首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
The suggestion that radon could be used as a radioactive tracer of regolith-atmosphere exchanges and as a proxy for subsurface water on Mars, as well as its indirect detection in the Martian atmosphere by the rover Opportunity, have raised the need for a better characterization of its production process and transport efficiency in the Martian soil. More specifically, a proper estimation of radon exhalation rate on Mars requires its emanation factor and diffusion length to be determined. The dependence of the emanation factor as a function of pore water content (at 267 and 293 K) and the dependence of the adsorption coefficient on temperature, specific surface area and nature of the carrier gas (He, He + CO2) have been measured on a Martian soil analogue (Hawaiian palagonitized volcanic ash, JSC Mars-1), whose radiometric analysis has been performed. An estimation of radon diffusion lengths on Mars is provided and is used to derive a global average emanation factor (2-6.5%) that accounts for the exhalation rate inferred from the 210Po surface concentration detected on Martian dust and from the 214Bi signal measured by the Mars Odyssey Gamma Ray Spectrometer. It is found to be much larger than emanation factors characterizing lunar samples, but lower than the emanation factor of the palagonite samples obtained under dry conditions. This result probably reflects different degrees of aqueous alteration and could indicate that the emanation factor is also affected by the current presence of pore water in the Martian soil. The rationale of the “radon method” as a technique to probe subsurface water on Mars, and its sensitivity to soil parameters are discussed. These experimental data are useful to perform more detailed studies of radon transport in the Martian atmosphere using Global Climate Models and to interpret neutron and gamma data from Mars Odyssey Gamma Ray Spectrometer.  相似文献   

2.
Soil-gas radon measurements provide a valuable tool in assessing probable indoor radon levels on a regional basis. However, in Great Britain, seasonal weather changes can cause large changes in soil-gas radon concentration. Although this does not significantly constrain systematic radon potential mapping programmes, it does cause difficulties in responding to ad-hoc requests for site-specific radon investigations. The relationship between soil-gas radon and gamma spectrometry measurements made in the field with radon released from a representative sample of soil in the laboratory has been investigated as part of a program to develop a method of radon potential mapping and site investigation which can be used at any time of the year. Multiple soil and soil-gas samples were collected from sites underlain by bedrocks with widely varying radon potentials. For each geological unit, sites both free of and covered by glacial drift deposits were sampled. Soil and soil-gas samples were taken at the same depth of 60–100 cm. The effectiveness of these radon site investigation procedures has been evaluated by studying the relationship between the soil-gas radon, gamma spectrometry and radon emanation data with an independent estimate of the radon risk. The geologic radon potential (GEORP), which is the proportion of existing dwellings which exceed the UK radon Action Level (200 Bq m−3) for a particular combination of solid and drift geology within a defined geographic area, has been used for this study as the independent estimate of radon risk. Soil-gas radon, radon emanation and eU (equivalent uranium by field γ spectrometry) are all good geochemical indicators of radon risk (GEORP) in Derbyshire but only soil-gas radon correlates significantly with GEORP in Northamptonshire. Radon in soil gas discriminates more effectively between sites with different radon potential in Northamptonshire if soil permeability is also taken into account. In general, measurement of soil-gas radon in the field provides the most universally applicable indicator of radon potential. If soil-gas radon concentrations cannot be determined because of climatic factors, for example when the soil profile is waterlogged, measurement of radon emanation in the laboratory or measurement of eU can be used as radon potential indicators in some geological environments. This applies particularly in areas where the soil composition rather than the composition and permeability of the underlying rock or superficial deposits are the dominant controls of radon potential. It appears, therefore, that it may be necessary to use different radon site investigation methods according to the specific factors controlling radon emanation from the ground. In some cases no method will provide a reliable indicator of radon risk under unfavourable climatic conditions.  相似文献   

