首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Between the Qiangtang Block and Yalung-Zangpo Suture Zone in the south-central Tibetan Plateau, the following geological units and suture zones have been identified from south to north: the Gangdese Granitic Belt, the Lhasa Block, the Nyainqentanghla Shear Zone, the Dangxiong–Sangxiong Tectono-granitic Belt and the Bangong–Nujiang Suture Zone. To better constrain the tectonic evolution and cooling histories of these units, 40Ar/39Ar muscovite, biotite and K-feldspar, as well as apatite fission track dating and thermochronological analysis have been carried out. The analytical results indicate that the south-central Tibetan Plateau, with the exception of the Nyainqentanghla Shear Zone, provides a record of three cooling stages at 165–150, 130–110 and ∼45–35 Ma. Fission-track data modelling also indicates that the stages of cooling were different in the different tectonic belts or blocks. Very different cooling phases occurred in the south-central Tibetan Plateau, compared with southern Tibet, as well as along the Yalung–Zangpo Suture Zone. There is no thermochronological evidence to indicate that the south-central part of Tibetan Plateau was influenced by the underthrusting of Indian Plate.The three-stage cooling history and the stages of tectonic exhumation were controlled completely by the closure of the Bangong–Nujiang Suture Zone along its eastern segment during Middle–Late Jurassic (165–150 Ma) and its western segment in the Early–Late Cretaceous (130–110 Ma), as well as by the collision between the Indian and Asian plates in the Paleogene (45–35 Ma).  相似文献   

2.
We investigate the Mesozoic–Cenozoic thermal history of the Daxi region (central SE South China Block) to evaluate the influence of the subduction of the Paleo-Pacific oceanic plate beneath the SE South China Block along the block's southeast margin on the tectonothermal evolution of the upper plate. We apply a multi-chronological approach that includes U-Pb geochronology on zircon, 40Ar/39Ar dating on muscovite and biotite from granitic rocks as well as fission-track and (U-Th-Sm)/He analyses on zircon and apatite from granitic and sedimentary rocks. The Heping granite, located in the Daxi region, has a magmatic age of ca. 441 Ma. The biotite 40Ar/39Ar ages of ca. 193 Ma for the Early Jurassic Shibei granite and ca. 160 Ma for the Late Jurassic Fogang granite, respectively, reflect magmatic cooling. The Triassic Longyuanba granite yielded a muscovite 40Ar/39Ar age of ca. 167 Ma, recording heating to ≥ 350 °C induced by nearby intrusion of Middle Jurassic granites. Zircon fission-track and (U-Th-Sm)/He ages from Lower Carboniferous–Lower Jurassic sandstones (140–70 Ma) record continuous cooling during the Cretaceous that followed extensive Middle–Late Jurassic magmatism in the Daxi region. Cretaceous cooling is related to exhumation in an extensional tectonic setting, consistent with lithospheric rebound due to foundering and rollback of the subducted Paleo-Pacific oceanic plate. Apatite fission-track (53–42 Ma) and (U-Th-Sm)/He ages (43–36 Ma), and thermal modelling document rapid cooling in the Paleocene–Eocene, which temporally coincides with continental rifting in the SE South China Block in the leadup to the opening of the South China Sea.  相似文献   

3.
Eclogites are high-pressure/low-temperature metamorphic rocks and are regularly considered as an indicator of ancient subduction zones. Eclogites have recently been found in the North Shahrekord metamorphic complex (NSMC) of the Sanandaj–Sirjan zone and represent the only ones within the Zagros orogen. Their occurrence and timing are important for the reconstruction of convergence history and geodynamic evolution of the Neo-Tethys Ocean and Zagros orogen. White mica from the eclogites and an associated paragneiss give 40Ar/39Ar ages ranging from 184.3 ± 0.9 to 172.5 ± 0.8 Ma and represent the age of cooling through the closure temperature for phengitic white mica. The NSMC also comprises the ductile NW–SE trending North Shahrekord Shear Zone (NSSZ), which is located in the northeast of the Main Zagros Reverse Fault. The NSMC consists mainly of various metasedimentary rocks, orthogneiss and small-sized bodies of metabasic rocks containing also the eclogites. Furthermore, pre-metamorphic granitoids represent part of the NSMC. The North Shahrekord eclogites are composed of garnet, omphacite, zoisite, Ca–Na amphibole, phengite and rutile. The highly deformed and metamorphosed granitoids yield hornblende and biotite 40Ar/39Ar ages 170.1 ± 0.9 Ma and 110.7 ± 0.3 Ma, respectively. According to the new age dating results of eclogites, the rocks are the oldest high-pressure metamorphic rocks in the Zagros orogenic belt testifying the Neo-Tethys Ocean subduction. Our new data indicate that the eclogites formed during Early Jurassic subduction of a Panafrican microcontinental piece from the northern margin of the Neo-Tethyan Ocean under the Central Iranian microplate. We suggest that initiation of subduction in Neo-Tethyan Ocean occurred a few million years prior to 184 Ma (Pliensbachian stage).  相似文献   

