首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and temporal gaps in the reconstruction of the Holocene Patagonian glacial landscape. Here we present the first geomorphological record for the Sierra Baguales Mountain Range(SBMR), forming the eastern foothills of the Southern Patagonian Andes 200 km from the Pacific coast. This area is topographically isolated from the Southern Patagonian Ice Field(SPIF), and is affected by the Westerly Winds. The study area shows evidence of ice sheet and alpine glaciations related to Andean uplift,which caused a marked climatic contrast between its western and eastern flanks since the Last Glacial Maximum(LGM). The regional rock mass strength and precipitation gradient acted as a controlling factor in the glacial cirque distribution and sizes, as well as in the development of glaciation types. We report new radiocarbon dates associated with warm/dry to cold/wet climatic changes during the middle Holocene, when former small alpine glaciers were located in the uppermost section of the SBMR basins, and eventually converged to form a small ice field or a composite valley glacier at lower elevations.This can be explained by an estimated regional temperature drop of 3.8°C±0.8°C, based on a 585±26m Equilibrium Line Altitude(ELA) descent, inferred by geomorphological evidence and the Accumulation Area Ratio(AAR), in addition to a free-air adiabatic lapse rate. Subsequently, the glaciers receded due to climatic factors including a rise in temperature, as well as non-climatic factors, mainly the glacier bedrock topography.  相似文献   

2.
The Indus river basin(IRB) is one of the most depleted water basins globally,having significant challenges for its water sector.Monitoring of stable isotope composition(δ18O and δ2H) across IRB is a critical aspect that can provide deeper insights for investigating complex hydrological processes.This work analyses the spatial pattern of the isotopic signature using a comprehensive compilation of available datasets of the Global Network of Isotopes in River(GNIR) and Global ...  相似文献   

3.
Maritime-type glaciers in the eastern Nyainqêntanglha Range, located in the southeastern part of the Tibetan Plateau, are an important water source for downstream residents and ecological systems. To better understand the variability of glaciers in this region, we used the band ratio threshold(TM3/TM5 for the Landsat TM /ETM+ and TM4/TM6 for Landsat OLI) to extract glacier outlines in ~1999 and ~2013. After that, we also generated a series of glacier boundaries and monitored glacier variations in the past 40 years with the help of the Chinese Glacier Inventory data(1975) and Landsat TM, ETM+ and OLI data. The total glacier area decreased by 37.69 ± 2.84% from 1975 to 2013. The annual percentage area change(APAC) was ~1.32% a-1 and ~1.29% a-1 in the periods 1975-1999 and 1999-2013, respectively. According to the lag theory, the reaction time is probably about 10 years and we discuss the variations of temperature and precipitation between 1965 and 2011. Temperature and precipitation increased between 1965 and 2011 at a rate of 0.34°C /10 a and 15.4 mm/10 a, respectively. Extensive meteorological data show that the glacier shrinkage rate over the period may be mainly due to increasing air temperature, while the increasing precipitation partly made up for the mass loss of glacier ice resulting from increasing temperature may also lead to the low APAC between 1999 and 2013. The lag theory suggests that glacier shrinkage may accelerate in the next 10 years. Small glaciers were more sensitive to climate change, and there was a normal distribution between glacier area and elevation. Glaciers shrank in all aspects, and south aspects diminished faster than others.  相似文献   

4.
The studies on prediction of climate in Xinjiang almost show that the precipitation would increase in the coming 50 years, although there were surely some uncertainties in precipitation predictions. On the basis of the structure of glacier system and nature of equilibrium line altitude at steady state (ELAo), a functional model of the glacier system responding to climate changes was established, and it simultaneously involved the rising of summer mean temperature and increasing of mean precipitation. The results from the functional model under the climatic scenarios with temperature increasing rates of 0.01, 0.03 and 0.05 K/year indicated that the precipitation increasing would play an evident role in glacier system responding to climate change: if temperature become 1 ℃ higher, the precipitation would be increased by 10%, which can slow down the glaciers retreating rate in the area by 4 %, accelerate runoff increasing rate by 8 % and depress the ELAo rising gradient by 24 m in northern Xinjiang glacier system where semi-continental glaciers dominate, while it has corresponding values of only 1%, 5 % and 18m respectively in southern Xinjiang glacier system, where extremely continental glaciers dominate.  相似文献   