3.
The emission of gas from the earth's crust is a complex process influenced by meteorological and seasonal processes which must be understood for effective application of gas emission to geochemical exploration. Free mercury vapor emission and radon emanation are being measured in a shallow instrument vault at a single nonmineralized site in order to evaluate these influences on gas emission.Mercury concentrations in the instrument vault average 9.5 ng/m3 and range from < 1 ng/m3 to 53 ng/m3 with a strong seasonal effect. Mercury has a direct relationship to vault temperature, air temperature, soil temperature, barometric pressure, water table, and the frozen or thawed state of the soil. Air and soil temperature, barometric pressure, and relative humidity are most important in influencing mercury emission while soil moisture is also important in radon emanation. Diurnal cycles are common but do not occur on all days. A heavy precipitation event on a dry soil seals the soil resulting in a rise in mercury concentration. Precipitation on a soil that is already wet does not increase mercury emission because of the compensation caused by lowering of the soil temperature by the precipitation event. Freezing of the soil changes the physical state of the vault-soil-soil gas-atmosphere system and emits the lowest concentrations of mercury. Phase lag effects are likely important. Stepwise multiple regression of mercury as dependent variable with meteorological and seasonal parameters as independent variables gives a cumulative R value of 0.563 and R2 of 0.317. The short-term noise coupled with phase lags are an important factor.The radon measurements integrated over weekly intervals smooth out much of the short-term noise. Stepwise multiple regression of radon as dependent variable with meteorological and seasonal parameters as independent variables gives a cumulative R value of 0.967 and R2 of 0.934. In this portion of the study the variation in the radon emanation is adequately predicted by meteorological and seasonal parameters.  相似文献   

4.
Shear wave velocity (V s) and the fundamental site period of the subsurface condition are the primary parameters that affect seismic soil amplification in particular sites. Within the topmost layer of the soil, which measures 30 m, the average shear wave velocity V s30 is commonly used to build codes for site classification for the design of earthquake-resistant structures and to conduct microzonation studies. In this study, the development of a microzonation map for V s30 distribution, National Earthquake Hazard Reduction Program V s30 site classification, and a fundamental site period for Penang are presented. The multichannel analysis of surface wave (MASW) test was conducted for more than 50 sites with available borehole data to develop the microzonation maps. The ten selected V s profiles measured by MASW show a good correlation with the data obtained using empirical correlations in a previous study. The highest V s values were identified at the northeastern and southeastern parts of Penang Island, corresponding to the shallow bedrock and the outcrop zone. Conversely, the lowest V s values were found in the northwestern and southwestern parts of the Penang mainland owing to the thick layer of soft clay and silt deposits. The site period map shows the variation in site periods, with the highest value of 1.03 s at the western part of the Penang mainland and the lowest value of 0.02 s at the eastern part of the Penang Island. The microzonation maps developed in this study are vital to studies on seismic hazard and earthquake mitigation programs in Malaysia.  相似文献   

5.
Two years of radon-222 observations collected at L’Aquila (Italy) in the atmospheric surface layer during 2004–2006 were analyzed in correlation with meteorological data and other atmospheric tracers. A box model was developed to better understand the mechanisms of diurnal and seasonal variability of the tracer and to indirectly assess the magnitude of the monthly averaged radon soil flux in the L’Aquila measurement site. The model was successfully validated with measurements, with a 0.8 average correlation coefficient between hourly values for the whole period of radon observations. Measurements taken during March 2009 were analyzed to find possible signs of perturbation due to the ongoing seismic activity that would have reached its peak on the 6 April 2009 destructive earthquake. Contrary to the professed (and unpublished) dramatic increases of radon activity unofficially announced to the inhabitants at that time, the study presented here shows that no radon activity increase took place in L’Aquila with respect to a previous ‘seismically unperturbed’ year (same month with similar meteorological conditions), but that an average 30 % decrease was experienced. This conclusion is reached from a direct comparison of observed data and also as a result of the previously validated radon box model constrained by actual meteorological data, from which an indirect estimate of a 17 % reduction of the radon soil flux is obtained.  相似文献   

6.
Radon emanation has been monitored in shallow capped holes by a Tracketch method along several active faults and in the vicinity of some volcanoes and underground nuclear explosions. The measured emanation shows large temporal variations that appear to be partly related to crustal strain changes. This paper proposes a model that may explain the observed tectonic variations in radon emanation, and explores the possibility of using radon emanation as an indicator of crustal deformation. In this model the emanation variation is assumed to be due to the perturbation of near-surface profile of radon concentration in the soil gas caused by a change in the vertical flow rate of the soil gas which, in turn, is caused by the crustal deformation. It is shown that, for a typical soil, a small change in the flow rate (3 · 10−4 cm sec−1) can effect a significant change (a factor of 2) in radon emanation detected at a fixed shallow depth (0.7 m). The radon concentration profile has been monitored at several depths at a selected site to test the model. The results appear to be in satisfactory agreement.  相似文献   