4.
The Jiehe gold deposit, containing a confirmed gold reserve of 34 tonnes (t), is a Jiaojia-type (disseminated/stockwork-style) gold deposit in Jiaodong Peninsula. Orebodies are hosted in the contact zone between the Jurassic Moshan biotite granite and the Cretaceous Shangzhuang porphyritic granodiorite, and are structurally controlled by the NNE- to NE-striking Wangershan-Hedong Fault. Sulphide minerals are composed predominantly of pyrite with lesser amounts of chalcopyrite, galena, and sphalerite. Hydrothermal alteration is strictly controlled by fracture zones, in which disseminated sulfides and native gold are spatially associated with pervasive sericitic alteration. Mineralogical, textural, and field relationships indicate four stages of alteration and mineralization, including pyrite-bearing milky and massive quartz (stage 1), light-gray granular quartz–pyrite (stage 2), quartz–polysulfide (stage 3) and quartz–carbonate (stage 4) stages. Economic gold is precipitated in stages 2 and 3.The Jiehe deposit was previously considered to form during the Eocene (46.5 ± 2.3 Ma), based on Rb-Sr dating of sericite. However, 40Ar/39Ar dating of sericite in this study yields well-defined, reproducible plateau ages between 118.8 ± 0.7 Ma and 120.7 ± 0.8 Ma. These 40Ar/39Ar ages are consistent with geochronological data from other gold deposits in the region, indicating that all gold deposits in Jiaodong formed in a short-term period around 120 Ma. The giant gold mineralization event has a tight relationship with the extensional tectonic regime, and is a shallow crustal metallogenic response of paleo-Pacific slab subduction and lithospheric destruction in the eastern NCC.  相似文献   

5.
《Precambrian Research》2007,152(3-4):93-118
George V Land (Antarctica) includes the boundary between Late Archean–Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross–Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar–39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar–39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ∼1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (∼180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro–Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar–39Ar ages from ∼530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.  相似文献   

6.
The island of Seram, eastern Indonesia, experienced a complex Neogene history of multiple metamorphic and deformational events driven by Australia–SE Asia collision. Geological mapping, and structural and petrographic analysis has identified two main phases in the island's tectonic, metamorphic, and magmatic evolution: (1) an initial episode of extreme extension that exhumed hot lherzolites from the subcontinental lithospheric mantle and drove ultrahigh-temperature metamorphism and melting of adjacent continental crust; and (2) subsequent episodes of extensional detachment faulting and strike-slip faulting that further exhumed granulites and mantle rocks across Seram and Ambon. Here we present the results of sixteen 40Ar/39Ar furnace step heating experiments on white mica, biotite, and phlogopite for a suite of twelve rocks that were targeted to further unravel Seram's tectonic and metamorphic history. Despite a wide lithological and structural diversity among the samples, there is a remarkable degree of correlation between the 40Ar/39Ar ages recorded by different rock types situated in different structural settings, recording thermal events at 16 Ma, 5.7 Ma, 4.5 Ma, and 3.4 Ma. These frequently measured ages are defined, in most instances, by two or more 40Ar/39Ar ages that are identical within error. At 16 Ma, a major kyanite-grade metamorphic event affected the Tehoru Formation across western and central Seram, coincident with ultrahigh-temperature metamorphism and melting of granulite-facies rocks comprising the Kobipoto Complex, and the intrusion of lamprophyres. Later, at 5.7 Ma, Kobipoto Complex rocks were exhumed beneath extensional detachment faults on the Kaibobo Peninsula of western Seram, heating and shearing adjacent Tehoru Formation schists to form Taunusa Complex gneisses. Then, at 4.5 Ma, 40Ar/39Ar ages record deformation within the Kawa Shear Zone (central Seram) and overprinting of detachment faults in western Seram. Finally, at 3.4 Ma, Kobipoto Complex migmatites were exhumed on Ambon, at the same time as deformation within the Kawa Shear Zone and further overprinting of detachments in western Seram. These ages support there having been multiple synchronised episodes of high-temperature extension and strike-slip faulting, interpreted to be the result of Western Seram having been ripped off from SE Sulawesi, extended, and dragged east by subduction rollback of the Banda Slab.  相似文献   

