首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
定义了印度洋-太平洋暖池的强度变化指数和面积变化指数,分析了其年代际变化的特征。结果表明:20世纪40年代以前,暖池强度和面积基本没有明显的变化趋势;40-80年代,有一个相对较小的增加趋势;80年代以后至2000年增加的趋势加大。将水平风速分解为无辐散分量和无旋分量,分析了暖池上空大气环流对该暖池年代际变化的响应,发现尽管暖池上空大气环流对该暖池年代际变化的响应并不十分明显,但在特定的季节和特定的对流层高度上这种响应也是明显的。  相似文献   

2.
本文以中美双边TOGA考察期间所获得的资料为主,说明了1986/1987年埃尔尼诺期间,热带西太平洋上层热结构和海洋环流的异常变化.讨论了这些异常变化对西北太平洋副热带高压的影响.在埃尔尼诺期间,(1)热带西太平洋东部(以165°E断面的次表层温度资料为代表),高于29℃的表层暧水沿经向扩展,使大面积的海表面出现温度正距平;(2)在热带西太平洋西部(以137°E断面的次表层温度资料为代表),表层暖水(T>28℃)的横截面积变小;表层温度出现负距平;(3)165°E断面的上层东向流增强;(4)从黑潮源地,即18°20'N以南、130°E以西至菲律宾沿岸的热带洋域向北的暖水流量变小.在这些异常变化发生时,西北太平洋低空(1 000hPa)的大气辐散加强,这有利于西北太平洋副高的加强.  相似文献   

3.
李强  冯俊乔  胡石建  胡敦欣 《海洋科学》2013,37(10):120-131
为了描述北太平洋上空Hadley 环流的纬向结构特征, 利用NCEP 再分析资料(1979~2010 年), 研究了北太平洋上空Hadley 环流纬向结构的季节和年际变化。发现在西太平洋, Hadley 环流季节性上升支呈西北-东南倾斜, 其垂向核心位于对流层中层, 纬向核心在北半球冬季(夏季)位于日界线附近(150°E); 而永久性上升支主要在东太平洋, 其垂向核心位于对流层低层, 且沿经度东移逐渐增强。根据纬向环流结构特征, 北半球冬季环流形态分为3 个区域: 160°E 以西, 主要表现为低层辐合高层辐散;160°E~130°W, 主要表现为高层辐合; 130°W 以东, 表现为低层辐合高层辐散特征。相似地, 北半球夏季环流形态也可沿纬向分为如下3 个区域: 165°E 以西、165°E~165°W 和165°W 以东, 分别对应东亚夏季风主导经圈环流区、过渡区、Hadley 环流主导经圈环流区。在年际变化上, 北太平洋Hadley 环流与ENSO 有很强的相关, 这与前人的研究是一致的。因此北太平洋上空Hadley 环流具有显著的空间性态, 并且对应时间尺度不同, 影响其变化的主要因素也不尽相同。  相似文献   

4.
许多文献认为,在一定距离(约700—800海里)以内,双台风会发生相互旋转和相互吸引,这就是“藤原效应”,本文研究表明,在间距20°纬距以内,双台风发生明显气旋式互旋(12小时互旋角Δθ≥+10°)的仅占总数的30.3%,而且东台风处于西台风的东北象限时,发生明显互旋的机率要比东南象限大,这表明环境流场的引导作用有着重要影响。我们对13个双台风47时次资料,计算了藤原效应和环境流场引导作用引起的双台风互旋角速度,并加以比较,得出结论;双台风中心间距在7°纬距以内时,藤原效应起主要作用,7°—15°纬距时,环境流场引导气流起主要作用,间距15°纬距以上时,不适用藤原效应。  相似文献   

5.
印度洋-太平洋暖池季节变化及其相应的大气环流形式   总被引:1,自引:1,他引:0  
首先通过对英国大气科学数据中心海表面温度资料和Levitus随深度变化的海温资料的分析,给出了印度洋-太平洋暖池季节变化的详细描述.另外,利用NCEP/NCAR再分析大气资料中的风场数据,采取将水平风场分量分解为无辐散分量和无旋分量的方法,分析了相应于暖池季节变化的大气环流形式.得到了这样的结论:第一,印度洋-太平洋暖池的位置随季节变化南北移动;暖池面积在北半球的5月和9月达到两个极大值;无论就海表面温度还是深度而言,该暖池分别存在一或两个强度中心.第二,尽管印度洋-太平洋暖池中间被南亚大陆所间隔,但是暖池上空对流层大气运动对于暖池的季节变化却是作为一个整体响应的.  相似文献   