5.
Geomorphological and Quaternarygeological field- and laboratory data (Fig.1) are introduced and interpreted with regard to the maximum Ice Age (LGM) glaciation of the Central and South Karakoram in the Braldu-, Basna-, Shigar and Indus valley system as well as on the Deosai plateau between the Skardu Basin and the Astor valley (Fig.2). These data result from two research expeditions in the years 1997 and 2000. They show that between c. 6o and 2o Ka the Central Karakorum and its south slope were covered by a continuous c. 125000 km^2 sized ice stream network. This ice stream network flowed together to a joint parent glacier, the Indus glacier. The tongue end of the Indus glacier reached down to 850 ~ 800m a.s.l. In its centre the surface of this Indus ice stream network reached a height of a good 6ooo m. Its most important ice thicknesses amounted to c. 2400 ~ 2900 m.  相似文献   

6.
Glacier is a common sensitivity indicator of environmental and global climate change.Examining the relationship between glacier area and climate change will help reveal glacier change mechanisms and future trends. Glacier changes are also of great significance to the regulation of regional water resources. This study selected the Hala Lake Basin in the northeastern Qinhai-Tibet Plateau as a study area, and examined the relationships between the temporal and spatial change of glaciers in the northeastern Qinghai-Tibet Plateau and climate change based on remote sensing imagery,climatological data, and topographic data during the past 30 years. Results showed that glacier area in the Hala Lake basin fluctuated and decreased from106.24 km~2 in 1986 to 78.84 km~2 in 2015, with a decreasing rate of 0.94 km~2·yr~(-1). The number of glacier patches, mean patch area, and largest patch index all decreased from 1986 to 2015, while the splitting index increased from 1986 to 2015,indicating that the landscape fragmentation of glacier in the Hala Lake Basin was increasing significantly during the study period. Glacier area change was mainly concentrated in the slopes 25° with an altitude of 4500-5000 m, and the retreating rate of glacier of sunny slope was obviously higher than that of shady slope. Geometric center of glacier in the basin moved from southwest to northeast towards high altitude. Results of the response of glacier extent to climate change showed that temperature was the dominant factor affecting glacier area dynamic change in the Hala Lake Basin. It is predicted that in future several years, the glacier area will decrease and fragment continually as a result of global warming on the Tibetan Plateau.  相似文献   

7.
In the warming world,tropical Pacifi c sea surface temperature(SST)variation has received considerable attention because of its enormous infl uence on global climate change,particularly the El Ni?o-Southern Oscillation process.Here,we provide new high-resolution proxy records of the magnesium/calcium ratio and the oxygen isotope in foraminifera from a core on the Ontong-Java Plateau to reconstruct the SST and hydrological variation in the center of the Western Pacifi c Warm Pool(WPWP)over the last360000 years.In comparison with other Mg/Ca-derived SST and δ~(18)O records,the results suggested that in a relatively stable condition,e.g.,the last glacial maximum(LGM)and other glacial periods,the tropical Pacifi c would adopt a La Ni?a-like state,and the Walker and Hadley cycles would be synchronously enhanced.Conversely,El Ni?o-like conditions could have occurred in the tropical Pacifi c during fastchanging periods,e.g.,the termination and rapidly cooling stages of interglacial periods.In the light of the sensitivity of the Eastern Pacifi c Cold Tongue(EPCT)and the inertia of the WPWP,we hypothesize an inter-restricted relationship between the WPWP and EPCT,which could control the zonal gradient variation of SST and aff ect climate change.  相似文献   

8.
Based on the 1990, 2000 and 2011 Landsat TM/ETM+ remote sensing data, glacier information of three periods in the Chinese Tianshan Mountains were extracted by using ratio threshold method(TM3/TM5) and visual interpretation, combined with digital processing of satellite images and analysis in GIS. The climate data in the surrounding area were analyzed by using linear regression, Mann-Kendall abrupt test, and Morlet wavelet analysis. Study results showed that: over the 23 years investigation, the glacier areas have markedly decreased. In the last 12 years(2000 to 2011), the rate of retreat has begun to accelerate. The most dramatic glacier shrinkage occurred in the central region, the lowest in the eastern region. The mean summer temperature and warm precipitation in Chinese Tianshan Mountains had an increasing trend, with rates of 0.22°C /10 a and 5.1mm/10 a from 1960 to 2011, respectively. Mean summer temperature have experienced a strong increase in 1998. The analysis of the results showed that the rise of mean summer temperature was the main factor that contributed to glacier shrinkage. Regional differences of glacier area changes were investigated by analyzing glacier behavior in five study sub-regions; regional differences are related to local climate, to the relative proportion of glaciers in different size classes, altitudinal and aspect distribution of glaciated areas. In addition, the lag theory indicated that glaciers may accelerate the retreat in the next decade, considering climate trends recognized for the period 2000-2011.  相似文献   