7.
Iran has long been known as one of the most seismically active areas of the world, and it frequently suffers destructive and catastrophic earthquakes that cause heavy loss of human life and widespread damage. The Alborz region in the northern part of Iran is an active EW trending mountain belt of 100 km wide and 600 km long. The Alborz range is bounded by the Talesh Mountains to the west and the Kopet Dagh Mountains to the east and consists of several sedimentary and volcanic layers of Cambrian to Eocene ages that were deformed during the late Cenozoic collision. Several active faults affect the central Alborz. The main active faults are the North Tehran and Mosha faults. The Mosha fault is one of the major active faults in the central Alborz as shown by its strong historical seismicity and its clear morphological signature. Situated in the vicinity of Tehran city, this 150-km-long N100° E trending fault represents an important potential seismic source. For earthquake monitoring and possible future prediction/precursory purposes, a test site has been established in the Alborz mountain region. The proximity to the capital of Iran with its high population density, low frequency but high magnitude earthquake occurrence, and active faults with their historical earthquake events have been considered as the main criteria for this selection. In addition, within the test site, there are hot springs and deep water wells that can be used for physico-chemical and radon gas analysis for earthquake precursory studies. The present activities include magnetic measurements; application of methodology for identification of seismogenic nodes for earthquakes of M ≥ 6.0 in the Alborz region developed by International Institute of Earthquake Prediction Theory and Mathematical Geophysics, IIEPT RAS, Russian Academy of Science, Moscow (IIEPT&MG RAS); a feasibility study using a dense seismic network for identification of future locations of seismic monitoring stations and application of short-term prediction of medium- and large-size earthquakes is based on Markov and extended self-similarity analysis of seismic data. The establishment of the test site is ongoing, and the methodology has been selected based on the IASPEI evaluation report on the most important precursors with installation of (i) a local dense seismic network consisting of 25 short-period seismometers, (ii) a GPS network consisting of eight instruments with 70 stations, (iii) magnetic network with four instruments, and (iv) radon gas and a physico-chemical study on the springs and deep water wells.  相似文献   

8.
In 1996, after 150 years of relative calm, Turrialba Volcano was reawakening. A visible plume and serious damage to surrounding vegetation due to acid rain are the most obvious signals. As part of the Network for Observation of Volcanic and Atmospheric Change project, four gas-monitoring stations were initially installed on the west flank of the volcano with the purpose of measuring sulphur dioxide emissions during this period of increased activity using the scanning-differential optical absorption spectroscopy technique. We present here the results of semicontinuous gas flux measurements over a period of 5 years (from 2008 to 2012), providing a novel data set that documents a relatively rapid increase in SO2 fluxes from around 350 t day?1 to around 4,000 t day?1 leading up to an eruptive period, followed by a gradual return to the former baseline values. Gas flux data were also compared with seismic data for selected periods of interest, providing insights into the link between degassing and seismicity. The most important result from this comparison is the identification of an inflexion point in the gas emissions followed by a clearly increasing trend in seismic activity, distinguishable 6 months prior to a phreatic eruptive event that occurred on 5 January 2010. This signal can be interpreted as a possible indicator of future eruptive events. Monitoring of SO2 thus complements seismic monitoring as a forecasting tool for eruptive events. Such monitoring is critical considering the proximity of Turrialba to the Central Valley, an area inhabited by more than 50 % of Costa Rica’s population.  相似文献   

9.
Concentration of Rn-222 in soil has been monitored continuously at Ravangla in the Sikkim Himalayan Region of eastern India for about 7 months from October 2015 to May 2016 to detect earthquake-induced anomalies. The recorded data clearly show that various physical and meteorological parameters influence the soil radon concentration, leading to very complex soil Rn-222 time series. The components due to such external influences have been removed from the present time series, and Hilbert–Huang transform (HHT) applied for analysis of the data. Two radon anomalies caused due to earthquakes of magnitude M b = 5.0 that occurred on 19 November 2015 and 5 April 2016 within an epicentral distance of 500 km from the monitoring station have been identified on the soil Rn-222 time series. These two precursory anomalies occurred 9 and 10 days, respectively, before the occurrence of the earthquakes. The absence of spurious signals or missing anomalies demonstrates that HHT is advantageous for analysis of nonlinear non-stationary data, and hence, it is a promising technique to analyse soil radon behaviour for predicting the possibility of occurrence of earthquakes.  相似文献   

