首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new database of all astrometric observations of moons of asteroids is offered. It has a simple structure and is accessible through the Internet. Regular database updating is provided when new observational results occur in publications. The database is located at the sites of the Natural Satellites Data Center created as a result of collaboration between the Sternberg Astronomical Institute of Moscow State University and the Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE). The database addresses in the Internet are https://doi.org/www.sai.msu.ru/neb/nss/indexr.htm and https://doi.org/nsdb.imcce.fr/obsposrespectively. On entering these sites, we need to select one of three languages, the Observation item, and the Astrometric positions of asteroids with moons item. The observational data are provided here with explanations and hyperlinks to the publications in the bibliographic database SAO/NASA Astrophysics Data System (ADS) Abstract Service.  相似文献   

2.
We studied the occurrence and characteristics of geomagnetic storms associated with disk-centre full-halo coronal mass ejections (DC-FH-CMEs). Such coronal mass ejections (CMEs) can be considered as the most plausible cause of geomagnetic storms. We selected front-side full-halo coronal mass ejections detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO) from the beginning of 1996 till the end of 2015 with source locations between solar longitudes E10 and W10 and latitudes N20 and S20. The number of selected CMEs was 66 of which 33 (50%) were deduced to be the cause of 30 geomagnetic storms with \(\mathrm{Dst} \leq- 50~\mbox{nT}\). Of the 30 geomagnetic storms, 26 were associated with single disk-centre full-halo CMEs, while four storms were associated, in addition to at least one disk-centre full-halo CME, also with other halo or wide CMEs from the same active region. Thirteen of the 66 CMEs (20%) were associated with 13 storms with \(-100~\mbox{nT} < \mbox{Dst} \leq- 50~\mbox{nT}\), and 20 (30%) were associated with 17 storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\). We investigated the distributions and average values of parameters describing the DC-FH-CMEs and their interplanetary counterparts encountering Earth. These parameters included the CME sky-plane speed and direction parameter, associated solar soft X-ray flux, interplanetary magnetic field strength, \(B_{t}\), southward component of the interplanetary magnetic field, \(B_{s}\), solar wind speed, \(V_{sw}\), and the \(y\)-component of the solar wind electric field, \(E_{y}\). We found only a weak correlation between the Dst of the geomagnetic storms associated with DC-FH-CMEs and the CME sky-plane speed and the CME direction parameter, while the correlation was strong between the Dst and all the solar wind parameters (\(B_{t}\), \(B_{s}\), \(V_{sw}\), \(E_{y}\)) measured at 1 AU. We investigated the dependences of the properties of DC-FH-CMEs and the associated geomagnetic storms on different phases of solar cycles and the differences between Solar Cycles 23 and 24. In the rise phase of Solar Cycle 23 (SC23), five out of eight DC-FH-CMEs were geoeffective (\(\mbox{Dst} \leq- 50~\mbox{nT}\)). In the corresponding phase of SC24, only four DC-FH-CMEs were observed, three of which were nongeoeffective (\(\mbox{Dst} > - 50~\mbox{nT}\)). The largest number of DC-FH-CMEs occurred at the maximum phases of the cycles (21 and 17, respectively). Most of the storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\) occurred at or close to the maximum phases of the cycles. When comparing the storms during epochs of corresponding lengths in Solar Cycles 23 and 24, we found that during the first 85 months of Cycle 23 the geoeffectiveness rate of the disk-centre full-halo CMEs was 58% with an average minimum value of the Dst index of \(- 146~\mbox{nT}\). During the corresponding epoch of Cycle 24, only 35% of the disk-centre full-halo CMEs were geoeffective with an average value of Dst of \(- 97~\mbox{nT}\).  相似文献   

3.
Under the European Union 7th Framework Programme (EU FP7) project Coronal Mass Ejections and Solar Energetic Particles (COMESEP, http://comesep.aeronomy.be ), an automated space weather alert system has been developed to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. The COMESEP alert system uses the automated detection tool called Computer Aided CME Tracking (CACTus) to detect potentially threatening CMEs, a drag-based model (DBM) to predict their arrival, and a CME geoeffectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, the DBM calculates its arrival time at Earth and the CGFT calculates its geomagnetic risk level. The geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geoeffectiveness, as well as an estimate of the geomagnetic storm duration. We present the evaluation of the CME risk level forecast with the COMESEP alert system based on a study of geoeffective CMEs observed during 2014. The validation of the forecast tool is made by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of the DBM and CGFT (independent tools available at the Hvar Observatory website, http://oh.geof.unizg.hr ). The results indicate that the success rate of the forecast in its current form is unacceptably low for a realistic operation system. Human intervention improves the forecast, but the false-alarm rate remains unacceptably high. We discuss these results and their implications for possible improvement of the COMESEP alert system.  相似文献   