7.
Eastern Gondwana was subjected to subduction processes during the Middle-Late Jurassic, but how these processes affected intraplate deformation in eastern Australia is poorly understood. Here we present 40Ar/39Ar, K-Ar, and Rb-Sr geochronological data from illitic clay-bearing fault gouges associated with the northern part of the 200 km long, N-striking, dextral strike-slip, Demon Fault in eastern Australia. We show a major range of geochronological ages at 162.99 ± 0.74–152.1 ± 4.8 Ma, indicating that the Demon Fault was active during the Late Jurassic. This period partially coincides with the Middle-Late Jurassic deposition of widespread ash-fall tuffs in the Clarence-Moreton, Surat, and Eromanga basins. We propose that Middle-Late Jurassic intraplate tectonism in eastern Australia was influenced by subduction processes farther east, which produced extensive calc-alkaline magmatism in New Zealand from ~170 Ma. A global plate reorganisation event, related to the development of Early-Middle Jurassic sea-floor spreading of the Pacific Plate, possibly acted as the driving mechanism responsible for the intensification of magmatism and intraplate faulting in eastern Gondwana.  相似文献   

8.
The Hukeng tungsten deposit, located in the Wugongshan area in central part of Jiangxi province, South China, is a large-scale quartz-vein wolframite deposit. It is hosted in the Hukeng granitic intrusion. Based on the mineral assemblage and crosscutting relationship of the veins, three mineralization stages are identified, including: (1) quartz–wolframite stage, (2) quartz–fluorite–wolframite stage, and (3) quartz–pyrite–sphalerite–wolframite stage.The homogenization temperatures of fluid inclusions in vein quartz vary from 220 to 320 °C, and the salinities are from 0 to 10 wt.% NaCl equiv.; corresponding densities range from 0.7 to 1 g/cm3. These features indicated that the ore-forming fluids in the Hukeng tungsten deposit have medium temperature, low density and low salinity.The δ18OSMOW values of quartz range from 10.8‰ to 14.4‰, with corresponding δ18Ofluid values of 3.7‰ to 7.7‰, and δD values of fluid inclusions of between ? 70‰ and ? 55‰. The combined isotopic data indicate that the ore-forming fluids of the Hukeng tungsten deposit were mainly derived from magmatic water, with some minor input from meteoric water.We have carried out molybdenite Re–Os and muscovite 40Ar/39Ar dating to constrain the timing of mineralization. Re–Os dating of six molybdenite samples yielded model ages ranging from 149.1 ± 2.0 to 150.7 ± 3.7 Ma, with an average of 150.0 Ma. The Re–Os analyses give a well-defined 187Re/187Os isochron with an age of 150.2 ± 2.2 Ma (MSWD = 0.60). Hydrothermal muscovite yields a plateau 40Ar/39Ar age of 147.2 ± 1.4 Ma. 40Ar/39Ar age is in good agreement with the Re–Os age. These ages show that the timing of tungsten mineralization occurred at about 150 Ma. Our new data, when combined with published geochronological results from the other major deposits in this region, suggest that widespread W mineralization occurred in the Late Jurassic throughout South China.  相似文献   