9.
To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples were collected from the Laohugou Glacial catchment in the Shule River basin northwestern China during the 2013 ablation seasons and analyzed their H- and O-isotope composition. The results showed that the isotopic composition of precipitation in the Qilianshan Station in the Laohugou Glacial catchment was remarkable variability. Correspondingly, a higher slope of δ~(18)O-δD diagram, with an average of 8.74, is obtained based on the precipitation samples collected on the Glacier No.12, mainly attributed to the lower temperature on the glacier surface. Because of percolation and elution, the isotopic composition at the bottom of the firn is nearly steady. The δ~(18)O /altitude gradients for precipitation and melt water were -0.37‰/100 m and -0.34‰/100 m, respectively. Exposed to the air and influenced by strong ablation and evaporation, the isotopic values and the δ~(18)O vs δD diagram of the glacial surface ice show no altitudinal effect, indicating that glacier ice has the similar origins with the firn. The variation of isotopic composition in the melt water, varying from -10.7‰ to -16.9‰(δ~(18)O) and from -61.1‰ to -122.1‰(δD) indicates the recharging of snowmelt and glacial ice melt water produced at different altitudes. With a mean value of -13.3‰ for δ~(18)O and -89.7‰ for δD, the isotopic composition of the stream water is much closer to the melt water, indicating that stream water is mainly recharged by the ablation water. Our results of the stable isotopic compositions in natural water in the Laohugou Glacial catchment indicate the fractionations and the smoothing fluctuations of the stable isotopes during evaporation, infiltration and mixture.  相似文献   

10.
Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation, resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene, on the basis of a sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier. Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.  相似文献   

11.
The Himalayas are assumed to experience rapid climate change, with serious environmental,social and economic consequences for people living in and around the mountain area. However, the extent of climate change and its impact on the region are underexplored, especially on northern slope of the mountains. Based on local knowledge, we report perceived changes in climate and consequences of such changes for natural and social systems. The respondents in this study were distributed at a continuous elevation gradient of 3570-4646 m above sea level in the northern Himalayas. Therefore, it is possible to analyze the process of the shift of bioclimate zones under climate change and the differences in climate change effects cross altitudes.Among those in the pastoral area(Zhegu town) with an altitude of 4600 m, 91.2%(n=114) of the respondents believe that the climate is obviously changing; the ratio of reporting rainfall decreasing is77.2%(n=114); those who perceive delayed rainy season, and increased climate change-related natural disasters account for 38.9%(n=113), 72.8%(n=103),respectively; more than two thirds(70.3%)(n=111)view drought as the biggest challenge to address climate change, and more than half(59.3%)(n=113)of the respondents believe that the impact of climate change is mainly negative. All these data rank first among the four survey areas(Zhegu town/pastoral region, Nedong County/crop growing regions,Zhanang County/crop growing region and Nagarze County/farming-pastoral region). Due to climate warming, Labidura riparia spreads to a higher altitude in the basins in Nedong County(Shannan City, Tibet) and Zhanang County(Shannan City, Tibet)at the rate of 31.1±6.4 m/a and 46.7±8.8 m/a,respectively in elevation. Most of the respondents view the natural variability as the main cause of climate changes, only 10.7%-29.0% among them view human activities as the main reason. Key challenges for local people to address climate change includedroughts and economic hardship. Most local perceptions conform to scientific data. Comparative analysis of people's perception of climate change impacts in different regions of the Himalayas will enhance the understanding of climate change effects on the whole region.  相似文献   

12.
To predict future spatio-temporal patterns of climate change, we should fully understand the spatio-temporal patterns of climate change during the past millennium. But, we are not yet able to delineate the patterns because the qualities of the retrieved proxy records and the spatial coverage of those records are not adequate. Northern Xinjiang of China is one of such areas where the records are not adequate. Here, we present a 500-yr land-surface moisture sequence from Heiyangpo Peat(48.34°N, 87.18°E, 1353 m a.s.l) in the southern Altai Mountains within northern Xinjiang. Specifically, peat carbon isotope value of cellulose(δ~(13)C_(cellulose)) was used to estimate the warm-season moisture variations and the degree of humification was used to constrain the δ~(13)C_(cellulose)-based hydrological interpretation. The climatic attributions of the interpreted hydrological variations were based on the warm-season temperature reconstructed from Belukha ice core and the warm-season precipitation inferred from the reconstructed Atlantic Multidecadal Oscillations(AMO). The results show that humification decreased and the δ~(13)C_(celluose)-suggested moisture decreased from ~1510 to ~1775 AD, implying that a constant dryingcondition may have inhibited peat decay. Our comparison with reconstructed climatic parameters suggests that the moisture-level decline was most likely resulted from a constant decline of precipitation. The results also show that humification kept a stable level and the δ~(13)C_(celluose)-suggested moisture also decreased from ~1775 to ~2013 AD, implying that peat decay in the acrotelm primarily did not depend on the water availability or an aerobic environment. Again, our comparison with reconstructed climatic parameters suggests that the land-surface moisturelevel decline was most likely resulted from a steady warming of growing-season temperature.  相似文献   

