首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Joseph Bonaparte Gulf is a large embayment on the northwestern continental margin of Australia. It is approximately 300 km east‐west and 120 km north‐south with a broad continental shelf to seaward. Maximum width from the southernmost shore of Joseph Bonaparte Gulf to the edge of the continental shelf is 560 km. Several large rivers enter the gulf along its shores. The climate is monsoonal, sub‐humid, and cyclone‐prone during the December‐March wet season. A bedrock high (Sahul Rise) rims the shelf margin. The sediments within the gulf are carbonates to seaward, grading into clastics inshore. A seaward‐thinning wedge of highstand muds dominates the sediments of the inner shelf of Joseph Bonaparte Gulf. Mud banks up to 15m thick have developed inshore. Coarse‐grained sand ridges up to 15 m high are found off the mouth of the Ord River. These overlie an Upper Pleistocene transgressive lag of mixed carbonate and gravelly siliciclastic sand. Four drowned strandlines are present on the inner shelf at depths of 20, 25, 28 and 30 m below datum. These are interpreted as having formed during stillstands in the Late Pleistocene transgression. Older strandlines at great depths are inferred as having formed during the fall in sea‐level following the last highstand. For the most part the Upper Pleistocene‐Holocene marine sediments overlie an erosion surface cut into older Pleistocene sediments. Incised valleys cut into this erosion surface are up to 5 km wide and have a relief of at least 20 m. The largest valley is that cut by the Ord River. Upper Pleistocene sediments deposited in the incised valleys include interpreted lowstand fluvial gravels, early transgressive channel sands and floodplain silts, and late transgressive estuarine sands and gravels. Older Pleistocene sediments are inferred to have been deposited before and during the 120 ka highstand (isotope stage 5). They consist of sandy calcarenites deposited in high‐energy tide‐dominated shelf environments. Still older shelf and valley‐fill sediments underlie these. The contrast between the Holocene muddy clastic sediments and the sandy carbonates deposited by the 120 ka highstand suggests that either the climate was more arid in the past, with less fluvial transport, or that mud was more effectively trapped in estuaries, allowing development of carbonate depositional environments inshore.  相似文献   

2.
Palaeogene passive margin sediments on the US mid‐Atlantic coastal plain provide valuable insight into facies interaction and distribution on mixed carbonate–siliciclastic shelves. This study utilizes well cuttings, outcrop, core, and seismic data to document temporal and spatial variations in admixed bryozoan‐rich skeletal carbonates and sandy siliciclastic units that were deposited on a humid passive margin located in the vicinity of a major marine transition zone. This zone was situated between north‐flowing, warm waters of the ancestral Gulf Stream (carbonate dominated settings) and south‐flowing, cold waters of the ancestral Labrador Current (siliciclastic dominated settings). Some degree of mixing of carbonates and siliciclastics occurs in all facies; however, siliciclastic‐prone sediments predominate in nearshore settings, while carbonate‐prone sediments are more common in more open marine settings of the inner shelf break and deep shelf. A distinctive dual‐break shelf depositional profile originated following a major Late Cretaceous to Palaeocene transgression that drowned the earlier shallow platform. This profile was characterized by prominent mid‐shelf break dividing the shallow shelf from the deep shelf and a major continental shelf/slope break. Incomplete filling of available accommodation space during successive buildup of the shallow shelf preserved the topographic break on this passive margin. Storm wave base also contributed to the preservation of the dual‐break shelf geometry by beveling shallow shelf sediments and transporting them onto and seaward of the mid‐shelf break. Sediment fines in deep shelf facies were produced in place, transported downdip from the shallow shelf by storm ebb currents and boundary currents, and reworked from adjacent areas of the deep shelf by strike‐parallel boundary currents. Regional climate and boundary currents controlled whether carbonate or siliciclastic material was deposited on the shelf, with warmer waters and more humid climates favouring carbonate deposition and cooler, more arid conditions favouring glaucony and siliciclastic dominated deposition. Continuous wave and current sweeping of the shallow shelf favoured deposition of mud‐lean facies across much of the shallow shelf. Skeletal components in much of the carbonate‐rich strata formed in warm, nutrient‐rich subtropical waters, as indicated by widespread occurrences of larger benthic foraminifera and molluscan assemblages. These indicators of warm water deposition within the bryozoan‐mollusk‐rich carbonate assemblage on this shelf provide an example of a warm water bryomol assemblage; such facies generally are associated with cooler water depositional settings.  相似文献   