10.
Spatial distribution of concentrations of radon gas in the soil is important for defining high risk areas because geogenic radon is the major potential source of indoor radon concentrations regardless of the construction features of buildings. An area of southern Italy (Catanzaro-Lamezia plain) was surveyed to study the relationship between radon gas concentrations in the soil, geology and structural patterns. Moreover, the uncertainty associated with the mapping of geogenic radon in soil gas was assessed. Multi-Gaussian kriging was used to map the geogenic soil gas radon concentration, while conditional sequential Gaussian simulation was used to yield a series of stochastic images representing equally probable spatial distributions of soil radon across the study area. The stochastic images generated by the sequential Gaussian simulation were used to assess the uncertainty associated with the mapping of geogenic radon in the soil and they were combined to calculate the probability of exceeding a specified critical threshold that might cause concern for human health. The study showed that emanation of radon gas radon was also dependent on geological structure and lithology. The results have provided insight into the influence of basement geochemistry on the spatial distribution of radon levels at the soil/atmosphere interface and suggested that knowledge of the geology of the area may be helpful in understanding the distribution pattern of radon near the earth’s surface.  相似文献   

11.
Soil gas radon measurements were made in Chamba and Dharamshala regions of Himachal Pradesh, India, to study the correlation, if any, between the soil gas radon, radium activity concentration of soil, and the geology/active tectonics of the study region. Soil gas radon surveys were conducted around the local fault zones to check their tectonic activities using the soil gas technique. Soil gas radon activity concentration at thirty-five different locations in Dharamshala region has been found to be varying from 13.2 ± 1.5 to 110.8 ± 5.0 kBq m?3 with a geometrical mean of 35.9 kBq m?3 and geometrical standard deviation of 1.8. Radon activity concentration observed in the thirty-seven soil gas samples collected from the Chamba region of Himachal Pradesh varies from 5.2 ± 1.0 to 35.6 ± 2.5 kBq m?3, with geometrical mean of 15.8 kBq m?3 and geometrical standard deviation of 1.6. Average radium activity concentrations in thirty-four soil samples collected from different geological formations of Dharamshala region and Chamba region are found to be 40.4 ± 17 and 38.6 ± 1.7 Bq kg?1, respectively. It has been observed that soil gas radon activity concentration has a wide range of variation in both Dharamshala and Chamba regions, while radium activity concentrations in soil samples are more or less same in both the regions. Moreover, soil gas radon activity concentration has a better positive correlation with the radium activity concentration in soil samples collected from Chamba region as compared to Dharamshala region.  相似文献   

12.
Afyonkarahisar is a very important geothermal province of western Anatolia and has low and medium enthalpy geothermal areas. This study has been carried out for the preparation of distribution maps of soil gases (radon and carbon dioxide) and shallow soil temperature and the exploration of permeable tectonic regions associated with geothermal systems and reveal the origins of radon and carbon dioxide gases. The western district of the study area is characterized by the high radon concentration (168.30 kBq/m3), carbon dioxide ratio (0.30%), and soil temperature (21.0 °C) values. Fethibey and Demirçevre faults, which allow the circulation of geothermal fluids, have been detected in the distribution maps of radon, carbon dioxide, and shallow depth temperature and the directions of the curves in these maps correspond to the strikes of Demirçevre faults. The effect of the fault plays an important role in the change of carbon dioxide concentration along the W-E directional geological section prepared to determine the change of soil gas and shallow depth temperature values depending on lithological differences, fault existence, and geothermal reservoir depth. On the other hand, it was determined that Rn222 concentration and soil temperature changed as a function of geothermal reservoir depth or lithological difference. Tuffs in Köprülü volcano-sedimentary units are the main source of radon due to their higher uranium contents. Besides, the carbon dioxide in Ömer–Gecek soils has geothermal origin because of the highest carbon dioxide content (99.3%) in non-condense gas. The similarities in patterns of soil temperature, radon, and carbon dioxide indicate that the variation in soil temperatures is related to radon and carbon dioxide emissions. It is concluded that soil gas and temperature measurements can be used to determine the active faults in the initial stage of geothermal exploration successfully.  相似文献   

13.
Radon and mercury concentrations were measured in 10 fault gas profiles in Generalized Haiyuan Fault. This paper aims to predetermine the potential seismic risk in different segments of the fault zone from the perspective of geochemistry. The background value and anomaly threshold were adopted and synthesized using the maximum value method and average method to calculate concentration intensity values of radon and mercury. Fault soil gas mercury and radon concentrations show a decreasing gradient from NW to SE indicating evident segmentation. Higher values are mostly distributed in the Maomao Mountain–Tiger Mountain fault and Jingtai area. Combined with the seismotectonic background of historical and recent earthquakes and the spatial distribution characteristics of b-values, the fault soil gas concentration intensity shows a close correlation with earthquake activity within the fault zone. Concentrations of fault gas are higher and the b-value lower in areas of strong seismic activity, and regions with weak seismic activity correspond to lower fault gas concentrations and higher b-values. It is thus considered that the Jingtai area may be more dangerous than the other areas. This paper could provide vital background information for earthquake prediction in the Generalized Haiyuan Fault Zone.  相似文献   