13.
Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict future runoff from glacierized catchments. For this study, we applied a multi-criteria technique to map the glaciers of the Shaksgam valley of China, using Landsat Thematic Mapper(Landsat TM)(2009) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model version two(ASTER GDEM V2) data. The geomorphometric parameters slope, plan, and profile curvature were generated from ASTER GDEM. Then they were organized in similar surface groups using cluster analysis. For accurate mapping of supraglacial debris area, clustering results were combined with a thermal mask generated from the Landsat TM thermal band. The debris-free glaciers were identified using the band ratio(TM band 4/TM band 5) technique. Final vector maps of the glaciers were created using overlay tools in a geographic information system(GIS).Accuracy of the generated glacier outlines was assessed through comparison with glacier outlines based on the Second Chinese Glacier Inventory(SCGI) data and glacier outlines created from high-resolution Google Earth? images of 2009. Glacier areas derived using the proposed approach were 3% less than in the reference datasets. Furthermore, final glacier maps show satisfactory mapping results, but identification of the debris-cover glacier terminus(covered by thick debris layer) is still problematic. Therefore, manual editing was necessary to improve the final glacier maps.  相似文献   

14.
Although extensive studies have been performed on nitrogen isotopes in lake sediments,understanding the complexity of the δ~15N variation related to past environmental and climatic conditions still remains unclear.Supported by multi-proxy records including litho-units,organic carbon isotopes,ration of total organic carbon and total nitrogen,organic matter content,bulk dry density,the accumulation rate of organic matter,median grain size,magnetic susceptibility,and Rb/Sr and Ca/Mg ratios obtained from a sedimentary sequence in a small lake(i.e.,Dahu Swamp) in the eastern Nanling Mountains in South China,we deduce that variation in the δ15N values results primarily from the sources of organic matter,which are significantly influenced by climatic conditions over the past ~16 000 years.A low(or high) lake level resulting from dry(or wet) conditions would lead to more(or fewer) vascular plant remains in the sediments and stronger(or weaker) denitrification associated with hypolimnetic anoxia,resulting in lower(or higher) δ15N values.In addition,dry(or wet) conditions would favor weakened(or strengthened) biogeochemical activity in the catchment,which could result in less(or more) external input of15N-enriched OM,thus leading to decreased(or increased) δ15N values.Our results indicate that the lake sediment δ15N record in the Nanling Mountains has the potential to provide valuable insight into past East Asian monsoon climatedriven environmental changes.  相似文献   

15.
The East China Sea(ECS), which is located in the transitional zone between land and ocean, is the main site for the burial of sedimentary organic carbon. Despite good constraints of the modern source to the sinking process of organic carbon, its fate in response to changes in climate and sea level since the last deglaciation remains poorly understood. We aim to fill this gap by presenting a high-resolution sedimentary record of core EC2005 to derive a better understanding of the evolution of the...  相似文献   

16.
Although the mid-late Holocene cold and dry event about 4000 years ago(the 4 ka event) has been observed almost globally, it was most prominent in terrestrial climate proxies from the lower latitudes. Here we evaluate the oceanic response to this event in terms of a Holocene sea surface temperature(SST) record reconstructed using the K'37U index for Core B3 on the continental shelf of the East China Sea. The record reveals a large temperature drop of about 5℃ from the mid-Holocene(24.7℃ at 5.6 ka) to the 4 ka event(19.2℃ at 3.8 ka). This mid-late Holocene cooling period in Core B3 correlated with(i) decreases in the East Asia summer monsoon intensity and(ii) the transition period with increased El Nino/Southern Oscillation activities in the Equatorial Pacific. Our SST record provides oceanic evidence for a more global nature of the mid-late Holocene climate change, which was most likely caused by a southward migration of the Intertropical Converge Zone in response to the decreasing summer solar insolation in the Northern Hemisphere. However, the large SST drop around Core B3 indicates that the mid-late Holocene cooling was regionally amplified by the initiation/strengthening of eddy circulation/cold front which caused upwelling and resulted in additional SST decrease. Upwelling during the mid-late Holocene also enhanced with surface productivity in the East China Sea as reflected by higher alkenone content around Core B3.  相似文献   