3.
The Taltheilei, Utsingi, McLean and Blanchet formations form a 175–390 m thick carbonate platform-to-basin succession in the lower part of the PaleoProterozoic Pethei Group, preserved in the eastern arm of Great Slave Lake. Carbonates accumulated along the south-east margin of the Slave Craton within a foredeep formed during the collision of the Slave and Churchill Cratons. The rocks include eight, predominantly microbial, carbonate facies that comprise five facies associations representing (1) shallow-water rimmed shelf, (2) shallow-water open shelf, (3) shallow-water ramp, (4) upper slope and deep ramp, and (5) lower slope and basin plain environments. Microbialite facies grew by organically mediated precipitation of spar and micritic cement and trapping and binding of lime mud. These wholly subtidal facies typically reflect progressive shallowing and changing geometry of the lower Pethei sea floor, from ramp, to open shelf, to shallow rimmed shelf, with associated slope and basin plain deposition. Repeated relative sea-level changes influenced platform growth. This resulted in five shallowing upward packages; each separated by an incipient drowning event of varying magnitude. Antecedent topography and the size of the preceding drowning event strongly influenced the initial growth of each interval. This repeated pattern is attributed to interaction between (a) the inherent tendency of microbial carbonates to aggrade vertically, (b) changing sedimentation rates and (c) readjustments of relative base level. The lower Pethei succession is one of few PaleoProterozoic examples of carbonate platform growth within a foreland basin. It has (1) a low gradient profile, (2) extensive slope and basin plain carbonate production and sedimentation, (3) no ooids, (4) minor terrigenous clastic sediments, and (4) a mobile, submergent shelf rim lacking substantial carbonate sand shoals.  相似文献   

4.
The stable isotope geochemistry of Miocene sediments from the leeward margin of the Great Bahama Bank was examined to investigate burial diagenetic processes in periplatform carbonates. Data indicate that, in addition to differences in bulk proportions of neritic and pelagic carbonate along the slope, rhythmic variation in primary carbonate content has controlled patterns of burial diagenesis and associated geochemical signatures throughout much of the succession examined. The present study focuses on Ocean Drilling Program Sites 1006 and 1007, the most distal of five sites drilled from marginal to deep basin environments during Leg 166. These Miocene sections are characterized by their cyclic appearance, manifest as decimetre‐ to metre‐scale alternations between light‐coloured ooze/chalk/limestone and dark‐coloured marl/marlstone. The section at Site 1006 contains a high proportion of pelagic carbonate and is unlithified to a subbottom depth of ~675 m. Fluctuations in δ18O and δ13C values at this site are independent of lithological variation and reflect primary conditions. At Site 1007, located at the toe‐of‐slope and composed of a mixture of bank‐derived and pelagic carbonate, limestones are densely cemented, show little evidence of compaction and have δ18O values up to 2‰ higher than coeval sediments at Site 1006. Marlstones at Site 1007 are poorly cemented, exhibit an increase in compaction‐related features with depth and have lower and more variable δ18O values that are similar to those of coeval sediments at Site 1006. Isotopic and petrographic characteristics of limestone interbeds result from cement precipitation from cold sea water during the first ~100 m of burial. Higher proportions of insoluble materials and pelagic carbonate seem to have inhibited diagenetic alteration in adjacent marlstones; in spite of significant compaction and pressure solution during burial, original isotopic compositions appear to be best preserved in these intervals at Site 1007. The documented contrasts in petrographic and isotopic patterns illustrate the role of primary sediment composition in controlling lithification processes in periplatform carbonates and stress the importance of considering such factors when interpreting geochemical data from ancient shelf and slope limestones.  相似文献   

