:7,自引:6,他引:7       下载免费PDF全文
在对隐爆岩及隐爆角砾岩筒的特征进行分析的基础上,建立了隐爆角砾岩筒的形成模式,认为隐爆角砾岩筒是经“自下而上-顺次推进-序次叠加”的形式爆破而成的,同时对隐爆岩的各种岩石类型进行了成因分析。  相似文献   

2.
研究了隐爆角砾岩与断层角砾岩、火山爆破角砾岩的区别,隐爆岩筒上、中、下部隐爆角砾岩的区别,含矿隐爆角砾岩筒特征,以及与隐爆、成矿作用有关的次火山(超浅成)岩特征。  相似文献   

3.
耿庄次火山热液型金矿的特征与成因   总被引:2,自引:0,他引:2       下载免费PDF全文
山西耿庄金矿床产于中生代中酸性次火山隐爆(角砾)岩筒中,是典型的复成因矿床。在深断裂控制的深源岩浆热力作用下,由岩浆析出的高硫气体与围岩封存水、成矿物质相结合,形成成矿热液。同时形成的热液角砾岩、炭质角砾岩和蚀变带,可作为找矿标志。  相似文献   

4.
豫西祁雨沟矿田金矿化类型、特征及成因   总被引:1,自引:0,他引:1  
祁雨沟矿田内金矿床类型有爆破角砾岩型和构造蚀变岩型,表现为"多型一体"的产出特征。通过对两种类型金矿床的研究认为,受拆离断层控制的爆破角砾岩筒和陡倾斜断层,控制着金矿床的形成和分布,并分别形成爆破角砾岩型金矿床和构造蚀变岩型金矿床;燕山晚期,在伸展作用背景下,地壳深处重熔性花岗岩浆沿构造薄弱带上侵并演化,先后形成爆破角砾岩型金矿床和构造蚀变岩型金矿床。  相似文献   

5.
张会琼  王京彬  王玉往 《地质论评》2012,58(6):1046-1055
隐爆角砾岩简长期以来一直受到人们的重视,但是对于岩筒的通道相特征以及垂向分带则少有研究.本文通过对山西灵丘支家地铅锌银矿床详细的野外和岩相学研究工作,发现了含矿隐爆角砾岩筒的通道相,其多发育在石英斑岩-石英斑岩角砾岩小岩株的顶部,总体形态为角砾岩筒根部发育的间隔式分支脉状矿化蚀变带,岩体内反映为细脉中心向两侧呈弥散密集浸染状矿化蚀变的隐蔽裂隙脉,对隐爆角砾岩筒的形成机制具有重要的意义.进而根据含矿角砾岩筒不同部位的矿化类型,角砾的成分、形状、大小、可拼合性等特征,将其在垂向上由上而下分为4个相带:①裂隙相、②震碎相、③爆破相、④通道相.各相带的角砾成分、大小、形态、胶结物特征和矿化蚀变等呈规律性变化,震碎相和爆破相是最主要的赋矿部位,沿含矿角砾岩筒的通道相有可能追索到深部的斑岩型矿化.含矿角砾岩筒形成机制与岩浆上侵中第二次沸腾过程中岩浆热液释放有关.  相似文献   

6.
新疆东准噶尔地区乌伦布拉克铜矿、老山口铜—铁—金矿两地皆存在花岗质岩浆隐蔽爆破作用。前者形成了与潜火山英安玢岩侵入体密切伴生的英安玢岩质隐爆角砾岩,后者形成了与潜火山闪长玢岩侵入体相伴生的闪长玢岩质隐爆角砾岩和闪斜煌斑岩质隐爆角砾岩。岩浆隐蔽爆破作用是伴随该区华力西中晚期—晚期地槽褶皱造山运动而发生的一种超浅成岩浆作用,其与铜、金等金属成矿的关系密切;与其有关形成了隐爆角砾岩筒型铜(金)矿和破碎带蚀变岩型金矿。两种类型的矿床都显示出广阔的找矿前景。  相似文献   