14.
Continuous soil-gas radon and thoron measurements were carried out at 15 days interval along Mat fault in Mizoram (India), which lies in the seismic zone V of the seismic zonation map of India. The study was carried out from March 2012 to February 2013 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. The effect of meteorological parameters on radon and thoron data was taken into consideration. The annual average value of radon and thoron concentration was found to be 621.21 and 590.18 Bq/m3 with a standard deviation of 377.60 and 301.34 Bq/m3, respectively. Inverse correlation coefficient was obtained between radon/thoron concentration and the meteorological parameters except in one case (thoron and relative humidity) which showed a weak positive correlation. Standard deviation method was employed in order to differentiate those anomalies which are solely caused by seismic events and not by meteorological parameters. The data obtained have been correlated with the seismic activities that occurred around the measuring site. Positive correlations were found between radon/thoron data and the earthquakes.  相似文献   

15.
Our study at this natural analog site contributes to the evaluation of methods within a hierarchical monitoring concept suited for the control of CO2 degassing. It supports the development of an effective monitoring concept for geological CO2 storage sites—carbon capture and storage as one of the pillars of the European climate change efforts. This study presents results of comprehensive investigations along a 500-m long profile within the Hartou?ov (Czech Republic) natural CO2 degassing site and gives structural information about the subsurface and interaction processes in relation to parameters measured. Measurements of CO2 concentrations and investigation of the subsurface using electrical resistivity tomography and self-potential methods provide information about subsurface properties. For their successful application it is necessary to take seasonal variations (e.g., soil moisture, temperature, meteorological conditions) into consideration due to their influence on these parameters. Locations of high CO2 concentration in shallow depths are related to positive self-potential anomalies, low soil moistures and high resistivity distributions, as well as high δ13C values and increased radon concentrations. CO2 ascends from deep geological sources via preferential pathways and accumulates in coarser sediments. Repetition of measurements (which includes the effects of seasonal variations) revealed similar trends and allows us to identify a clear, prominent zone of anomalous values. Coarser unconsolidated sedimentary layers are beneficial for the accumulation of CO2 gas. The distribution of such shallow geological structures needs to be considered as a significant environmental risk potential whenever sudden degassing of large gas volumes occurs.  相似文献   

16.
This study was conducted primarily to measure and map radon activity concentration in soil gas and to understand the effect of geology and lithology and meteorology on radon concentration. Portable radon meter has been used for the measurement of soil gas radon at 30 different locations around Uro and Korn area in eastern Nuba Mountain South Kordofan State. The results indicate that the activity concentrations of 222Rn in soil gas fall within the range of 20–1,359 Bq/m3 with geometric mean of 102.80 Bq/cm3. The obtained data show that samples around Uro have anomaly of 222Rn concentrations than the sample around Korn. The reason could be attributed to differences in the geological structure, lithology and climate parameters. GIS predicative map has shown that the elevated levels of radon concentration were measured in North study area. Upon comparing the results with global data, it was found that the obtained values are far below the reported range of India, Slovenia, Portugal and Syria. However, the range of 222Rn concentrations in the soil observed in this study is significantly high relative to similar data reported from Libya. The regression analysis has shown that no correlation was noted between radon concentrations, climatic parameters and trace element.  相似文献   

17.
Radon measurements were made in the soil and spring/seepage water in and around an active landslide located along the Pindar river in the Chamoli District of Uttaranchal in Garhwal Lesser Himalaya, to understand the application of radon in geological disasters. The landslide is a compound slide i.e. a slump in the crown portion, and debris slide and fall in the lower part. The bedrock consists of gneisses and schists of the Saryu Formation of the Almora Group of Precambrian age. The presence of several small slump scars and debris slide/fall scars along the length of the slide indicates continuous downward movement. The radon concentrations in the present study are much lower in comparison to values reported from other regions. However, the present radon data show relative variation in the slide zone. The concentration of radon measured in landslide zones varies from 3.1 Bq/l to 18.4 Bq/l in spring water and from 2.3 kBq/m3 to 12.2 kBq/m3 in the soil gas of the debris. Along the section of the slide, the radon values in water and soil are slightly higher in the upper slopes i.e. toward the crown portion of the landslide as compared to the distal portion. The relatively low concentration of radon both in soil gas and water in the toe portion of the landslide may be due to the high porosity of the debris, which does not allow radon to accumulate in the soil and water, whereas, towards the crown portion, the high frequency of fractures increases the surface area due to particle size reduction, and the near absence of debris enhances the radon emanation in soil.  相似文献   