5.
The wide Lacepede Shelf and narrow Bonney Shelf are contiguous parts of the south-eastern passive continental margin of Australia. The shelves are open, generally deeper than 40 m, covered by waters cooler than 18°C and swept by oceanic swells that move sediments to depths of 140 m. The Lacepede Shelf is proximal to the ‘delta’of the River Murray and the Coorong Lagoon. Shelf and upper slope sediments are a variable mixture of Holocene and late Pleistocene quartzose terrigenous clastic and bryozoa-dominated carbonate particles. Bryozoa grow in abundance to depths of 250 m and are conspicuous to depths of 350 m. They can be grouped into four depth-related assemblages. Coralline algae, the only calcareous phototrophs, are important sediment producers to depths of 70 m. Active benthic carbonate sediment production occurs to depths of 350 m, but carbonate sediment accumulation is reduced on the open shelf by continuous high energy conditions. The shelf is separated into five zones. The strandline is typified by accretionary sequences of steep shoreface, beach and dune carbonate/siliciclastic sediments. Similar shoreline facies of relict bivalve/limestone cobble ridges are stranded on the open shelf. The shallow shelf, c.40–70 m deep, is a wide, extremely flat plain with only subtle local relief. It is a mosaic of grainy, quartzose, palimpsest facies which reflect the complex interaction of modern bioclastic sediment production (dominated by bryozoa and molluscs), numerous highstands of sea level over the last 80 000 years, modern mixing of sediments from relatively recent highstands and local introduction of quartz-rich sediments during lowstands. The middle shelf, c.70–140 m deep, is a gentle incline with subtle relief where Holocene carbonates veneer seaward-dipping bedrock clinoforms and local lowstand beach complexes. Carbonates are mostly modern, uniform, clean, coarse grained sands dominated by a diverse suite of robust to delicate bryozoa particles produced primarily in situ but swept into subaqueous dunes. The deep shelf edge, c. 140–250 m deep, is a site of diverse and active bryozoa growth. Resulting accumulations are characteristically muddy and distinguished by large numbers of delicate, branching bryozoa. The upper slope, between 250 and 350 m depth, contains the deepest platform-related sediments, which are very muddy and contain a low diversity suite of delicate, branching cyclostome bryozoa. This study provides fundamental environmental information critical for the interpretation of Cenozoic cool water carbonates and the region is a good model for older mixed carbonate-terrigenous clastic successions which were deposited on unrimmed shelves.  相似文献   

6.
Abstract Although shelf‐edge deltas are well‐imaged seismic features of Holocene and Pleistocene shelf margins, documented outcrop analogues of these important sand‐prone reservoirs are rare. The facies and stratigraphic architecture of an outcropping shelf‐edge delta system in the Eocene Battfjellet Formation, Spitsbergen, is presented here, as well as the implications of this delta system for the generation of sand‐prone, shelf‐margin clinoforms. The shelf‐edge deltas of the Battfjellet Formation on Litledalsfjellet and Høgsnyta produced a 3–5 × 15 km, shelf edge‐attached, slope apron (70 m of sandstones proximally, tapering to zero on the lower slope). The slope apron consists of distributary channel and mouth‐bar deposits in its shelf‐edge reaches, passing downslope to slope channels/chutes that fed turbiditic lobes and spillover sheets. In the transgressive phase of the slope apron, estuaries developed at the shelf edge, and these also produced minor lobes on the slope. The short‐headed mountainous rivers that drained the adjacent orogenic belt and fed the narrow shelf, and the shelf‐edge position of the discharging deltas, made an appropriate setting for the generation of hyperpycnal turbidity currents on the slope of the shelf margin. The abundance of organic matter and of coal fragments in the slope turbidites is consistent with this notion. Evidence that many of the slope turbidites were generated by sustained turbidity currents that waxed then waned includes the presence of scour surfaces and thick intervals of plane‐parallel laminae within turbidite beds in the slope channels, and thick spillover lobes with repetitive alternations of massive and flat‐laminated intervals. The examined shelf‐edge to slope system, now preserved mainly below the shelf break and dominated by sediment gravity‐flow deposits, has a threefold stratigraphic architecture: a lower, progradational part, in which the clinoforms have a slight downward‐directed trajectory; a thin aggradational zone; and an upper part in which clinoforms backstep up onto the shelf edge. A greatly increased density of erosional channels and chutes marks the regressive‐to‐transgressive turnaround within the slope apron, and this zone becomes an angular unconformity up near the shelf edge. This unconformity, with both subaerial and subaqueous components, is interpreted as a sequence boundary and developed by vigorous sand delivery and bypass across the shelf edge during the time interval of falling relative sea level. The studied shelf‐margin clinoforms accreted mostly during falling stage (sea level below the shelf edge), but the outer shelf later became estuarine as sea level became re‐established above the shelf edge.  相似文献   