9.
《Chemical Geology》2007,236(1-2):134-166
The ∼ 5000 km3 Fish Canyon Tuff (FCT) is an important unit for the geochronological community because its sanidine, zircon and apatite are widely used as standards for the 40Ar/39Ar and fission track dating techniques. The recognition, more than 10 years ago [Oberli, F., Fischer, H. and Meier, M., 1990. High-resolution 238U–206Pb zircon dating of Tertiary bentonites and Fish Canyon Tuff; a test for age “concordance” by single-crystal analysis. Seventh International Conference on Geochronology, Cosmochronology and Isotope Geology. Geological Society of Australia Special Publication Canberra, 27:74], of a ≥ 0.4 Ma age difference between the U–Pb zircon ages and 40Ar/39Ar sanidine ages has, therefore, motivated efforts to resolve the origin of this discrepancy. To address this controversial issue, we initially performed 37 U–Pb analyses on mainly air-abraded zircons at ETH Zurich and nearly 200 40Ar/39Ar measurements on hornblende, biotite, plagioclase and sanidine obtained at the University of Geneva, using samples keyed to a refined eruptive stratigraphy of the FCT magmatic system.Disequilibrium-corrected 206Pb/238U ages obtained for 29 single-crystal and three multi-grain analyses span an interval of ∼ 28.67–28.03 Ma and yield a weighted mean age of 28.37 ± 0.05 Ma (95% confidence level), with MSWD = 8.4. The individual dates resolve a range of ages in excess of analytical precision, covering ∼ 600 ka. In order to independently confirm the observed spread in zircon ages, 12 additional analyses were carried out at the Berkeley Geochronology Center (BGC) on individual zircons from a single lithological unit, part of them pre-treated by the “chemical abrasion” (CA) technique [Mattinson, J.M., 2005. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220(1–2): 47–66]. Whereas the bulk of the BGC results displays a spread overlapping that obtained at ETH, the group of CA treated zircons yield a considerably narrower range with a mean age of 28.61 ± 0.08 Ma (MSWD = 1.0). Both mean zircon ages determined at ETH and BGC are older than the ∼ 28.0 Ma 40Ar/39Ar eruption age of FCT – even when considering the possibility that the latter may be low by as much as ∼ 1% due to a miscalibration of the 40K decay constants – and is thus indicative of a substantial time gap between magma crystallization and extrusion. The CA technique further reveals that younger FCT zircon ages are likely to be associated with chemically unstable U-enriched domains, which may be linked to crystallization during extended magma residence or may have been affected by pre-eruptive and/or post-eruptive secondary loss of radiogenic lead. Due to their complex crystallization history and/or age bias due to Pb loss, the FCT zircon ages are deemed unsuitable for an accurate age calibration of FCT sandine as a fluence monitor for the 40Ar/39Ar method.Even though data statistics preclude unambiguous conclusions, 40Ar/39Ar dating of sanidine, plagioclase, biotite, and hornblende from the same sample of vitrophyric Fish Canyon Tuff supports the idea of a protracted crystallization history. Sanidine, thought to be the mineral with the lowest closure temperature, yielded the youngest age (28.04 ± 0.18 Ma at 95% c.l., using Taylor Creek Rhyolite [Renne, P.R. et al., 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145: 117–152.] as the fluence monitor), whereas more retentive biotite, hornblende and plagioclase gave slightly older nominal ages (by 0.2–0.3 Ma). In addition, a laser step-heating experiment on a 2-cm diameter feldspar megacryst produced a “staircase” argon release spectrum (older ages at higher laser power), suggestive of traces of inherited argon in the system. Thermal and water budgets for the Fish Canyon magma indicate that the body remained above its solidus (∼ 700 °C) for an extended period of time (> 105 years). At these temperatures, argon volume diffusion is thought to be fast enough to prevent accumulation of radiogenic Ar. If this statement were true, an existing isotopic record should have been completely reset within a few hundred years, regardless of the phase and initial age of the phenocryst. As these minerals are unlikely to be xenocrysts that were incorporated within such a short time span prior to eruption, we suggest that a fraction of radiogenic Ar can be retained > 105 years, even at T 700 °C.  相似文献   