18.
Radon gas is a human health hazard; long-term exposure to high radon concentrations through inhalation is the second leading cause of lung cancer. Nova Scotia has been previously identified as a potential high risk region because of the geology. As such, the gas transport through Halifax’s fine grained leucomonzogranite (FGL) unit of the South Mountain Batholith needed to be quantified to further remediation efforts. Using controlled laboratory experiments, four different soil columns were created using the Halifax Regional Municipality’s (HRM) highest producing field tills and bedrock. Permeability, diffusivity, radon-222 gas concentrations, and gas transit time/speed were measured in both dry tills (field moisture) and wet tills (simulated rain event moisture). Columns with HRM till displayed the highest radon concentrations, and were less permeable with additional moisture. Radon diffusivity calculated from CO2 was 7.52 × 10?8 m2 (dry), and 3.37 × 10?8 m2 (wet); diffusivity calculated from 222Rn was 7.30 × 10?7 m2 (dry), and 6.47 × 10?7 m2 (wet). The average FGL transit time in a 60 cm column was 3.57 days (dry), and 3.82 days (wet). Locally this study presents two different methods for diffusivity calculations, for a unit lacking previous diffusivity information. The radon gas concentrations and transport speeds quantified the transport mechanisms within the till. Globally, the correlation between soil moisture, and radon/permeability values was established using these results. The link between diffusivity and permeability was also confirmed using field tills. Implications were made for building foundations, as well as the depth and type of material necessary to reduce radon gas from reaching the surface.  相似文献   

19.
In 1996–1997, indoor radon values of more than 40,000 Bq/m3 and large seasonal and geographical variations in indoor air radon were reported from a residential area located on a highly permeable ice-marginal deposit. Geochemical analyses of bedrock, groundwater and sediments and comparisons between indoor radon values and soil radon values indicate that the indoor radon concentrations in this area are strongly affected by subterranean airflows caused by temperature differences between soil air and atmospheric air. The airflows concentrate the radon-laden soil air towards the topographic highest part of the deposit in winter and towards the topographic lowest part in summer. In areas where subterranean airflows are likely to occur, radon measurements performed both in summer and in winter provide the best estimate of annual average indoor radon concentrations, and assessments of indoor radon concentrations based on single soil gas measurements are not recommended.  相似文献   

20.
Radon and its progenies have been ranked second of being responsible for lung cancer in humans. Hong Kong has four major groups of uranium-rich plutonic and volcanic rocks and is suffering from radon emanated therefrom. However, there is a lack of radon potential maps in Hong Kong to resolve the spatial distribution of radon-prone areas. A ten-point radon potential system was developed in Germany (2005) to predict radon potential using both the in situ geogenic and geographic parameters under hierarchical ranking. Primarily, the ten-point system requires the desk study of the geological environment of sampling sites, which has an advantage of saving resources and manpower in extensive radon potential mapping over the traditional soil radon concentration sampling method. This paper presents a trial of radon potential mapping in Hong Kong to further verify the system. Despite some slight departures, the system demonstrates an acceptable correlation with soil radon concentrations (R 2 = 0.62–0.66) from 768 samples of mainly intermediate radon potential. Hong Kong has a mean soil radon concentrations of 58.9 kBqm?3, while the radon potential from the ten-point system achieves an average of 4.93 out of 10 over the territory. The vicinity of fault zone showed high soil radon concentrations and potentials, which were conducive to uranium enrichment and rapid soil-gas diffusion near faults. High uranium-238 content in soil was found to cause high soil radon concentration with a large R 2, 0.84. The Jurassic granite and volcanic crystal tuff cover more than 85 % of the whole Hong Kong area, and they show relatively high radon concentrations (Geometric mean 83 and 49 kBqm?3, respectively) which are associated with their high uranium contents (Geometric mean 234 and 197 Bqkg?1, respectively). While indoor radon concentration is an important factor for radon risk assessment, this study has not considered the correlation between indoor radon concentration and radon potential. The reason is that almost all buildings in Hong Kong are high-rise buildings where indoor radon concentrations are governed only by the radium content in the building materials and the ventilation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号