7.
Abstract The north-east Australian margin is the largest modern example of a tropical mixed siliciclastic/carbonate depositional system, with an outer shelf hosting the Great Barrier Reef (GBR) and an inner shelf dominated by fluvially sourced siliciclastic sediment wedges. The long-term interplay between these sediment components and sea level is recorded in the Queensland Trough, a 1–2 km deep N–S elongate basin situated between the GBR platform and the Queensland Plateau. In this paper, 154 samples from 45 surface grabs and six well-dated piston cores were analysed for total carbonate content, carbonate mineralogy and Sr concentration to establish spatial and temporal patterns of carbonate accumulation in the Queensland Trough over the last 300 kyr. Surface carbonate contents are lowest on the inner-shelf (<5%) and in the trough axis (<60%) because of siliciclastic dilution. Carbonate on the shelf is mostly Sr-rich aragonite and high-Mg calcite (HMC), whereas that in the basin is mostly low-Mg calcite. Once normalized to remove the effects of siliciclastic dilution, surface Sr-rich aragonite and HMC abundances decrease linearly to background levels ≈ 100 km seaward of the shelf edge. Core samples show that, over time, normalized aragonite and Sr abundances are greatest during periods of shelf flooding and lowest when sea level drops below the shelf edge. This is consistent with changes in the production of coral and calcareous algae, and the shedding of their debris from the shelf. Interestingly, normalized HMC concentrations on the slope peak during periods of major transgression, perhaps because of maximum off-shelf transport from inter-reef areas or intermediate water dissolution. After accounting for siliciclastic dilution, there are strong similarities in both spatial and temporal patterns of carbonate minerals between slopes and basins of the north-east Australian margin and those of pure carbonate margins such as the Bahamas. A limited set of basic processes, including the formation and breakdown of carbonate on the shelf, the transport of carbonate off the shelf and eustatic sea level, probably controls carbonate accumulation in slope and basin settings of tropical environments, irrespective of proximal siliciclastic sediment sources.  相似文献   

8.
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross‐shelf troughs. One of these fans, termed here ‘Uummannaq Fan’, is a trough‐mouth fan built largely by debris delivered from a fast‐flowing outlet of the Greenland Ice Sheet during past glacial maxima. Cores from this fan provide the first information on glacimarine sedimentary facies within a major West Greenland trough‐mouth fan and on the nature of Late Weichselian–Holocene glacigenic sediment delivery to this region of the Baffin Bay margin. Glacigenic debris flows deposited on the upper slope and extending to at least 1800 m water depth in front of the trough‐mouth are related to the remobilization of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterized by hemipelagic and ice‐rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Quantitative X‐ray diffraction studies of the <2‐mm sediment fraction indicate that the bulk of the sediment in the fan is derived from Uummannaq Trough but there are distinct intervals when sediment from northern Baffin Bay sources dominates, especially on the northern limit of the fan. These data demonstrate considerable variation in the nature of sediment delivery across the Uummannaq Fan when the Greenland Ice Sheet was at the shelf edge. They highlight the variability of glacimarine depositional processes operating on trough‐mouth fans on high‐latitude continental margins during the last glacial maximum and indicate that glacigenic debris flows are just one of a number of mechanisms by which such large depocentres form. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Seep‐carbonates (13C‐depleted) are present at different levels within the Miocene terrigenous succession of Deruta (Marnoso‐arenacea Formation, central Italy); they are associated with pebbly sandstones and conglomerates in a tectonically active fan‐delta slope depositional system. Most of these seep‐carbonates are included in slide/slump horizons as scattered blocks. The occurrence of seep‐carbonates is clear evidence of the flow of methane‐rich fluids pervading the sediments. Fluids, probably of biogenic origin, may have reached the sea‐bottom through thrust faults and selectively infiltrated the more permeable coarse‐grained horizons deposited along the slope. Different stages of fluid emissions are documented: slow flux stage, corresponding to the development of large carbonate bodies and dense chemosynthetic communities; and fast fluid flow associated with intense carbonate brecciation, pipes and veins. Large amounts of authigenic carbonates are reworked by slope failures triggered by tectonics and fluids reducing sediment strength; in situ cementation of slide blocks may also have occurred due to remobilization of methane‐rich fluids by mass‐wasting processes.  相似文献   

11.
Shelf‐edge deltas record the potential magnitude of sediment delivery from shallow water shelf into deep water slope and basin floor and, if un‐incised, represent the main increment of shelf‐margin growth into the basin, for that period. The three‐dimensional complexity of shelf‐edge delta systems and along‐strike variability at the shelf edge in particular, remains understudied. The Permian–Triassic Kookfontein Formation of the Tanqua Karoo Basin, South Africa, offers extensive three‐dimensional exposure (>100 km2) and therefore a unique opportunity to evaluate shelf‐edge strata from an outcrop perspective. Analysis of stratal geometry and facies distribution from 52 measured and correlated stratigraphic sections show the following: (i) In outer‐shelf areas, parasequences are characterized by undeformed, river‐dominated, storm‐wave influenced delta mouth‐bar sandstones interbedded with packages showing evidence of syn‐depositional deformation. The amount and intensity of soft‐sediment deformation increases significantly towards the shelf edge where slump units and debris flows sourced from collapsed mouth‐bar packages transport material down slope. (ii) On the upper slope, mouth‐bar and delta‐front sandstones pinch out within 2 km of the shelf break and most slump and debris flow units pinch out within 4 km of the shelf break. (iii) Further down the slope, parasequences consist of finer‐grained turbidites, characterized by interbedded, thin tabular siltstones and sandstones. The results highlight that river‐dominated, shelf‐edge deltas transport large volumes of sand to the upper slope, even when major shelf‐edge incisions are absent. In this case, transport to the upper slope through slumping, debris flows and un‐channellized low density turbidites is distributed evenly along strike.  相似文献   