10.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

11.
The PoSen complex, located closely adjacent to the southwestern margin of the Red River shear zone represents the uplifted basement of north Vietnam and may record the motion of the shear zone. However, its thermochronological history has not been fully examined yet. Here we applied U–Pb and 40Ar/39Ar dating methods to reveal its thermochronological history. U–Pb analysis of composite zircon grains by TIMS yielded an average age of 760 ± 25 Ma, clustering on the concordia line. Twelve SHRIMP U–Pb analyses also yielded a consistent result of 751 ± 7 Ma. Along with the geochemical features, the U–Pb dating results suggest the PoSen complex was a late Proterozoic magmatic complex, which could correspond to the Chengjiang orogeny, a widespread thermal event in southwest China. Results of 40Ar/39Ar dating of micas and K-feldspars were in the range of 36–30 Ma, revealing a rapid cooling and exhumation history of the PoSen complex during the late Paleogene. The time span of cooling and exhumation of the PoSen complex is slightly older than the main cooling phases of the Ailao Shan–Red River (ASRR) metamorphic massifs (28–17 Ma), but is synchronous with the early igneous activity stage in the eastern Indo-Asian collision zone of southeast China and north Vietnam. Owing to the ongoing debate about the initiation and offset of the ASRR shear zone, the tectonic force for the late Paleogene cooling of the PoSen complex is still inconclusive. The rapid exhumation of the PoSen complex could be in response to either the detachment of the Neo-Tethyan slab or a transpressional phase of continental subduction along the ASRR shear system in the eastern Indo-Asian collision zone.  相似文献   

12.
Supergene manganese deposits commonly contain K-rich Mn oxides with tunnel structure, such as cryptomelane, which are suitable for radiometric dating using the 39Ar–40Ar method. In Africa, Mn deposits have been dated by this method for localities in western and southern parts of the continent, whereas only some preliminary data are available for Central Africa. Here we present new 39Ar–40Ar ages for Mn oxide samples of the Kisenge deposit, in southwestern Katanga, Democratic Republic of the Congo. The samples represent supergene Mn oxide deposits that formed at the expense of primary Paleoproterozoic rhodochrosite-dominated carbonate ores. Main phases of Mn oxide formation are dated at c. 10.5 Ma, 3.6 Ma and 2.6 Ma for a core that crosses a mineralized interval. The latter shows a decrease in age with increasing depth, recording downward penetration of a weathering front. Surface samples of the Kisenge deposits also record a ≥ c.19.2 Ma phase, as well as c. 15.7 Ma, 14.2 Ma and 13.6 Ma phases. The obtained ages correspond to distinct periods of paleosurface development and stability during the Mio-Pliocene in Katanga. Because Katanga is a key area bordered to the North by the Congo Basin and to the East by the East African Rift System, these ages also provide constraints for the geodynamic evolution of the entire region. For the Mio-Pliocene, the Kisenge deposits record ages that are not systematically found elsewhere in Africa, although the 10.5–11 Ma event corresponds to a roughly simultaneous event in the Kalahari Manganese Field, South Africa. The rest of the Katanga paleosurface record differs somewhat from records for other parts of Africa, for which older, Eocene ages have been obtained. This difference is most probably related to the specific regional geodynamic context: uplift of the East African Plateau, with associated erosion, and the opening of the East African Rift System at c. 25 Ma are events whose effects, in the study area, interfere with those of processes responsible for the development of continent-wide paleosurfaces.  相似文献   

13.
The large Huamei'ao tungsten deposit, with total WO3 reserves of 67,400 tons at an average grade of 1.334% WO3, is located in the convergent zone of the eastern Nanling E–W-trending tectono-magmatic belt and the western Wuyishan NNE–SSW-trending tectono-magmatic belt in southern Jiangxi Province, China. The tungsten mineralization in this deposit is mainly found in quartz–wolframite veins, with most orebodies distributed at the outer contact zone between concealed Late Jurassic granitic stocks and Sinian weakly metamorphosed sandstones and phyllites. Zircons collected from medium- to fine-grained biotite granite in a diamond drill hole at a sea level of ca. − 10 m yield a crystallization age of 159.9 (± 1.2) Ma through laser ablation–multicollector–inductively coupled plasma–mass spectrometry (LA–MC–ICP–MS) U–Pb dating. Molybdenite and muscovite that were both separated from quartz–wolframite veins yield a Re–Os isochron age of 158.5 (± 3.3) Ma and an 40Ar–39Ar weighted plateau age of 157.9 (± 1.1) Ma, respectively. These dates, obtained via three independent geochronological techniques, constrain the ore-forming age of the Huamei'ao deposit and link the genesis of the ore and the underlying granite. Analyses of available high-precision zircon U–Pb, molybdenite Re–Os and muscovite 40Ar–39Ar radiometric ages of major W–Sn deposits in southern Jiangxi Province indicate that there is no significant time interval between W–Sn mineralization and its intimately associated parent granite emplacement (interval of 0–6 Ma). These deposits formed over three intervals during the Mesozoic (240–210, 170–150, and 130–90 Ma), with large-scale W–Sn mineralization occurring mainly between 160 and 150 Ma. The majority of W–Sn deposits in this region are located in southern Jiangxi and southern Hunan provinces.  相似文献   