7.
邱小平  刘世川  魏密 《地球学报》2021,42(6):849-858
水银洞金矿床曾被认为是滇黔桂地区最有代表性的微细浸染型金矿(卡林型金矿),然而矿床的金品位明显高于一般意义上的卡林型金矿床,且金矿体与气液爆破角砾岩关系密切.气液爆破角砾岩呈垂直筒状产状,两侧断裂矿化带呈向上扩张的"喇叭口"状成矿空间,富金矿体紧密围绕角砾岩筒分布.根据野外和显微镜观察,角砾岩块成分复杂与显著磨圆.气液角砾岩筒的角砾岩显著富集金、稀土、亲地幔过渡元素Ti、Cr、Ni、Co、V等,以及Zr、Hf等,明显地区别于围岩,反映出深源流体快速上升的气液爆破角砾岩的特征,角砾岩筒实际上具备含金成矿流体的上涌通道的功能.岩筒中早期角砾岩的角砾含Au达18×10–6,属于深部金矿体的爆破碎块,显示出水银洞金矿床可观的深部找矿勘探前景.  相似文献   

8.
高琰  周玉龙 《华东地质》2017,(2):126-131
以相山巴泉隐爆角砾岩型铀矿床为研究对象,介绍该矿床的成矿地质背景及矿床地质特征,探讨隐爆角砾岩的形成过程及铀成矿过程。相山巴泉隐爆角砾岩受火山机构制约,成岩成矿作用与火山—次火山作用密切相关。铀矿化与隐爆角砾岩(筒)在时空上具有密切关系,矿化严格受岩筒控制,且产于岩筒内及其接触带附近裂隙中。矿化与岩筒范围、形态相吻合,矿体与岩筒产状相同。矿化富集程度与岩筒内的角砾大小密切相关,角砾愈小矿化愈富集。矿化在水平和垂直方向上也呈规律性变化,自隐爆角砾岩(筒)中心至边缘、从顶部至底部,铀矿品位逐渐降低。  相似文献   

9.
中酸性陷爆角砾岩,次火山(超浅成)岩与成矿的关系   总被引:5,自引:0,他引:5  
研究了隐爆角砾岩与断层角砾岩、火山爆破砾岩的区别,隐爆岩筒上、中、下部隐爆角砾岩的区别,含矿隐爆角砾岩筒特征,以及与隐爆、成矿作用有关的次火山岩特征。  相似文献   

10.
中酸性岩浆侵入体隐蔽爆破作用形成角砾岩体(筒)的同时于其中形成隐爆角砾岩型金矿床.侵入岩体规模一般较小,岩性主要为闪长岩类、石英(二长)斑岩类或正长岩类的中酸性岩石.角砾岩体在平面上呈近圆形或椭圆形,面积相对较小,在剖面上呈垂直地表的筒状,深部一般与中酸性侵入岩体相连.角砾的成分在浅部多为围岩角砾,往深部逐渐变为以花岗质角砾为主,胶结物主要是细岩屑和蚀变矿物.中酸性侵入体是矿床的成矿母岩,隐爆作用的发生及形成的隐爆角砾岩体(筒)是容矿构造,角砾岩体中的次级断裂是控矿构造,各因素对于此类型金矿床的形成起着重要的作用.  相似文献   

11.
邵世才 《矿物学报》1995,15(2):230-235
本文系统地研究了祁雨沟爆破角砾岩型金矿床的地质特征、流体包裹体和硫、铅、氢、氧及碳同位素特征,认为成矿流体和成矿元素主要来自晚期的岩浆熔体,只在成矿晚期有少量大气降水的加入,应属典型的岩浆热液型金矿床。而矿床的形成和定位则是岩浆结晶分异作用的后期,岩浆熔体因水过饱和而发生“二次沸滕”,产生高压流体,从而在地表浅部发生隐爆作用,造成岩体坍塌,含金流体胶结而成含金角砾岩体。岩浆熔体脉动式的“二次沸滕”  相似文献   