12.
Three long, strike-parallel, seismic-refraction profiles were made on the continental shelf edge, slope and upper rise off New Jersey during 1975. The shelf edge line lies along the axis of the East Coast Magnetic Anomaly (ECMA), while the continental rise line lies 80 km seaward of the shelf edge. Below the unconsolidated sediments (1.7–3.6 km/sec), high-velocity sedimentary rocks (4.2–6.2 km/sec) were found at depths of 2.6–8.2 km and are inferred to be cemented carbonates. Although multichannel seismic-reflection profiles and magnetic depth-to-source data predicted the top of oceanic basement at 6–8 km beneath the shelf edge and 10–11 km beneath the rise, no refracted events occurred as first arrivals from either oceanic basement (layer 2, approximately 5.5 km/ sec) or the upper oceanic crust (layer 3A, approximately 6.8 km/sec). Second arrivals from 10.5 km depth beneath the shelf edge are interpreted as events from a 5.9 km/sec refractor within igneous basement. Other refracted events from either layers 2 or 3A could not be resolved within the complex second arrivals. A well-defined crustal layer with a compressional velocity of 7.1–7.2 km/sec, which can be interpreted as oceanic layer 3B, occurred at 15.8 km depth beneath the shelf and 12.9 km beneath the upper rise. A well-reversed mantle velocity of 8.3 km/sec was measured at 18–22 km depth beneath the upper continental rise. Comparison with other deep-crustal profiles along the continental edge of the Atlantic margin off the United States, specifically in the inner magnetically quiet zone, indicates that the compressional wave velocities and layer depths determined on the U.S.G.S. profiles are very similar to those of nearby profiles. This suggests that the layers are continuous and that the interpretation of the oceanic layer 3B under the shelf edge east of New Jersey implies progradation of the shelf outward over the oceanic crust in that area. This agrees with magnetic anomaly evidence which shows the East Coast Magnetic Anomaly landward of the shelf edge off New Jersey and with previous seismic reflection data which reveal extensive outbuilding of the shelf edge during the Jurassic and Lower Cretaceous, probably by carbonate bank-margin accretion.  相似文献   

13.
南海深水碳酸盐沉积作用   总被引:21,自引:0,他引:21  
李粹中 《沉积学报》1989,7(2):35-43
本文根据南海中部121个深水表层沉积物(水深280-4420m)的碳酸盐生物组分特征,划分了四个碳酸生物组合区,讨论了深水碳酸盐的沉积作用特征.认为在南海存在着三个重要深度界面:即位于水深约2000m的碳酸盐饱和深度、约2900m的碳酸盐溶跃面深度和约3500m的碳酸盐补偿深度.这三个深度界面控制了南海深水碳酸盐的溶解和保存模式,它们的深度特征反映了边缘海海域高生产力的性质.文中最后还讨论了晚更新以来的沉积物碳酸盐溶解旋回.  相似文献   