4.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

5.
We have applied the close binary system analysis program WinFitter, with its physically detailed fitting function, to an intensive study of the complex multiple system Kepler-13 using photometry data from all 13 short cadence quarters downloaded from the NASA Exoplanet Archive (NEA) (http://exoplanetarchive.ipac.caltech.edu). The data-point error of our normalized, phase-sequenced and binned (380 points per bin: 0.00025 phase interval) flux values, at 14 ppm, allows the model’s specification for the mean reference flux level of the system to a precision better than 1 ppm. Our photometrically derived values for the mass and radius of KOI13.01 are \(6.8\pm0.6~\mbox{M}_{\mathrm{J}}\) and \(1.44\pm0.04~\mbox{R}_{\mathrm{J}}\). The star has a radius of \(1.67\pm0.05~\mbox{R}_{\odot}\). Our modelling sets the mean of the orbital inclination \(i\) at \(94.35\pm0.14^{\circ}\), with the star’s mean precession angle \(\phi_{p}\)\(49.1\pm5.0^{\circ}\) and obliquity \(\theta_{o}\)\(67.9 \pm 3.0^{\circ}\), though there are known ambiguities about the sense in which such angles are measured.Our findings did not confirm secular variation in the transit modelling parameters greater than their full correlated errors, as argued by previous authors, when each quarter’s data was best-fitted with a determinable parameter set without prejudice. However, if we accept that most of the parameters remain the same for each transit, then we could confirm a small but steady diminution in the cosine of the orbital inclination over the 17 quarter timespan. This is accompanied by a slight increase of the star’s precession angle (less negative), but with no significant change in the obliquity of its spin axis. There are suggestions of a history of strong dynamical interaction with a highly distorted planet rotating in a 3:2 resonance with its revolution, together with a tidal lag of \(\sim30~\mbox{deg}\). The mean precessional period is derived to be about 1000 y, but at the present time the motion of the star’s rotation axis appears to be supporting the gravitational torque, rather than providing the balance against it that would be expected over long periods of time.The planet has a small but detectable backwarming effect on the star, which helps to explain the difference in brightness just after transit and just before occultation eclipses. In assessing these findings it is recognized that sources of uncertainty remain, notably with possible inherent micropulsational effects, variations from other components of the multiple star, stellar activity, differential rotation and the neglect of higher order terms (than \(r_{1}^{5}\)) in the fitting function, where \(r_{1}\) is the ratio of the radius of the star to the mean orbital separation of planet and host star.  相似文献   

6.
Recently we (Kahler and Ling, Solar Phys.292, 59, 2017: KL) have shown that time–intensity profiles [\(I(t)\)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [\(\alpha\) and \(\beta\)]. We now look for a simple correlation between an event peak energy intensity [\(I_{\mathrm{p}}\)] and the time integral of \(I(t)\) over the event duration: the fluence [\(F\)]. We first ask how the ratio of \(F/I_{\mathrm{p}}\) varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both \(F\) and \(I_{\mathrm{p}}\) were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4?–?13 MeV band to \(E > 100~\mbox{MeV}\). Within each group of SEP events, we find a very robust correlation (\(\mathrm{CC} > 0.90\)) in log–log plots of \(F\)versus\(I_{\mathrm{p}}\) over four decades of \(I_{\mathrm{p}}\). The ratio increases from western to eastern longitudes. From the value of \(I_{\mathrm{p}}\) for a given event, \(F\) can be estimated to within a standard deviation of a factor of \({\leq}\,2\). Log–log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of \({<}\,1\) and decreasing with increasing energy for their four energy ranges from \(E > 10~\mbox{MeV}\) to \({>}\,100~\mbox{MeV}\). This difference is not explained.  相似文献   

7.
Seismic maps of the Sun’s far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun ( http://jsoc.stanford.edu/data/farside/ ). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.  相似文献   