14.
Low-grade carbonate-rich manganese ore of sedimentary origin in the giant Kalahari Manganese Field, South Africa, is upgraded to high-grade todorokite–manganomelane manganese ore by supergene alteration below the unconformity at the base of the Cenozoic Kalahari Formation. Incremental laser-heating 40Ar/39Ar dating of samples from the supergene altered manganese ore suggest that chemical weathering processes below the Kalahari unconformity peaked at around 27.8 Ma, 10.1 Ma and 5.2 Ma ago. Older ages are dominant in the upper part of the weathering profile, while younger ages are characteristic of the deeper part of the profile. Younger ages partially overprint older ages in the upper part of the weathering profile and demonstrate the downward progression of the weathering front by as little as 10 cm per million years. The oldest age obtained in the weathering profile, namely 42 Ma, is considered a minimum estimate for the onset of the post African I cycle of weathering and erosion that followed the break up of Gondwanaland and formation of the Cretaceous to early Cenozoic African land surface. The youngest ages, recorded at around 5 Ma, in turn, correspond well to the Pliocene transition from humid to arid climatic conditions in Southern Africa.  相似文献   

15.
Xincheng is a world-class orogenic-gold deposit hosted by the Early Cretaceous Guojialing granitoid in the Jiaodong Peninsula, eastern China. A zircon U–Pb age of 126 ± 1.4 Ma, together with previous data, constrain the emplacement of the Guojialing intrusion to 132–123 Ma. The granitoid underwent subsolidus ductile deformation at >500 °C following its intrusion. The small difference in age between the youngest zircon U–Pb age of unaltered granitoid (~123 Ma) and the ca. 120 Ma 40Ar/39Ar ages of sericite, associated with breccias and gold mineralization within it indicate initial rapid cooling from magmatic temperatures to those prevalent during brittle deformation and associated gold mineralization at ~220–300 °C. Evidence of a direct association between granitic magmatism and gold mineralization, such as at least localized near-magmatic depositional temperatures and metal zoning evident in undoubted intrusion-related gold deposits, is absent. The 40Ar/39Ar age of ~120 Ma coincides with the mineralization age of many other orogenic-gold deposits along the Jiaojia Fault. Sixteen zircon fission-track (ZFT) ages across the ore and alteration zones range from 112.9 ± 3.4 to 99.1 ± 2.7 Ma. The long period of cooling to the ~100 Ma ZFT closure temperatures recorded here suggests that ambient temperatures for hydrothermal alteration systems lasted to ~100 Ma, possibly because of their focus at Xincheng within the young Guojialing granitoid as it cooled more slowly below approximately 300 °C to 220 °C. However, the restricted number of auriferous ore stages, combined with the presence of cross-cutting gold-free quartz-carbonate veins, indicate that gold itself was only deposited over a restricted time interval at ~120 Ma, consistent with studies of orogenic gold deposits elsewhere. This highlights the complex interplay between magmatism, deformation and the longevity of hydrothermal systems that cause genetic controversies. Based on apatite fission-track (AFT) ages, the Xincheng gold deposit was then uplifted and exhumed to near the surface of the crust at 15 Ma, probably due to movement on the crustal-scale Tan-Lu Fault. Recognition of such exhumation histories along gold belts has conceptual exploration significance in terms of the probability of discovery of additional exposed or sub-surface gold ore bodies as discovery is as much a function of preservation as formation of the deposits.  相似文献   

