首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gold mineralization associated with quartz reefs is related to the structural history of the Early Devonian, Walhalla Group. These reefs are situated in the Walhalla Synclinorium, developed during the Middle to Late Devonian Tabberabberan Orogeny. A pervasive north‐south‐trending axial planar cleavage and two styles of folding were produced during regional east‐west compression. The first are upright, open to close folds with sub‐horizontal fold axes. The second are plunging inclined, close to tight folds with fold axes that plunge steeply to the north and south. An extensional event is associated with the emplacement of the Woods Point Dyke swarm and a set of normal faults that offset all earlier structures. High‐angle reverse faults, which post‐date the folding and the emplacement of the dykes, were utilized as conduits for hydrothermal fluids and preferentially localize mineralization to laminated quartz veins. En echelon vein arrays formed during initial stages of reverse faulting became deformed during prolonged shearing to produce ptygmatic veins. Laminated quartz veins within high‐angle reverse faults contain arsenopyrite and pyrite in vein margins and gold in fractures that cross‐cut continuous quartz crystals. Gold, galena, chalcopyrite and sphalerite may also be deposited adjacent to and within fractured arsenopyrite and pyrite. Late‐stage, cross faults developed in a regime of north‐south compression and post‐date the laminated quartz veins and mineralization.  相似文献   

2.
Upper crustal strike-slip duplexes provide an excellent opportunity to address the fundamental question of fault zone development and strain partitioning in an evolving system. Detailed field mapping of the Mesozoic Atacama fault system in the Coastal Cordillera of Northern Chile documents the progressive development of second- and third-order faults forming a duplex at a dilational jog between two overstepping master faults: the sinistral strike-slip, NNW-striking, Jorgillo and Bolfin faults. These are constituted by a meter-wide core of foliated S-C ultracataclasite and cataclasite, flanked by a damage zone of protocataclasite, splay faults and veins. Lateral separation of markers along master faults is on the order of a few kilometers. Second-order, NW-striking, oblique-slip subsidiary fault zones do not show foliated ultracataclasite; lateral sinistral separations are in the range of  10 to 200 m with a relatively minor normal dip-slip component. In turn, third-order, east–west striking normal faults exhibit centimetric displacement. Oblique-slip (sinistral–normal) fault zones located at the southern termination of the Bolfin fault form a well-developed imbricate fan structure. They exhibit a relatively simple architecture of extensional and extensional-shear fractures bound by low displacement shear fractures. Kinematic analysis of fault slip data from mesoscopic faults within the duplex area, document that the NW-striking and the EW-striking faults accommodate transtension and extension, respectively. Examination of master and subsidiary faults of the duplex indicates a strong correlation between total displacement and internal fault structure. Faults started from arrays of en echelon extensional/extensional-shear fractures that then coalesced into throughgoing strike-slip faults. Further displacement leads to the formation of discrete bands of cataclasite and ultracataclasite that take up a significant part of the total displacement. We interpret that the duplex formed by progressive linkage of horsetail-like structures at the southern tip of the Bolfin fault that joined splay faults coming from the Jorgillo and Coloso faults. The geometry and kinematics of faults is compared with that observed in analog models to gain an insight into the kinematic processes leading to complex strike-slip fault zones in the upper crust.  相似文献   

3.
Carbonate-limonite veins formed in steeply dipping fractures in the upper few hundred metres of basement greywacke in the actively rising Southern Alps of New Zealand. The veins are found commonly in extensional fractures near to, but not in, major faults associated with mountain uplift, and/or sinistral faults which bound mountain ranges. Some of the veins contain sulphides and minor gold deposited as part of incrementally formed fracture fillings. Oxygen isotope ratios of calcite range widely between +6 and +24‰, and calcite δ13CPDB=−5.5 to −11.5‰. The veins formed from isotopically exchanged crustal fluid with a probable meteoric water component. The shallow vein network is the near-surface expression of a tectonically induced hydrothermal system which has deposited gold-bearing veins with a mesothermal style over several vertical kilometres. This vein network has formed in a dilatational zone of the oblique collisional orogen where near-vertical fractures tap deep-sourced fluids. Similar processes acting at the southern end of the Southern Alps in the Miocene resulted in locally rich mesothermal quartz-gold veins. Received: 21 May 1997 / Accepted: 30 June 1998  相似文献   