6.
利用1992~2001年Topex/Poseidon卫星高度计遥感资料分析了太平洋东南海域 (5°~55°S ,70°~110°W)海面高度的季节及年际变化特征。研究结果表明 ,海区海面高度的季节变化总体上受太阳辐射季节变化的影响 ,南半球夏季 (1~3月 )和秋季 (4~6月 )大致为正距平 ,而冬季 (7~9月 )和春季 (10~12月 )大致为负距平 ,1996~1998年除外 ;同时 ,受季节性风场、海区罗斯贝波等的影响 ,海面高度变化的区域特征性很强。海面高度的年际变化在低纬处和沿岸还受ElNino影响。  相似文献   

7.
2016年秋季热带西太平洋网采浮游植物群落结构   总被引:1,自引:0,他引:1  
陈卓  孙军  张桂成 《海洋科学》2018,42(7):114-130
作者于2016年9月27日~10月25日对热带西太平洋(0°~20°N, 120°~130°E)10个站位的网采浮游植物群落结构进行了采样调查。应用Uterm?hl方法对调查海域浮游植物的物种组成、细胞丰度、优势物种以及群落多样性等相关生态特征进行了分析。希望为热带西太平洋提供一些基础的背景资料,为以后的研究奠定基础。结果表明, 鉴定出浮游植物共计4门、66属、243种(包括变种、变型), 含硅藻门(Bacillariophyta)34属、103种, 甲藻门(Pyrrophyta)28属、133种, 金藻门(Chrysophyta)2属、4种,蓝藻门(Cyanophyta)2属、3种。浮游植物细胞丰度1 965.573×103 细胞/m3 , 其中蓝藻的细胞丰度为1 945.169×103 细胞/m3 , 决定了浮游植物的分布格局, 占总细胞丰度的98.96%, 高值区分布在0°N130°E-10°N130°E的4个站位(E130-13、E130-15、E130-17、E130-19); 硅藻丰度在20°N断面N20-4站位存在高值区; 甲藻丰度在130°E断面的3个站位(E130-10、E130-13、E130-15)存在高值区。本次调查的优势种依次为铁氏束毛藻(Trichodesmium thiebaultii)、扁形原甲藻(Prorocentrum compressum)、扁豆原甲藻(Prorocentrum leniculatum)、胞内植生藻(Richelia intracellularis)、菱形海线藻(Thalassionema nitzschioides)、细弱海链藻(Thalassiosira subtilis)、具边线形圆筛藻(Coscinodiscus marginato-lineatus)、科氏角藻(Ceratium kofoidii)、鲁比膝沟藻(Gonyaulax lurbynaii)、中华半管藻(Hemiaulus sinensis)、霍氏半管藻(Hemiaulus hauckii)、小等刺硅鞭藻(Dictyocha fibula)。Shannon-Weiner多样性指数的均值为2.440,Pielou 均匀度指数的均值为0.163。相关分析结果显示浮游植物空间分布主要受PO4-P、NH4-N的影响,且由蓝藻的相关性决定的。聚类分析得出群落结构分为大洋群聚和近岸群聚两种类型(其中大洋群聚的站位又划分为0°~10°N纬度范围聚集和10°~20°N纬度范围聚集)。  相似文献   

8.
本文运用90—180°E热带地区的多种月平均资料及恢平均资料,对1985年7月弱辐合带和8月强辐合带的热带大气环流特点作了分析。得到:强辐合带时,对流层低层来自南半球的越赤道气流范围广、强度强,南亚西南季风强,辐合带位置偏北且辐合强,西北太平洋台风发生的主要地区海平面气压月距平为负值区及微弱正值区;对流层上部从北半球向南半球的越赤道气流也强,且南风分量在垂直方向上自下而上递减,200hPa上强烈辐散处的下方为低空辐合带,对流层上部槽(以下简称TUTT)的位置较常年偏北、偏西。弱辐合带时的情况则相反或有着很大不同。  相似文献   