14.
Anatomy of a modern open-ocean carbonate slope: northern Little Bahama Bank   总被引:1,自引:0,他引:1  
The open-ocean carbonate slope north of Little Bahama Bank consists of a relatively steep (4°) upper slope between water depths of 200 and 900 m, and a more gentle (1–2°) lower slope between depths of 900 and 1300+ m. The upper slope is dissected by numerous, small, submarine canyons (50–150 m in relief) that act as a line source for the downslope transport of coarse-grained carbonate debris. The lower slope is devoid of any well-defined canyons but does contain numerous, small (1–5 m) hummocks of uncertain origin and numerous, larger (5–40 m), patchily distributed, ahermatypic coral mounds. Sediments along the upper slope have prograded seaward during the Cenozoic as a slope-front-fill seismic facies of fine-grained peri-platform ooze. Surface sediments show lateral gradation of both grain size and carbonate mineralogy, with the fine fraction derived largely from the adjacent shallow-water platform. Near-surface sedimentary facies along the upper slope display a gradual downslope decrease in the degree of submarine cementation from well-lithified hardgrounds to patchily cemented nodular ooze to unlithified peri-platform ooze, controlled by lateral variations in diagenetic potential and/or winnowing by bottom currents. Submarine cementation stabilizes the upper part of the slope, allowing upbuilding of the platform margin, and controls the distribution of submarine slides, as well as the headward extent of submarine canyons. Where unlithified, sediments are heavily bioturbated and are locally undergoing dolomitization. Upper slope sediments are also ‘conditioned’eustatically, resulting in vertical, cyclic sequences of diagenetically unstable (aragonite and magnesian calcite-rich) and stable (calcite-rich) carbonates that may explain the well-bedded nature of ancient peri-platform ooze sequences. Lower slope sediments have prograded seaward during the Cenozoic as a chaotic-fill seismic facies of coarse-grained carbonate turbidites and debris flow deposits with subordinate amounts of peri-platform ooze. Coarse clasts are ‘internally’derived from fine-grained upper slope sediments via incipient cementation, submarine sliding and the generation of sediment gravity flows. Gravity flows bypass the upper slope via a multitude of canyons and are deposited along the lower slope as a wedge-shaped apron of debris, parallel to the adjacent shelf edge, consisting of a complex spatial arrangement of localized turbidites and debris flow deposits. A proximal apron facies of thick, mud-supported debris flow deposits plus thick, coarse-grained, Ta turbidites, grades seaward into a distal apron facies of thinner, grain-supported debris flow deposits and thinner, finer grained Ta-b turbidites with increasing proportions of peri-platform ooze. Both the geomorphology and sedimentary facies relationships of the carbonate apron north of Little Bahama Bank differ significantly from the classic submarine fan model. As such, a carbonate apron model offers an alternative to the fan model for palaeoenvironmental analysis of ancient, open-ocean carbonate slope sequences.  相似文献   

15.
Shingled Quaternary debris flow lenses on the north-east Newfoundland Slope   总被引:1,自引:0,他引:1  
Debris flow deposits are the principal component of Quaternary continental slope sediments between the north-east Newfoundland Shelf and central Orphan Basin. In seismic profiles, these deposits occur as shingled, elongate, acoustically transparent lenses with their long axes orientated downslope. Deposits of individual flows form positive mounds on the sea floor; subsequent flows were diverted by the pre-existing topography into bathymetric lows between older debris flow deposits. These deposits show a large variation in the area of sea floor covered by individual flows (about 60–1000 km2), average thickness of deposits (9–37 m) and volume of sediment displaced (1–27 km3). The ratio of average thickness to a measure of deposit diameter, termed the aspect ratio, has a threefold variation from 0·0006 to 0·0021. Very low depositional slopes and low aspect ratios suggest relatively low viscosities, probably due to inmixing of water during downslope transport. Stratified sediments form three distinct horizons and are locally interbedded with the debris flow deposits. These are mainly hemipelagic deposits. The slope and rise to the west of the Orphan Basin are constructional in character. The apparent absence of upper slope erosional features and the abundance of debris flow deposits on the slope suggest that the supply of sediment to the continental slope occurred predominantly during times of maximum extent of Quaternary glacial ice. The ice sheet grounding line during several glacial maxima must have been situated at or near the present shelf break, supplying vast amounts of sediment directly to the upper slope. Oversteepening and subsequent slope failures fed material into deeper water.  相似文献   

16.
This paper reports the genetic links among the depth distribution, mineralogy, and stable isotopic composition of diagenetic carbonates with sedimentation rates and types and preservation of organic matter in the terrigenous and biogenic sediments of Oligocene and Miocene age on the New Jersey slope. Calcites formed close to the sediment surface at sequence boundaries and maximum flooding surfaces, when the profile of early-diagenetic reactions was stabilized in the sediment column for extended periods. Dolomites precipitated in the sulfate reduction zone when diagenetic profiles stabilized during truncation, sequence boundary formation, and the deposition of lowstand sediments that overlie the sequence boundaries. Most dolomites occur in distal slope sediments that were deposited before the shelf had prograded into the study area. Siderites formed during a later stage of burial in the methanogenic zone; they are not directly genetically related to the sequence stratigraphy of the New Jersey slope. The diagene-tic dolomites and siderites occur in widely separated depth intervals below the present sea floor. The distribution of the diagenetic carbonates and their preferential occurrence in separated depth intervals resulted from different combinations of sedimentation rates and organic matter types and preservation.  相似文献   