4.
Large NE–SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline–syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.  相似文献   

5.
Located in the centre of the Argentinean Patagonia between 46° and 49°S, the Deseado Region represents the foreland domain of the Southern Patagonian Andes. Its geology is characterized by thick Mesozoic sequences which, at its eastern sector, present a Mesozoic and Cenozoic geologic evolution which has been strongly determined by the development of three major tectonic phases. The present research is based on field geological mapping, interpretation of seismic and aeromagnetic data, as well as satellite image analysis. This approach has allowed us to identify and characterize the deformation that occurred throughout Jurassic, Cretaceous and Miocene times. We interpret that the most relevant structural features are the result of normal faulting generated as a response to the Jurassic rifting stage. These extensional features have strongly influenced the subsequent geometry and distribution of younger Cretaceous and Cenozoic structures.The Jurassic extensional deformation, which affected major areas of Southern Gondwana, is the product of a major intra-continental rifting stage which was accompanied by synkinematic volcanism. This tectonic regime is characterized by SW-NE directed extension that generated major oblique WNW trending faults accommodating regional dextral-extension. In the study area, this tectonic regime is inferred from the geometries of major fault systems interpreted from available seismic reflection data, as well as from the spatial distribution and orientation of the extensional fracturing associated with the opening of hybrid and dilatational siliceous epithermal Au–Ag veins.Following the Jurassic rifting stage, a more restricted Cretaceous -post-Neocomian-compressional tectonic phase took place. Throughout this period, we interpret the previously formed Jurassic extensional structures to have been reactivated under sinistral transpression. Deformation during this period generated sinistral-reverse WNW belts of deformation, which accommodated reverse faulting, imbricate thrusts, dextral and sinistral R1 and R2 shears and disharmonic folds due to a buttress effect.Under the post-Oligocene Andean regime, W–E directed compression acted on previously-formed N to NNE-oriented normal faults. Compression and shortening uplifted a series of narrow and sub-meridional ranges which run as a 200 km long inversion-related tectonic front along the Patagonian foreland. Between 47°11′ and 48°40′S, one of these NNE ranges divides the entire Deseado Region into two distinctive structural domains. Whilst the western domain presents dominant NNW morphotectonic features, that to the east appears highly dominated by WNW fabrics of Jurassic and Cretaceous age.The structural features of the Eastern domain appear to extend further north of the Deseado Region towards the vicinity of the San Jorge Gulf. This WNW-trending belt hosts pre-Upper Cretaceous rocks and pre-drift basement rocks which include igneous Paleozoic metamorphic rocks and Permian to Triassic sedimentary units.The Deseado region’s epithermal Au–Ag Jurassic vein systems result from the infilling and deposition of low temperature hydrothermal fluids within dilatational and hybrid structures. These spectacular vein systems are compatible with the regional SW-NE extension direction controlled by the Jurassic intra-continental rifting of southern Gondwana. Dilatational and hybrid veins are preferentially hosted by fractures in the Jurassic volcanic rocks, while the veins located within the pre-volcanic basement preferentially infill normal faults. Finally, most of these epithermal vein fields where exhumed during a moderate phase of inversion during Cretaceous times.  相似文献   

6.
东准噶尔蒙西斑岩铜钼矿床脉体特征及其形成机制   总被引:5,自引:1,他引:4  
蒙西斑岩铜钼矿床位于东准噶尔伊吾县琼河坝花岗岩北侧,以发育细脉、网脉状矿化为特征。脉体类型多样,包括石英脉、石英硫化物脉和硫化物脉等。根据脉体力学成因机制,其又可划分为水压破裂充填脉和构造破裂充填脉。构造破裂充填脉体按破裂形成的位错特征有正断与逆断两种。地表石英脉产状陡立,明显受断裂控制。脉体体积分数统计结果显示流体富集区呈向北缓倾的带状分布于深100~400m范围内,并与矿化富集带有较好的对应关系。脉体富集带内,脉体以共轭形式存在,一组为倾角较小的逆断破裂充填脉,另一组为倾角较大的正断破裂充填脉,他们可能为缓倾逆冲剪切带的次级破裂与充填脉,即富矿带内脉体是沿矿区低角度逆冲断裂次级破裂面充填的。矿区地表及深部(400m以下)脉体以陡立为主,矿化较弱。矿区流体的运移具先沿水压直立破裂往上运移,进入剪切带后沿剪切带次级破裂侧向和向上运移,并在剪切带中富集成矿。低温矿物组合脉体穿切高温矿物组合脉体的特征说明脉体形成过程矿区处于隆升构造环境,这对斑岩铜矿成矿有利。  相似文献   