17.
Glaciers in the western Nyainqentanglha Range are an important source of water for social and economic development. Changes in their area were derived from two Chinese glacier inventories; one from the 1970 1:50,000 scale Chinese Topographic Maps series and the other from Landsat TM/ETM+ images acquired in 2009. Analyses also included boundaries from 2000 and 2014 Landsat TM/ETM+ images. A continuing and accelerating shrinkage of glaciers occurred here from 1970 to 2014, with glacier area decreasing by 244.38 ± 29.48 km~2(27.4% ± 3.3%)or 0.62% ± 0.08% a~(–1). While this is consistent with a changing climate, local topographic parameters, such as altitude, slope, aspect and debris cover, are also important influences. Recession is manifested by a rise in the elevation of the glacier terminus. The shrinkage of glaciers with NE, N and NW orientations exceeded that of other aspects, and glaciers with SE and S orientations experienced less shrinkage. Changes in the average positive difference of glaciation(PDG) show that the western Nyainqentanglha Range has unfavorable conditions for glacier maintenance which is being exacerbated by a warming climate since 1970.  相似文献   

18.
Mass balance is a key indicator of the sensitivity of glaciers to climate change. Field measurement is one of the most important ways to study the mass balance of glaciers. Based on observations of mass balance in the ablation zone of Shuiguan Glacier No.4, Qilian Mountains, China, combined with the balance ratio between accumulation and ablation, we established a linear relation between mass balance and altitude. The results show that the mean annual mass balance of this glacier was ~510 mm w.e. from 2010 to 2013. The uncertainty in the balance ratio value does not lead to a significant difference in the mass balance. The equilibrium-line altitude rose by 180 m from 1972 to 2013, while the accumulation–area ratio decreased from 0.68 to 0.25. These variations may be caused by changes in air temperature. Meanwhile, the glacier is at present not in a steady state, and it may continue to shrink by a further ~900 m, even without further climate warming. In the western Lenglongling Mountains, assuming that the glaciers are in a steady state and the Equilibrium-line altitudes(ELAs)remain similar, there will be only 46 glaciers left, covering a total area of 19.2 km~2, in other words, only 22.3% of the glaciers area in 1972.  相似文献   

19.
Hydrogen and oxygen isotopes in precipitation have been widely used as effective traces to investigate hydrological processes such as evaporation and atmospheric moisture source. This study analyzed δD and δ~(18)O of precipitation in continuous event-based samples at three stations of Pailugou Catchment from November 2012 to December 2013. The δ~(18)O and δD values ranged from-32.32‰ to +3.23‰ and from-254.46‰ to +12.11‰, respectively. Results show that the δ~(18)O displayed a distinct seasonal variation, with enriched values occurring in summer and relatively depleted values in winter, respectively. There was a statistically significant positive correlation between the δ~(18)O and δD values and local surface air temperature at all the three stations. The nearest Global Network of Isotopes in Precipitation(GNIP) station(Zhangye), compared to the Meteoric Water Lines for this study, showed the obvious local evaporation effects with lower intercept and slope. Additionally, d-excess(δD- 8δ~(18)O) parameter in precipitation exhibited an anti-phase seasonal variability with the δ~(18)O. The 96-h back trajectories for each precipitation event using Hybrid Single Particle Lagrangian Integrated Trajectory(HYSPLIT) model indicated a dominant effect of westerly air masses in summer and the integrated influence of westerly and polar air masses in winter.  相似文献   

20.
In 1999, Diexi paleo-dammed lake(2349 m a.s.l.) was discovered around Diexi town along the Minjiang River in Sichuan province. Diexi is located where the eastern edge of the Tibetan Plateau and the Sichuan Basin meet. The dammed lake was formed during the Last Glacial Maximum of the Late Pleistocene(~30,000 years ago) and began to empty about 15,000 years ago. The lacustrine sediments(up to 240 m thick) preserve abundant paleoenvironment information. In this paper, a mass of oxygen isotopes and 14 C dating from drilled cores are analyzed and discussed. The δ18 O curve on the paleo climate from this section is comparable with the coeval paleo climatic curves of ice cores and karsts in China and others. Furthermore, the physical model testing has confirmed that the disturbed zones in the core are caused by strong earthquakes occurred at least 10 times, which implies strong crustal deformation, as an important driving force, affecting climate change. This study provides a new window to observe East Asian monsoon formation, paleoenvironmental evolution and the global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号