12.
相山铀矿田巴泉隐爆角砾岩(筒)地质特征与铀成矿   总被引:1,自引:0,他引:1  
周玉龙 《铀矿地质》2012,(5):273-280
巴泉铀矿床位于相山矿田的北部边缘,是典型的隐爆角砾岩(筒)型铀矿床。隐爆角砾岩(筒)是由与相山火山机构有密切联系的燕山晚期侵入于震旦系变质岩中的潜花岗斑岩岩枝发生隐爆作用而生成。矿床是多阶段岩浆活动、多次隐爆作用和多期铀成矿作用互为响应、连续发展地质过程的产物,是集岩浆岩体-角砾岩体-铀矿体为一体的综合地质单元。燕山晚期潜花岗斑岩浆和英安玢岩浆的侵入、隐爆作用形成的角砾岩(筒),以及断裂构造的频繁运动,对铀成矿乃至矿床的形态和规模起到重要的控制作用。隐爆角砾岩(筒)的形成具有脉动性、隐爆性,显示隐爆角砾岩岩性的复杂多变,矿化蚀变种类、组合和强弱变化具有规律性。铀矿体(化)主要赋存于隐爆角砾岩和震碎角砾岩中,矿化显现出中富边贫、上强下弱的特征。  相似文献   

13.
沙捞越西部Punda金铜矿床为浅成-半浅成角砾岩筒控制的典型高硫化型浅成低温热液矿床.控矿角砾岩筒的分布受线性走滑断裂构造控制,角砾岩筒垂直分带明显.角砾岩筒上段的塌陷角砾岩与矿化关系密切,中段的流化角砾岩、边部的水压角砾岩和下段的爆发角砾岩还未出露.根据角砾岩的垂直分带特点,该角砾岩筒剥蚀较浅,矿床保存条件良好,具有较大的深部找矿潜力.  相似文献   

14.
山东七宝山角砾岩筒成矿流体构造动力学过程   总被引:3,自引:0,他引:3  
山东七宝山角砾岩筒内外流体构造(岩)类型多样,具自身特有的时空结构。岩筒内角砾岩胶结胶体中的结晶矿物和矿体类型在空间分布上具规律性的结构特征,并与角砾岩体分布的结构相吻合。角砾岩筒结构,构造的构造动力学分析结果表明,角砾岩筒岩石的破裂形成于流体的双重致裂作用的脉动扩展,即:在流体的热应力和液压双重作用下形成性质不同的节理裂隙和上凸锥面状裂隙带,并脉动式往上扩展形成圆柱状压裂角砾岩体;锥面状裂隙带顶  相似文献   

15.
杨瑞士 《湖南地质》2001,20(2):81-84
湖南石门界牌峪地区雄黄矿床中伴有各类矿化角砾岩。从其岩石学、岩石化学、地球化学的特征来看,它是一种由热泉气体及部分物质在封闭还原条件下产生急剧爆发形成的特殊的角砾岩群。主要成因类型有“侵入状”角砾岩、爆破角砾岩、岩溶角砾岩和崩塌角砾岩。常见多种角砾岩叠加,它们是一种极好的控矿容矿载体,具有重要的找矿意义。  相似文献   

16.
磺厂雄磺矿床地质特征及找矿方向   总被引:1,自引:1,他引:1  
叶云树 《湖南地质》1990,9(2):54-61
磺厂雄磺矿有千余年开采历史,是我国目前最大的雄磺-雌磺砷矿床。矿体赋存古岩溶漏斗(垂直溶管)内。矿石类型分块状矿石、角砾状矿石及浸染状矿石三种。矿体(化)与岩溶角砾岩、次生硅质岩关系密切。矿床成因属“岩溶漏斗低温热液充填(交代)型”矿床。并探讨了找矿方向。  相似文献   