7.
New 40Ar/39Ar geochronological data suggest orogenic gold mineralisation at the Ballarat East deposit, southeast Australia, occurred in three main episodes at ca. 445–435 Ma, ca. 420–415 Ma and ca. 380–370 Ma. The gold mineralisation is localised in muscovite-bearing quartz and quartz-carbonate veins hosted in the steep faults (70–90°), on limbs of tight and isoclinal folds in an Ordovician turbidite sequence, and within west-dipping (≤45°) faults, historically known as leather jacket lodes. Initiation of the ≤45° faults that are confined to fold culminations, begins at ca. 445 Ma, with peak metamorphic conditions at 440 Ma. The earliest vein sets (V1), were emplaced on limb thrusts at ca. 445–435 Ma and are characterised by arsenopyrite-dominated quartz veins. These V1 veins parallel arsenopyrite-rich shale units, historically referred to as ‘indicator beds’. Both the steep and ≤45° faults were reactivated during fold amplification with deposition of the V2 auriferous veins at ca. 420–415 Ma. A later set of auriferous veins (V3–V4) with ages of 380–370 Ma, dominated by pyrite-sphalerite-galena-white-mica quartz-(V3) or carbonate-rich (V4) veins are predominantly associated with reactivation of the ≤45° west-dipping faults. This new geochronological data constrains the local kinematic history of the Ballarat East deposit and has regional implications. The V1–V2 vein development appears to be synchronous across the entire western section of the Lachlan Orogen, where previous studies have suggested that initial gold mineralisation was linked to orogenesis at ∼440 Ma, as a result of metamorphic devolatilisation reactions in the lower crust. In contrast, a close spatial and temporal relationship exists between the felsic dykes and the mineralisation recognised in the V3–V4 veins. The deformation that accompanies V3–V4 vein development is attributed to small, localised events during east-west shortening, utilising pre-existing fold and fault structures. The origin of the fluids producing the V3–V4 veins may be metamorphic devolatilisation associated with widespread felsic magmatism that occurred at this time across central Victoria.  相似文献   

8.
花岗岩中先存裂缝系统的识别、评价与建模,关系到干热岩热能提取的有效性、规模性、安全性,是地热能勘查、开采的难点与关键点。本文对共和盆地东北部干热岩勘察开采示范区紧邻的当家寺岩体开展了详细地质野外调查及综合分析,观测了花岗岩体内裂缝的产状、类型和样式,详细解剖了岩体裂缝系统组成及空间分布,探讨了构造作用对裂缝系统形成的时限、动力学成因的控制。研究发现其宏观裂缝系统以构造破裂缝为主,同时还发育少量的成岩缝。构造缝主要由小尺度断裂、火成岩脉、石英脉、方解石脉及多期节理缝共同构成;在岩体不同分区部位的断裂、脉体及节理等裂缝体系发育差异明显,脉体、节理受临近断层控制,其三者走向具有较好的相似性,且存在明显的多期次性。根据产状、交切关系及应力机制可以划分为5种构造破裂类型:单一应力场形成的节理系、叠加先期形成单向滑移的共轭节理组、持续走滑剪切形成的雁列石英脉与共轭节理组合、拉张形成的岩脉及脉内雁列节理组、多期次叠加形成的网状裂缝。宏观裂缝系统的形成与三叠纪末期碰撞后伸展、侏罗-白垩纪区域性隆升、渐新世-中新世中期走滑断裂活动、中新世晚期以来走滑-逆冲转换等有关。现存大量共轭剪节理形成应力场与现今最大主应力方向(NE)有差异,反映了古走滑剪切构造作用的影响。宏观裂缝系统的差异分布,不仅对花岗岩型干热岩热储层规模、质量、分布有约束,也控制着后期的建储与改造。  相似文献   