8.
Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 30?–?80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called “stria” bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of \((0.1\,\mbox{--}\,0.6)c\). Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency. The striae bandwidths are in the range of \({\approx}\,(20\,\mbox{--}\,100)\) kHz and the striae drift rates vary from zero to \({\approx}\,0.3~\mbox{MHz}\,\mbox{s}^{-1}\). The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of \(\Delta n/n\sim10^{-3}\), their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of \(400\,\mbox{--}\,800~\mbox{km}\,\mbox{s}^{-1}\). These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves.  相似文献   

9.
We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986–2008, in order to investigate the long- and mid-term periodicities including the Rieger (\({\sim }130\) to \({\sim }190\) days), quasi-period (\({\sim }200\) to \({\sim }374\) days), and quasi-biennial periodicities (\({\sim }1.20\) to \({\sim }3.27\) years) during the combined solar cycles 22–23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of \({\sim }1.43\) years and for solar flare index of \({\sim }1.41\) year, and galactic cosmic ray, \({\sim }1.35\) year, during combined solar cycles 22–23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22–23, we found that galactic cosmic ray modulation at mid cut-off rigidity (\(\hbox {Rc} = 2.43\hbox {GV}\)) is anti-correlated with time-lag of few months.  相似文献   

10.
We aim to probe the dynamic structure of the extended Solar neighborhood by calculating the radial metallicity gradients from orbit properties, which are obtained for axisymmetric and non-axisymmetric potential models, of red clump (RC) stars selected from the RAdial Velocity Experiment’s Fourth Data Release. Distances are obtained by assuming a single absolute magnitude value in near-infrared, i.e. \(M_{Ks}=-1.54\pm0.04\) mag, for each RC star. Stellar orbit parameters are calculated by using the potential functions: (i) for the MWPotential2014 potential, (ii) for the same potential with perturbation functions of the Galactic bar and transient spiral arms. The stellar age is calculated with a method based on Bayesian statistics. The radial metallicity gradients are evaluated based on the maximum vertical distance (\(z_{max}\)) from the Galactic plane and the planar eccentricity (\(e_{p}\)) of RC stars for both of the potential models. The largest radial metallicity gradient in the \(0< z_{max} \leq0.5\) kpc distance interval is \(-0.065\pm0.005~\mbox{dex}\,\mbox{kpc}^{-1}\) for a subsample with \(e_{p}\leq0.1\), while the lowest value is \(-0.014\pm0.006~\mbox{dex}\,\mbox{kpc}^{-1}\) for the subsample with \(e_{p}\leq0.5\). We find that at \(z_{max}>1\) kpc, the radial metallicity gradients have zero or positive values and they do not depend on \(e_{p}\) subsamples. There is a large radial metallicity gradient for thin disc, but no radial gradient found for thick disc. Moreover, the largest radial metallicity gradients are obtained where the outer Lindblad resonance region is effective. We claim that this apparent change in radial metallicity gradients in the thin disc is a result of orbital perturbation originating from the existing resonance regions.  相似文献   

11.
In this work we present the first attempt of modelling the deuterium chemistry in the massive young protostellar core NGC 2264 CMM3. We investigated the sensitivity of this chemistry to the physical conditions in its surrounding environment. The results showed that deuteration, in the protostellar gas, is affected by variations in the core density, the amount of gas depletion onto grain surfaces, the CR ionisation rate, but it is insensitive to variations in the H2 ortho-to-para ratio.Our results, also, showed that deuteration is often enhanced in less-dense, partially depleted (\(<85\%\)), or cores that are exerted to high CR ionisation rates (\(\ge6.5\times10^{-17}~\mbox{s}^{-1}\)). However, in NGC 2264 CMM3, decreasing the amount of gas depleted onto grains and enhancing the CR ionisation rate are often overestimating the observed values in the core. The best fit time to observations occurs around \((1\mbox{--}5) \times 10^{4}~\mbox{yrs}\) for core densities in the range \((1\mbox{--}5)\times10^{6}~\mbox{cm}^{-3}\) with CR ionisation rate between \((1.7\mbox{--}6.5)\times10^{-17}~\mbox{s}^{-1}\). These values are in agreement with the results of the most recent theoretical chemical model of CMM3, and the time range of best fit is, also, in-line with the estimated age of young protostellar objects.We conclude that deuterium chemistry in protostellar cores is: (i) sensitive to variations in the physical conditions in its environment, (ii) insensitive to changes in the H2 ortho-to-para ratio. We also conclude that the core NGC 2264 CMM3 is in its early stages of chemical evolution with an estimated age of \((1\mbox{--}5)\times10^{4}~\mbox{yrs}\).  相似文献   