16.
Three metapelite samples from the Aksu blueschist terrane, Xinjiang, China, were dated by the 40Ar/39Ar method on separated phengite grains, obtaining plateau ages in the range of 741−757 Ma. In contrast, the measured Rb and Sr isotope data for the three samples yielded isochron ages ranging from 630 Ma to 900 Ma, suggesting large heterogeneity in the blueschist protolith and suppression of diffusional exchange owing to the low-temperature metamorphic conditions. Because the protolith of Aksu blueschist is composed of oceanic materials that formed 40Ar-free phengite during HP and UHP metamorphism and the apparent 40Ar/39Ar plateaus ages in this study are similar to previous K–Ar and Rb–Sr ages, the existence of excess argon in these rocks is considered to be insignificant. As a result, the 40Ar/39Ar plateau ages in this study (ca. 750 Ma) likely represent the approximate time for peak metamorphism, given the low peak metamorphic temperatures for the Aksu blueschist terrane (300−400 °C). This strongly implies that modern style, cold subduction tectonics operated along the margin of the Aksu terrane no later than 750 Ma, in Neoproterozoic time.  相似文献   

17.
《Ore Geology Reviews》2007,30(3-4):307-324
The area of the Middle–Lower Yangtze River valley, Eastern China, extending from Wuhan (Hubei province) to western Zhenjiang (Jiangsu province), hosts an important belt of Cu–Au–Mo and Fe deposits. There are two styles of mineralization, i.e., skarn/porphyry/stratabound Cu–Au–Mo–(Fe) deposits and magnetite porphyry deposits in several NNE-trending Cretaceous fault-bound volcanic basins. The origin of both deposit systems is much debated. We dated 11 molybdenite samples from five skarn/porphyry Cu–Au–Mo deposits and 5 molybdenite samples from the Datuanshan stratabound Cu–Au–Mo deposit by ICP-MS Re–Os isotope analysis. Nine samples from the same set were additionally analyzed by NTIMS on Re–Os. Results from the two methods are almost identical. The Re–Os model ages of 16 molybdenite samples range from 134.7 ± 2.3 to 143.7 ± 1.6 Ma (2σ). The model ages of the five samples from the Datuanshan stratabound deposit vary from 138.0 ± 3.2 to 140.8 ± 2.0 Ma, with a mean of 139.3 ± 2.6 Ma; their isochron age is 139.1 ± 2.7 Ma with an initial Os ratio of 0.7 ± 8.1 (MSWD = 0.29). These data indicate that the porphyry/skarn systems and the stratabound deposits have the same age and suggest an origin within the same metallogenic system. Albite 40Ar/39Ar dating of the magnetite porphyry deposits indicates that they formed at 123 to 125 Ma, i.e., 10–20 Ma later. Both mineralization styles characterize transitional geodynamic regimes, i.e., the period around 140 Ma when the main NS-trending compressional regime changed to an EW-trending lithospheric extensional regime, and the period of 125–115 Ma of dramatic EW-trending lithospheric extension.  相似文献   

18.
The E-W to WNW-ESE striking Kunlun Fault Zone, extending about 1600 km, is one of the large strike-slip faults in the northern Tibet, China. As a major strike-slip fault, it plays an important role on the extrusion of Tibet Plateau in accommodating northeastward shortening caused by the India-Asia convergence. However, the time of initiation left-lateral faulting of the Kunlun Fault Zone is still largely debated, ranging from the Middle to Late Triassic (240–200 Ma) to early Quaternary (2 Ma). We document displaced basement rocks and geomorphic features along the Kunlun Fault Zone, based on tectono-geomorphic interpretation of satellite remote sensing images and field geologic and geomorphic observations. Our results show that the largest cumulative offset of basement rocks is likely to be 100 ± 20 km. Meanwhile, a series of pull-apart basins (Kusai, Xiugou and Tuosu lake basins) and pressure ridges (East Deshuiwai and Maji Snow Mountains), each 45–70 km long and ∼8–12 km wide, are developed along the Kunlun Fault Zone, which resulted from long-term tectono-geomorphic growth since the Late Miocene or Early Pliocene. Geologic evidence indicates that the Kunlun Fault Zone had a long-term slip rate of ca.10 mm/yr during the late Quaternary. This slip rate is similar to that shown by present-day GPS measurements. Thus, we estimate that the Kunlun Fault Zone probably began left-lateral faulting at 10 ± 2 Ma based on a total displacement of 100 ± 20 km, and assuming a constant long-term slip rate of ca.10 mm/yr for several millions of years. And this timing constraint on initiation of left-lateral faulting of the Kunlun Fault Zone is consistent with widespread tectonic deformation which occurred in the Tibetan Plateau.  相似文献   