9.
Abstract Analysis of the variations in the three-dimensional structural forms of the tungsten veins in the Xihuashan tungsten district has proved that echelon structures of the veins were formed by the changes in stress direction that caused the breakdown of the individual single veins, and are different from the echelon faults formed in shear zones. Echelon structures of the veins were produced near the lithologic boundary as a result of the rotation of stress direction in their neighbourhood and their control of vein distribution. The change in the echelon pattern caused by the variation in the attitude of lithologic boundary surface in the district is an interesting structural phenomenon. The echelon structures also reflect the variation characteristics of adjacent veins in the process of their propagation.  相似文献   

10.
Various tectonic features are present in the Meso-Cenozoic basin units of the Sabina region (Central Apennines, Italy): Mio-Pliocene northeasterly verging thrusts are followed by Plio-Pleistocene, N-S oriented right-lateral strike-slip faults. Stable isotope geochemistry and examination of meso- and microstructures show that strain conditions differed through the course of tectonic history. Carbon and oxygen isotope analyses of the calate-filled extensional fractures, the sigmoidal veins present between stylolitic cleavage surfaces, and fault plane surfaces with differing motion, demonstrate those different geneses.
The "C/'" C of the older calcite-filling fractures (present both in the thrust and the strike-slip systems) suggests a deposition from shallow, fresh water circulation. Furthermore, the calcite fill of en echelon systems, that occur in the southernmost Plio-Pleistocene units, is clearly the result of a more recent, right-lateral strike-slip movement, connected with shallow water circulation within Mesozoic limestones.
The sigmoidal vein fills are derived from solid-state pressure solution processes which were the result of strike-slip movement. The deformation pattern related to the older thrust system is similar, but less intense; this also demonstrates general recrystallization processes in a closed system.
This suggests that the total shortening of the deformed sections is lower than that obtained on the basis of solution on stylolitic planes, because a sigruficant volume of dissolved carbonates remained in the system.
Stable isotope analysis also confirms that the deformational history of strongly cleaved rocks in the Sabina region took place in two phases and that extensional fractures formed before stylolithic planes, as suggested by structural and field observations.  相似文献   

11.
The Penola Trough is an intensely faulted northwest – southeast-trending half-graben structure. It is bound to the south by the major listric Hungerford/Kalangadoo Fault system. Several large prominent faults observed in the Penola Trough show offset of basement at depth. These basement-rooted faults have exerted significant controls on the geometry of smaller intra-rift faults throughout the entire structural history of the area. Faulting of the basement was initiated during the initial rift event of the Late Jurassic – Early Cretaceous. Faulting first propagated through a pre-existing basement fabric oblique to the north – south extension direction prevalent during this time. This resulted in the formation of the Hungerford/Kalangadoo and St George Faults with a northwest – southeast and north-northeast – south-southwest trend, respectively. A series of east – west-trending basement faults subsequently initiated perpendicular to the north – south extension direction as extensional strain increased in magnitude. Significant displacement along these basement-rooted faults throughout the initial rift event was associated with the formation of a complex set of intra-rift faults. These intra-rift faults exhibit a broadly east – west orientation consistent with the interpreted north – south extensional direction. However, this east – west orientation locally deviates to a more northwest – southeast direction near the oblique-trending St George Fault, attributed to stress perturbation effects. Many of the intra-rift faults die out prior to the end of the Early Cretaceous initial rift event while displacement on basement faults continued throughout. Faulting activity during the Late Cretaceous post-rift fault event was almost exclusively localised onto basement faults, despite a significant change in extension direction to northeast – southwest. A high-density, en échelon array of northwest – southeast-trending fault segments formed directly above the St George Fault and the large east – west-trending basement faults contemporaneously reactivated. Seismic variance data show that post-rift fault segments that are hard-linked to the St George Fault at depth have propagated through near-surface units. Non-basement-linked post-rift fault segments that lie away from the St George basement have not. This suggests that recent fault activity has continued to occur preferentially along basement faults up to relatively recent times, which has significant implications for fault seal integrity in the area. This is empirically validated by our structural analysis of fault-dependent hydrocarbon traps in the area, which shows that partially breached or breached hydrocarbon columns are associated with basement faults, whereas unbreached hydrocarbon columns are not.  相似文献   