17.
Mixed carbonate-siliciclastic sediment gravity flow deposits of Late Pennsylvanian to Early Permian age are exposed in the Death Valley - Owens Valley region of east-central California. The Mexican Spring unit constitutes the upper part of the Keeler Canyon Formation and is characterized by turbidites, debris flow deposits and megabreccias, all of mixed carbonate-siliciclastic composition. The mixed composition of the Keeler Canyon Formation provides an opportunity to link facies architecture to controls on depositional system development. Depositional relationships indicate that the deposits represent a non-channellized base of slope carbonate apron system with inner, outer and basinal facies associations. These gravity flow deposits are characterized by repeated stacked, small scale (<15 m) coarsening and thickening upward cycles with superimposed medium scale (>100 m) coarsening and thickening upward cycles. Contemporaneous outer shelf and upper slope deposits of the Tippipah Limestone are exposed at Syncline Ridge on the Nevada Test Site. The deposits consist of carbonate buildups directly overlain by cross bedded, quartz-rich sandstone and conglomerate which filled channels that traversed across the previously existing carbonate shelf. Detritus was transported to the west, down the upper slope by gully systems that fed the temporally persistent base of slope apron of the upper part of the Keeler Canyon Formation. This style of deposition differs from point-sourced siliciclastic submarine fan depositional systems. However, the Keeler Canyon system has lithofacies similar to some sandy siliciclastic turbidite systems, such as the delta-fed submarine ramp facies model, which is a line-sourced, shelf-fed system that is not supply limited. The mixed clastic apron systems of the Keeler Canyon Formation differ from classical carbonate aprons in that the former is characterized by an abundance of sedimentary cycles. Controls on the development of these cycles and of the facies distribution may have resulted from changes in type and rate of sediment supply, relative sea level changes and/or tectonic events. Interpretation of the data is focused on relative changes in sea level as the most significant control on development of the depositional system. Relative sea level changes serve two important functions: (1) they provide a mechanism for bringing coarse siliciclastic and bioclastic grains together on the outer shelf, and (2) shelf margin collapse may be initiated during relative lowstands allowing for transport of the sediment to the deep basin and development of deep basinal cycles. Therefore, an abundance of mixed clastic gravity flow deposits such as these in the rock record may be an indicator of periods of high frequency changes in relative sea level, which is a characteristic of Late Palaeozoic sea level history.  相似文献   

18.
The Belize barrier and atoll reefs represent one of the largest reef structures in the Atlantic Ocean. The southern shelf of Belize is a classic location of a modern mixed carbonate–siliciclastic system. Whereas knowledge of the Holocene deposits in the area is extensive, data on the Pleistocene system are fragmentary. Open questions include: (i) the nature of the reef foundations (carbonate versus siliciclastics); (ii) the ages of the deposits including the initiation of the barrier reef; and (iii) the response of the mixed system to sea‐level fluctuations. The results of a study of borings on the southern Belize shelf are presented here. Six, up to 105 m long borings were made to better understand the history of this important mixed system. Uranium‐series dating in the Pleistocene was not possible because of diagenetic alteration; however, lithostratigraphy, strontium isotopes and calcareous nannofossil biostratigraphy were used to constrain stratigraphic ages. Results support the contention that the Quaternary development in Belize was quite similar to that of other major barrier reefs such as the Florida Reef Tract and, further afield, the Great Barrier and the New Caledonian Barrier Reefs. All of these barrier reefs are mixed carbonate–siliciclastic systems and significant reef growth only began after the onset of high‐amplitude, eccentricity‐controlled sea‐level changes and as late as during the exceptionally long and warm marine isotope stage 11, some 400 ka. In Belize, Early Pleistocene sections at bases of borings include mollusc‐rich wackestones, rare coral packstones and marls, which were deposited under low to moderate energy conditions in a ramp setting before ca 900 ka, during the high sea‐levels of marine isotope stage 25 and possibly earlier (marine isotope stage 31 or 37). The Belize shelf was subaerially exposed for most of the mid‐Pleistocene and was dominated by siliciclastic sedimentation, possibly during marine isotope stages 24 to 12 when highstands were comparatively low. Continuous reefs at the shelf margin were developing during highstands. In the Late Pleistocene, beginning with the long and high highstand of marine isotope stage 11 (some 400 ka), the southern shelf was flooded entirely and carbonates started to dominate once more. Reefs developed on top of siliciclastic deposits on the shelf. A continuous barrier reef came into existence and largely developed on top of carbonates at the shelf margin. During Late Pleistocene lowstands, siliciclastics presumably no longer reached the shelf margin because of the topographic high of the barrier reef platform. The Quaternary Belize example may serve as a model for reconstructing ancient mixed systems in icehouse worlds, however, any extrapolations are limited by the fact that fast‐growing Scleractinian reef‐builders had not yet evolved in the Palaeozoic.  相似文献   