12.
On 27 June 2012, an eruptive solar prominence was observed in the extreme ultraviolet (EUV) and radio wavebands. At the Aalto University Metsähovi Radio Observatory (MRO) it was observed at 37 GHz. It was the first time that the MRO followed a radio prominence with dense sampling in the millimetre wavelengths. This prompted us to study the connection of the 37 GHz event with other wavelength domains. At 37 GHz, the prominence was tracked to a height of around \(1.6~\mathrm{R}_{\odot}\), at which the loop structure collapsed. The average velocity of the radio prominence was \(55 \pm 6~\mbox{km}\,\mbox{s}^{-1}\). The brightness temperature of the prominence varied between \(800 \pm 100\) K and \(3200 \pm 100\) K. We compared our data with the Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) instrument’s 304 Å EUV data, and found that the prominence behaves very similarly in both wavelengths. The EUV data also reveal flaring activity nearby the prominence. We present a scenario in which this flare works as a trigger that causes the prominence to move from a stable stage to an acceleration stage.  相似文献   

13.
14.
We use a secular representation to describe the long-term dynamics of transneptunian objects in mean-motion resonance with Neptune. The model applied is thoroughly described in Saillenfest et al. (Celest Mech Dyn Astron, doi: 10.1007/s10569-016-9700-5, 2016). The parameter space is systematically explored, showing that the secular trajectories depend little on the resonance order. High-amplitude oscillations of the perihelion distance are reported and localised in the space of the orbital parameters. In particular, we show that a large perihelion distance is not a sufficient criterion to declare that an object is detached from the planets. Such a mechanism, though, is found unable to explain the orbits of Sedna or \(2012\text {VP}_{113}\), which are insufficiently inclined (considering their high perihelion distance) to be possibly driven by such a resonant dynamics. The secular representation highlights the existence of a high-perihelion accumulation zone due to resonances of type 1:k with Neptune. That region is found to be located roughly at \(a\in [100;300]\) AU, \(q\in [50;70]\) AU and \(I\in [30;50]^{\circ }\). In addition to the flux of objects directly coming from the Scattered Disc, numerical simulations show that the Oort Cloud is also a substantial source for such objects. Naturally, as that mechanism relies on fragile captures in high-order resonances, our conclusions break down in the case of a significant external perturber. The detection of such a reservoir could thus be an observational constraint to probe the external Solar System.  相似文献   

15.
We clarify the uncertainty in the inferred magnetic field vector via the Hanle diagnostics of the hydrogen Lyman-\(\upalpha\) line when the stratification of the underlying atmosphere is unknown. We calculate the anisotropy of the radiation field with plane-parallel semi-empirical models under the nonlocal thermal equilibrium condition and derive linear polarization signals for all possible parameters of magnetic field vectors based on an analytical solution of the atomic polarization and Hanle effect. We find that the semi-empirical models of the inter-network region (FAL-A) and network region (FAL-F) show similar degrees of anisotropy in the radiation field, and this similarity results in an acceptable inversion error (e.g., \({\sim}\, 40~\mbox{G}\) instead of 50 G in field strength and \({\sim}\,100^{\circ}\) instead of \(90^{\circ}\) in inclination) when FAL-A and FAL-F are swapped. However, the semi-empirical models of FAL-C (averaged quiet-Sun model including both inter-network and network regions) and FAL-P (plage regions) yield an atomic polarization that deviates from all other models, which makes it difficult to precisely determine the magnetic field vector if the correct atmospheric model is not known (e.g., the inversion error is much larger than 40% of the field strength; \({>}\,70~\mbox{G}\) instead of \(50~\mbox{G}\)). These results clearly demonstrate that the choice of model atmosphere is important for Hanle diagnostics. As is well known, one way to constrain the average atmospheric stratification is to measure the center-to-limb variation of the linear polarization signals. The dependence of the center-to-limb variations on the atmospheric model is also presented in this paper.  相似文献   