12.
Microtectonic study of brittle structures in the József Hill Cave, Budapest, highlights the connection between different phases of fracturing and cave formation. E-W trending dextral faults (second order Riedels) and NW-SE oriented tension fractures developed in a ENE-WSW trending dextral shear zone as a result of WNW-ESE directed compression. Ascending thermal water dissolved cave galleries and created barite veins along these fractures. The first stage of cave formation as inferred from timing of fracturation from the regional stress field was Oligocene-Early Miocene. Between the Middle Miocene and Quaternary new N-S to NE-SW trending normal faults were formed by ESE-WNW extension. Pleistocene differential uplift resulted in the reactivation and enlarging of fault zones, dominantly the E-W trending older Riedels. These recent tectonic events enhanced the original en echelon geometry of the older cave corridors.  相似文献   

13.
Two distinct types of en-echelon vein arrays are recognised, those which form in active ductile shear zones and those which form by the primary nucleation of fractures not connected with active shear zones. The theoretical relation between vein width and orientation in a zone undergoing progressive simple shear is examined and compared with similar data from natural arrays. It is found that many veins have undergone dilation prior to rotation during simple shear, showing that shearing occurred after the en-echelon array was established. Generally, all strongly sigmoidal veins occur in arrays in which pressure solution was also active. In non-sigmoidal arrays there is a clear relation between the amount of overlap of adjacent veins and the orientation of the veins relative to the zone containing them. Two different patterns of dilation and distortion of arrays in which pressure solution was not active are described. It is concluded that primary en-echelon veins originated as tensile fractures, whilst en-echelon veins formed in active shear zones originated as shear fractures.  相似文献   

14.
The Rosario–Bunawan district is situated about 200 km north of Davao City, the capital of the Mindanao Island, Southern Philippines. Gold is produced from the Co-O mine, containing about 2,034,000 t of ore at 10.9 g/t Au, and in numerous small-scale operations by local miners. Epithermal gold mineralization in the Rosario–Bunawan district and the Co-O mine is confined to narrow (0.2–4 m) low-sulfidation quartz–chalcedony–calcite veins in volcanic and volcaniclastic wall rocks. Three major vein orientations are distinguished: (1) the NNW–SSE-trending set with a sinistral strike-slip sense of deformation (Philippine Fault trend); (2) the ENE–WSW-trending dextral strike-slip set (Palawan trend) and associated veins in the Riedel geometry; and (3) the WNW–ESE-trending conjugate set (Co-O trend). Three structural stages are defined: (1) extensional shear or shear veins formed in the Co-O, the Philippine Fault, and Palawan trends during regional NW–SE compression and near vertical vein opening (D1); (2) reactivation of veins in the Philippine Fault, veins associated with the Palawan, and, to a lesser extent, the Co-O trends during E–W compression and near horizontal N–S-oriented vein opening (D2). New D2 extensional shear or shear veins formed in the Philippine Fault, and structures associated with the Palawan and associated Riedel trends; (3) the D3-stage block faulting subsequently displaced all of the auriferous veins. The auriferous Rosario–Bunawan district is situated between two splays of the Philippine Fault, which acted as a lateral ramp system during the oblique convergence of the Philippine Sea plate and the Eurasian plate. The oblique convergence resulted in a change from a compressional (D1) to a transpressional (D2) regime, which was a prerequisite for the two-stage vein opening and hydrothermal mineralization, leading to an economic gold enrichment. D1 compressional tectonics may have caused an elevated geothermal gradient in shallow crustal levels, forming the heat source for the fluid plumbing system, which is at variance to typical epithermal deposits formed in extensional zones. D2 thrusting of a limestone nappe together with syn-tectonic diorite intrusions may have further increased the geothermal gradient, maintaining the fluid plumbing system. The limestone nappe may, at the same time, have represented an aquitard forcing the hydrothermal fluids into the volcanic and volcaniclastic wall rocks, which is regarded as critical for the two-stage gold mineralization in the Rosario–Bunawan district.  相似文献   