19.
Abstract In mid‐Middle Cambrian time, shallow‐water sedimentation along the Cordilleran passive margin was abruptly interrupted by the development of the deep‐water House Range embayment across Nevada and Utah. The Marjum Formation (330 m) in the central House Range represents deposition in the deepest part of the embayment and is composed of five deep‐water facies: limestone–argillaceous limestone rhythmites; shale; thin carbonate mud mounds; bioturbated limestone; and cross‐bedded limestone. These facies are cyclically arranged into 1·5 to 30 m thick parasequences that include rhythmite–mound, rhythmite–shale, rhythmite–bioturbated limestone and rhythmite–cross‐bedded limestone parasequences. Using biostratigraphically constrained sediment accumulation rates, the parasequences range in duration from ≈14 to 270 kyr. The mud mounds are thin (<2 m), closely spaced, laterally linked, symmetrical domes composed of massive, fenestral, peloidal to clotted microspar with sparse unoriented, poorly sorted skeletal material, calcitized bacterial(?) filaments/tubes and abundant fenestrae and stroma‐ tactoid structures. These petrographic and sedimentological features suggest that the microspar, peloids/clots and syndepositional micritic cement were precipitated in situ from the activity of benthic microbial communities. Concentrated growth of the microbial communities occurred during periods of decreased input of fine detrital carbonate transported offshore from the adjacent shallow‐water carbonate platform. In the neighbouring Wah Wah Range and throughout the southern Great Basin, coeval mid‐Middle Cambrian shallow‐water carbonates are composed of abundant metre‐scale, upward‐shallowing parasequences that record high‐frequency (104?105 years) eustatic sea‐level changes. Given this regional stratigraphic relationship, the Marjum Formation parasequences probably formed in response to high‐frequency sea‐level fluctuations that controlled the amount of detrital carbonate input into the deeper water embayment. During high‐frequency sea‐level rise and early highstand, detrital carbonate input into the embayment decreased as a result of carbonate factory retrogradation, resulting in the deposition of shale (base of rhythmite–shale parasequences) or thin nodular rhythmites, followed by in situ precipitated mud mounds (lower portion of rhythmite–mound parasequences). During the ensuing high‐frequency sea‐level fall/lowstand, detrital carbonate influx into the embayment increased on account of carbonate factory pro‐ gradation towards the embayment, resulting in deposition of rhythmites (upper part of rhythmite–mound parasequences), reworking of rhythmites by a lowered storm wave base (cross‐bedded limestone deposition) or bioturbation of rhythmites by a weakened/lowered O2‐minimum zone (bioturbated lime‐ stone deposition). This interpreted sea‐level control on offshore carbonate sedimentation patterns is unique to Palaeozoic and earliest Mesozoic deep‐water sediments. After the evolution of calcareous plankton in the Jurassic, the presence or absence of deeper water carbonates was influenced by a variety of chemical and physical oceanographic factors, rather than just physical transport of carbonate muds.  相似文献   

20.
Large areas of southern Australia and New Zealand are covered by mid‐Tertiary limestones formed in cool‐water, shelf environments. The generally destructive character of sea‐floor diagenesis in such settings precludes ubiquitous inorganic precipitation of carbonates, yet these limestones include occasional units with marine cements: (1) within rare in situ biomounds; (2) within some stacked, cross‐bedded sand bodies; (3) at the top of metre‐scale, subtidal, carbonate cycles; and (4) most commonly, associated with certain unconformities. The marine cements are dominated by isopachous rinds of fibrous to bladed spar, interstitial homogeneous micrite and interstitial micropeloidal micrite, often precipitated sequentially in that order. Internal sedimentation of microbioclastic micrite may occur at any stage. The paradox of marine‐cemented limestone units in an overall destructive cool‐water diagenetic regime may be explained by the precipitation of cement as intermediate Mg‐calcite from marine waters undersaturated with respect to aragonite. In some of the marine‐cemented limestones, aragonite biomoulds may include marine cement/sediment internally, suggesting that dissolution of aragonite can at times be wholly marine and not always involve meteoric influences. We suggest that marine cementation occurred preferentially, but not exclusively, during periods of relatively lowered sea level, probably glacio‐eustatically driven in the mid‐Tertiary. At times of reduced sea level, there was a relative increase in both the temperature and the carbonate saturation state of the shelf waters, and the locus of carbonate sedimentation shifted towards formerly deeper shelf sites, which now experienced increased swell wave and/or tidal energy levels, fostering sediment abrasion and reworking, reduced sedimentation rates and freer exchange of sediment pore‐waters. Energy levels were probably also enhanced by increased upwelling of cold, deep waters onto the Southern Ocean margins of the Australasian carbonate platforms, where water‐mass mixing, warming and loss of CO2 locally maintained critical levels of carbonate saturation for sea‐floor cement precipitation and promoted the phosphate‐glauconite mineralization associated with some of the marine‐cemented limestone units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号