17.
马来西亚沙捞越邦达、什兰江控矿角砾岩筒构造均为典型的浅成—半浅成角砾岩筒构造,角砾岩及控矿类型具有明显的垂向分带特点。邦达控矿角砾岩筒构造发育角砾岩筒上段的塌陷角砾岩,角砾岩筒剥蚀深度较浅,控制典型的高硫化型浅成低温金铜矿床,且其深部具有较大的找矿潜力。什兰江控矿角砾岩筒构造发育角砾岩筒下段的爆发角砾岩和中段的流化角砾岩,分别控制斑岩型金矿化和低硫化型浅成低温热液型金矿化,角砾岩筒剥蚀深度较大,对矿床的保存和找矿极为不利。  相似文献   

18.
Multiple large mineralized breccia pipes (Cu grades up to >10%; individual pipes with >10 × 106 metric tons of Cu) are prominent, if not dominant, features in the three giant Andean Cu deposits of Los Pelambres, Los Bronces-Rio Blanco, and El Teniente of central Chile. At Los Bronces-Rio Blanco, over 90% of the >50x 106 metric tons of hypogene Cu occurs within the matrix of breccias and/or clasts and wall rock altered in association with the formation of these breccias, while at the other two deposits a lesser but still significant amount of Cu ore also is directly related to breccias. At both Los Pelambres and Los Bronces-Rio Blanco, high-grade (>0.5%) Cu occurs in zones of potassic alteration characterized by stockwork biotite veining and intense biotitization associated spatially, temporally, and genetically with biotite breccias. At Los Bronces-Rio Blanco, high-grade ore also occurs in younger tourmaline breccia pipes, emplaced both within and around the older central biotite breccia complex and potassic alteration zone after a period of uplift and erosion. Potassic alteration, sericitization, silicification, and mineralization of clasts in these tourmaline breccias occurred during their formation. At El Teniente, a significant amount of high-grade Cu ore also occurs in different tourmaline-rich breccias, including the marginal portion of the Braden breccia pipe and a related zone of quartz-sericite alteration that surrounds this pipe. Small, shallow, weakly mineralized or barren silicic porphyry intrusions occur in each of these three deposits, but their main role has been to redistribute rather than emplace mineralization.

The mineralized breccia pipes in each deposit were emplaced into early and middle Miocene volcanic and plutonic rocks during the late Miocene and Pliocene by the expansion of boiling aqueous fluids. Fluid-inclusion and stable-isotope data indicate that the high-temperature, saline, metalrich fluids that produced the brecciation, precipitated the Cu ore in the matrix of the breccias, and generated the associated alteration and mineralization in clasts and wall rock were magmatic in origin. These magmatic fluids were not derived from the early and middle Miocene host plutons, which already were solidified at the time of breccia emplacement. Sr- and Nd-isotopic compositions of breccia-matrix minerals indicate that breccia-forming fluids were exsolved from magmas that were isotopically transitional between older volcanic and plutonic host rocks and younger silicic porphyry stocks, dikes, and extrusives. The fact that the roots of the breccias have not yet been encountered implies that these magmas cooled at depths >3 km to form plutons not yet exposed at the surface.

The generation of the multiple mineralized breccias at each deposit occurred over a relatively short (but still significant) time period of 1 to 3 million years, during the final stages of existence of the long-lived (7gt;15 m.y.) Miocene magmatic belt in central Chile. The decline of magmatic activity in this belt was tectonically triggered, as subduction angle decreased in association with the subduction of the Juan Fernandez Ridge. This caused a decrease in the sub-arc magma supply and subsequently eastward migration of the magmatic arc, as well as crustal thickening, uplift, and erosion, which led to the superposition of younger and shallower alteration and mineralization events on older and deeper events in each deposit.

The giant Cu deposits of central Chile cannot be explained by a static model in which their size is a function of the mass of a single pluton or the longevity of a single hydrothermal convection system. These deposits are giant because they were produced by multistage processes involving the formation, over a period of 1 to 3 million years, of multiple superimposed mineralized breccias and associated alteration zones resulting from the exsolution of metalrich magmatic fluids from independent magma batches cooling at depths >3 km. Neither an unusually large magma supply nor Andean magmas of unusually high Cu content is required to produce the sequence of multiple mineralization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号