15.
Gold mineralisation in the White River area, 80 km south of the highly productive Klondike alluvial goldfield, is hosted in amphibolite facies gneisses in the same Permian metamorphic pile as the basement for the Klondike goldfield. Hydrothermal fluid which introduced the gold was controlled by fracture systems associated with middle Cretaceous to early Tertiary extensional faults. Gold deposition occurred where highly fractured and chemically reactive rocks allowed intense water–rock interaction and hydrothermal alteration, with only minor development of quartz veins. Felsic gneisses were sericitised with recrystallisation of hematite and minor arsenic mobility, and extensively pyritised zones contain gold and minor arsenic (ca 10 ppm). Graphitic quartzites (up to 5 wt.% carbon) caused chemical reduction of mineralising fluids, with associated recrystallisation of metamorphic minerals (graphite, pyrrhotite, pyrite, chalcopyrite) in host rocks and veins, and introduction of arsenic (up to 1 wt.%) to form arsenopyrite in veins and disseminated through host rock. Veins have little or no hydrothermal quartz, and up to 19 wt.% carbon as graphite. Late-stage oxidation of arsenopyrite in some graphitic veins has formed pharmacosiderite. Gold is closely associated with disseminated and vein sulphides in these two rock types, with grades of up to 3 ppm on the metre scale. Other rock types in the White River basement rocks, including biotite gneiss, hornblende gneiss, pyroxenite, and serpentinite, have not developed through-going fracture systems because of their individual mineralogical and rheological characteristics, and hence have been little hydrothermally altered themselves, have little hydrothermal gold, and have restricted flow of fluids through the rock mass. Some small post-metamorphic quartz veins (metre scale) have been intensely fractured and contain abundant gold on fractures (up to 40 ppm), but these are volumetrically minor. The style of gold mineralisation in the White River area is younger than, and distinctly different from, that of the Klondike area. Some of the mineralised zones in the White River area resemble, mineralogically and geochemically, nearby coeval igneous-hosted gold deposits, but this resemblance is superficial only. The White River mineralisation is an entirely new style of Yukon gold deposit, in which host rocks control the mineralogy and geochemistry of disseminated gold, without quartz veins.  相似文献   

16.
哈南油田构造断裂十分复杂,受伸展构造体系裂缝及断层的控制,形成有与断层共生的裂缝组系和断层活动派生的裂缝组系。裂缝与NE向断层平行或与其斜交或横交。裂缝力学性质表现为张裂缝、剪裂缝和张剪裂缝,以张裂缝为主。无论是何种力学性质的裂缝,如果裂缝没有被充填,则会对油气聚集和开发产生影响。有效裂缝可以为储层提供油气运移通道和油气储集空间,在油田开发中,裂缝与断层组成裂缝网络形成的断裂导水,会致使注水层系混乱,形成非同层注水局面,影响着层系开发的效果。  相似文献   

17.
Structural and paleostress analyses carried out on a kilometre-sized outcrop of allochthonous shallow-water carbonate units of the southern Apennines allowed us to unravel a superposed deformation pattern associated with plate convergence. The reconstructed tectonic evolution involves: (i) early extensional faulting and fracturing associated with bending of the foreland lithosphere during forebulge and foredeep stages (including the development of both ‘tangential’ and ‘radial’ normal fault and tensile fractures; Early-Middle Miocene); (ii) large-scale thrusting and folding (Late Miocene); (iii) transcurrent faulting (including two distinct sub-stages characterized by different remote stress fields; Pliocene-Early Pleistocene), and (iv) extensional faulting (late Quaternary). Stage (i) normal faults – generally occurring as conjugate sets – and related fractures and veins are variably deformed and overprinted by later horizontal shortening. Despite having experienced such a long and complex structural history, the studied carbonates are characterized by a ‘background’ fracture network – including two joint/vein sets orthogonal to each other and to bedding – that appears to be associated with the early fault sets that formed during the first (foredeep/forebulge-related) deformation stage. Therefore, away from younger (Late Miocene to Quaternary) fault zones, the permeability structure of the studied carbonates appears to be essentially controlled by the early, inherited fracture network. As a similar fracture network is likely to characterize also the buried Apulian Platform carbonates, representing the reservoir units for major oil fields in southern Italy, our results also bear possible implications for a better understanding of fluid flow in the subsurface and related hydrocarbon production.  相似文献   