16.
We examine the dynamical behavior of accretion flow around XTE J1859+226 during the 1999 outburst by analyzing the entire outburst data (~166 days) from RXTE Satellite. Towards this, we study the hysteresis behavior in the hardness intensity diagram (HID) based on the broadband (3–150 keV) spectral modeling, spectral signature of jet ejection and the evolution of Quasi-periodic Oscillation (QPO) frequencies using the two-component advective flow model around a black hole. We compute the flow parameters, namely Keplerian accretion rate (\({\dot{m}}_{d}\)), sub-Keplerian accretion rate (\({\dot{m}}_{h}\)), shock location (\(r_{s}\)) and black hole mass (\(M_{\mathit{bh}}\)) from the spectral modeling and study their evolution along the q-diagram. Subsequently, the kinetic jet power is computed as \(L^{\mathrm{obs}}_{\mathrm{jet}} \sim3\mbox{--}6 \times10^{37}~\mbox{erg}\,\mbox{s}^{-1}\) during one of the observed radio flares which indicates that jet power corresponds to 8–16% mass outflow rate from the disc. This estimate of mass outflow rate is in close agreement with the change in total accretion rate (~14%) required for spectral modeling before and during the flare. Finally, we provide a mass estimate of the source XTE J1859+226 based on the spectral modeling that lies in the range of 5.2–7.9 \(M_{\odot}\) with 90% confidence.  相似文献   

17.
A new model is proposed to forecast the peak sunspot activity of the upcoming solar cycle (SC) using Shannon entropy estimates related to the declining phase of the preceding SC. Daily and monthly smoothed international sunspot numbers are used in the present study. The Shannon entropy is the measure of inherent randomness in the SC and is found to vary with the phase of an SC as it progresses. In this model each SC with length \(T_{\mathrm{cy}}\) is divided into five equal parts of duration \(T_{\mathrm{cy}}/5\). Each part is considered as one phase, and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for each of these five phases are obtained for the \(n\)th SC starting from \(n=10\,\mbox{--}\,23\). We find that the Shannon entropy during the ending phase (P5) of the \(n\)th SC can be efficiently used to predict the peak smoothed sunspot number of the \((n+1)\)th SC, i.e. \(S_{\mathrm{max}}^{n+1}\). The prediction equation derived in this study has a good correlation coefficient of 0.94. A noticeable decrease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the upcoming SC 25 will be significantly weaker and comparable to the solar activity observed during the Dalton minimum in the past.  相似文献   

18.
We present 5.5 and 9.0 GHz Australia Telescope Compact Array (ATCA) observations of the cluster MACSJ0417.5-1154, one of the most massive galaxy clusters and one of the brightest in X-ray in the Massive Cluster Survey (MACS). We estimate diffuse emission at 5.5 and 9.0 GHz from our ATCA observations, and compare the results with the 235 MHz and 610 MHz GMRT observations and 1575 MHz VLA observations. We also estimate the diffuse emission at low frequencies from existing GLEAM survey data (using the MWA telescope (http://www.mwatelescope.org)), and find that the steepening reported in earlier studies may have been an artefact of underestimates of diffuse emission at low frequencies. High-frequency radio observations of galaxy cluster mergers therefore provide an important complement to low-frequency observations, not only for a probing the ‘on’ and ‘off’ state of radio halos in these mergers, but also to constrain energetics of cluster mergers. We comment on the future directions that further studies of this cluster can take.  相似文献   

19.
The requirement that their gravitational binding self-energy density must at least equal the background repulsive dark energy density for large scale cosmic structures implies a mass-radius relation of \({M} / {R^{2}} \approx 1~\mbox{g}/{\mbox{cm}^{2}}\), as pointed out earlier. This relation seems to hold true for primeval galaxies as well as those at present epoch. This could set constraints on the nature and evolution of dark energy. Besides, we also set constraints on the size of galaxy clusters and superclusters due to the repulsive cosmological dark energy. This could indicate as to why large scale cosmic structures much larger than ~200 Mpc are not seen.  相似文献   

20.
We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is \(113\pm 1.6~\mbox{days}\) while we detected much longer periodicities (\(327\pm 13\), \(312 \pm 11\), and \(256\pm 8~\mbox{days}\)) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding \(55\pm 0.7~\mbox{days}\) during Solar Cycles 22 and 24, while a \(113\pm 1.3~\mbox{days}\) period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only \(31\pm 0.2~\mbox{days}\) for Cycle 22 and \(72\pm 1.3~\mbox{days}\) for the current Cycle 24, while the largest measured period was \(327\pm 13~\mbox{days}\) during Solar Cycle 23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号