19.
New 40Ar/39Ar ages, based on incremental heating techniques for groundmass separates of 25 samples, are presented for the Harrat Al-Madinah volcanic field, part of Harrat Rahat in the north western part of the Arabian plate. This area is an active volcanic field characterized by the occurrence of two historical eruptions approximately in 641 and 1256 AD. Field investigations of the main volcanic landforms indicate dominantly monogenetic strombolian eruptions, in addition to local more explosive eruptions. The lavas consist mainly of olivine basalt and hawaiite flows with minor evolved rocks of mugearite, benmoreite, and trachyte that occur mainly as domes, tuff cones and occasionally as lava flows. Previous K/Ar dating shows that the Harrat Al-Madinah lava flows and associated domes comprise seven units spanning an age range of ca. 1.7 Ma–Recent. The new 40Ar/39Ar age determinations confirm, to a great extent, the previously obtained K/Ar ages in the sense that no major systematic biases were found in the general stratigraphy of the different flow units. However, the 40Ar/39Ar plateau ages show that volcanism in this area began in the Neogene (∼10 Ma) and continued to Recent, with the most voluminous eruptions occurring in the Quaternary. Neogene volcanism occurred in at least three pulses around 10, 5 and 2 Ma, whereas Quaternary volcanism produced at least seven units reflecting lava flow emplacement in the time period of 1.90 Ma–Recent. Thus, the whole duration of volcanic activity in the Harrat Al-Madinah (10 Ma–Recent) appears much longer than that previously identified. The longevity of volcanism in the same part of the moving Arabian plate and absence of evidence for uni-directional migration of volcanic activity indicate that there is no fixed plume beneath this region. The NNW-trending distribution of the volcanic vents is parallel to the Red Sea, and suggests their origin is related to periodic extensional episodes along the reactivated Red Sea fault system.  相似文献   

20.
The recently discovered Zhuxi W–Cu ore deposit is located within the Taqian–Fuchun Ore Belt in the southeastern edge of the Yangtze Block, South China. Its inferred tungsten resources, based on new exploration data, are more than 280 Mt by 2016. At least three paragenetic stages of skarn formation and ore deposition have been recognized: prograde skarn stage; retrograde stage; and hydrothermal sulfide stage. Secondly, greisenization, marmorization and hornfels formation are also observed. Scheelite and chalcopyrite are the dominant metal minerals in the Zhuxi deposit and their formation was associated with the emplacement of granite stocks and porphyry dykes intruded into the surrounding Carboniferous carbonate sediments (Huanglong and Chuanshan formations) and the Neoproterozoic slate and phyllites. The scheelite was mostly precipitated during the retrograde stage, whereas the chalcopyrite was widely precipitated during the hydrothermal sulfide stage. A muscovite 40Ar/39Ar plateau age of about 150 Ma is interpreted as the time of tungsten mineralization and molybdenite Re–Os model ages ranging from 145.9 ± 2.0 Ma to 148.7 ± 2.2 Ma (for the subsequent hydrothermal sulfide stage of activity) as the time of the copper mineralization. Our new molybdenite Re–Os and muscovite 40Ar/39Ar dating results, along with previous zircon U–Pb age data, indicate that the hydrothermal activity from the retrograde stage to the last hydrothermal sulfide stage lasted up to 5 Myr, from 150.6 ± 1.5 to 145.9 ± 1 Ma, and is approximately coeval or slightly later than the emplacement of the associated granite porphyry and biotite granite. The new ages reported here confirm that the Zhuxi tungsten deposit represents one of the Mesozoic magmatic–hydrothermal mineralization events that took place in South China in a setting of lithospheric extension during the Late Jurassic (160–150 Ma). It is suggested that mantle material played a role in producing the Zhuxi W–Cu mineralization and associated magmatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号