18.
The Diamante-Terranova Unit (DIATU), in the Calabrian Arc of southern Italy, is part of an ophiolitic sequence involved in a high pressure/low temperature event (P=8 kbar; T =400 °C) followed by re-equilibration at greenschist facies conditions (P=3 kbar; T =300 °C). The rocks contain two types of quartz–calcite veins – an earlier generation of deformed, folded and faulted veins formed during or before subduction, and a later set of planar, undeformed veins formed during exhumation of the DIATU. The earlier folded quartz–calcite veins contain regularly shaped aqueous inclusions as well as inclusions with a highly irregular dendritic texture. The later planar veins contain only regularly shaped aqueous inclusions similar to those in the earlier veins. In both vein types, all inclusions are demonstrably secondary in origin. Regularly shaped inclusions from both vein types are low salinity (0–5 wt% NaCl). Most contain liquid and vapour and homogenize to the liquid (Th 135–180 °C), whereas others contain only liquid at room temperature. Both the two-phase and monophase inclusions occur in the same fractures and are thought to record the same trapping event, with the monophase inclusions remaining metastable liquid at room temperature. No microthermometric data could be obtained from the dendritic inclusions in the earlier folded veins. Inclusions with the highly irregular dendritic texture found in the earlier veins are similar to those produced experimentally during laboratory-induced deformation of synthetic inclusions in quartz under conditions of internal underpressure, simulating either isobaric cooling or isothermal compression. The occurrence of inclusions with the dendritic texture in the earlier folded veins, and their absence from the later planar veins, suggests that the earlier veins formed before or during subduction and were folded and faulted in a compressional environment and their contained fluid inclusions were modified to produce the dendritic texture. During later uplift of the DIATU, planar veins containing regularly shaped aqueous inclusions formed and some of the fluids forming these veins were also trapped as secondary inclusions in the earlier folded veins. The results of this study provide convincing evidence that inclusions with a highly irregular dendritic morphology represent early inclusions that have survived prograde conditions in a high pressure/low temperature metamorphic environment (but have been texturally modified). The high pressure/low temperature ‘implosion’ texture is preserved over geological time, even after being overprinted by internal overpressure conditions generated during retrograde decompression. We suggest that inclusions that have survived prograde metamorphism are common in high pressure/low temperature rocks, but are often not identified as such due to their morphology which makes their recognition difficult.  相似文献   

19.
The western Liaodong (辽东) Bay subbasin displays examples of segment,linkage of extensional fault,and fault-related folds.The Liaoxi (辽西) extensional fault system consists of a series of NNE- and NE-trending segments that were linked through relay ramps.The fault hanging walls are characterized by a series of en echelon synclines with axial traces sub-parallel to the faults.The synclines are doubly plunging located on the hanging wall of normal faults,with the strata dip sub-parallel to the fault.These folds result from along-strike displacement variations of the individual fault segments,as well as from extensional fault-related folding.In the study area,the synclines are separated by transverse intra-basin highs and relay ramps that formed where segment linkage occurred.These hanging wall synclines and their relation to fault displacement variations indicate that they are formed by extensional fault-related fold.  相似文献   

20.
The Ponts valley syncline is a closed basin within the Neuchâtel Jura fold and thrust belt. This syncline, apparently uplifted to an altitude of around 1000m is closed in the SW by an anticline with an oblique WNW-ESE direction. The 3-D geometry of the entire structure is examined and unfolded in detail. This syncline is filled with an unexpectedly thick series (~400m) of Tertiairy Molasse, as revealed by the CS-AMT (controlled source audio-magneto-telluric) and a reflexion seismic line. The latter also documents internal compressional structures within the well layered upper freshwater Molasse series. The 3-D configuration of the top Malm limestones has been constructed for the entire area based on new detailed geologic and structural mapping, hundreds of dip measurements, as well as geophysical data. The Malm marker bed displays three distinct types of structures: 1) Thrust faults with shallow dips, vergent to the NW and/or SE that are associated with folds interpreted as fault bend folds; 2) high angle inverse faults, mostly with a SE vergence are interpreted as inverted normal faults, inherited from a modest Oligo-Miocene extensional phase in a NW-SE direction; and 3) tear faults with a dominant N-S direction, probably inherited from an Oligocene extensional phase in association with the opening of the Rhine and Bresse grabens. Tear faults accommodate important lateral changes in fold geometry during the Late Miocene main folding-and-thrusting phase. All deformations are easily explained in an entirely thin-skinned fashion, taking place above a thick detachment horizon within Triassic evaporite series.Manuscrit reçu le 31 mars 2003 Révision acceptée le 23 juin 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号