9.
夏季影响105°E越赤道气流变化的环流系统   总被引:5,自引:0,他引:5  
105°E越赤道气流的发展变化与南北半球的大气环流系统发展变化有关,但这些环流系统并非同时起同样重要的作用。作者利用候平均Outgoing Longwave Radiation (简称OLR)资料与850hPa风场资料(1979~1986年)对热带东印度洋—西太平洋海域与(夏季)越赤道气流有关的环流系统做相关分析和越赤道气流偏强类合成分析。结果表明,夏季海洋大陆赤道缓冲区的对流上升运动(90°E~120°E,5°N~5°S)、澳州大陆冷性高压(10°S~30°S,120°E~155°E)的发展,都影响2~3候以后105°E夏季越赤道气流;澳洲大陆北部的冷性高压,西太平洋副热带高压西端位置西伸或东缩造成的东中国海季风区上升运动的变化,又是南北半球环流同时影响CEF变化的具体表现。南半球澳洲冷性高压北部(10°S~25°S,120°E~170°E)的辐散下沉气流对CEF加强起决定作用。  相似文献   

10.
利用1982年1月至2001年12月逐日的Re_NCEP南海海表面潜热通量资料,分析了南海夏季西南季风爆发早年和晚年潜热通量在南海的时空分布特征;并通过相关对比诊断分析了潜热通量对西南季风爆发及强度的影响,初步给出了其动力学机理。结果表明,季风爆发早、晚年的前一年冬季至初春(12~3月),南海南部(5°~13°N,100°~120°E)和北部(13°~22°N,105°~120°E)的潜热通量距平符号相反,呈现反位相,季风爆发早(晚)年,前一年冬季至次年初春,南海北部的潜热通量为正(负)距平,南海南部则为负(正)距平;在季风爆发的早年和晚年,南海潜热通量表现出明显的差异,春、夏、秋季南海潜热通量正距平持续时间短(长),季风强度偏弱(强)。南海北部的潜热通量和南海北部季风强度隔季正相关。当潜热通量为正(负)距平时,同期和滞后1~3个月的海温均为负(正)异常,加大(减小)了春季南海和周围陆地陆暖海冷的海陆温差,有利于西南季风在南海北部的早(晚)爆发,西南风异常偏强(弱)。  相似文献   

11.
We introduce the Northern Oscillation Index (NOI), a new index of climate variability based on the difference in sea level pressure (SLP) anomalies at the North Pacific High (NPH) in the northeast Pacific (NEP) and near Darwin, Australia, in a climatologically low SLP region. These two locations are centers of action for the north Pacific Hadley–Walker atmospheric circulation. SLPs at these sites have a strong negative correlation that reflects their roles in this circulation. Global atmospheric circulation anomaly patterns indicate that the NEP is linked to the western tropical Pacific and southeast Asia via atmospheric wave trains associated with fluctuations in this circulation. Thus the NOI represents a wide range of tropical and extratropical climate events impacting the north Pacific on intraseasonal, interannual, and decadal scales. The NOI is roughly the north Pacific equivalent of the Southern Oscillation Index (SOI), but extends between the tropics and extratropics. Because the NOI is partially based in the NEP, it provides a more direct indication of the mechanisms by which global-scale climate events affect the north Pacific and North America.The NOI is dominated by interannual variations associated with El Niño and La Niña (EN/LN) events. Large positive (negative) index values are usually associated with LN (EN) and negative (positive) upper ocean temperature anomalies in the NEP, particularly along the North American west coast. The NOI and SOI are highly correlated, but are clearly different in several respects. EN/LN variations tend to be represented by larger swings in the NOI. Forty percent of the interannual moderate and strong interannual NOI events are seen by the SOI as events that are either weak or opposite in sign. The NOI appears to be a better index of environmental variability in the NEP than the SOI, and NPH SLP alone, suggesting the NOI is more effective at incorporating the influences of regional and remotely teleconnected climate processes.The NOI contains alternating decadal-scale periods dominated by positive and negative values, suggesting substantial climate shifts on a roughly 14-year ‘cycle’. The NOI was predominantly positive prior to 1965, during 1970–1976 and 1984–1991, and since 1998. Negative values predominated in 1965–1970, 1977–1983, and 1991–1998. In the NEP, interannual and decadal-scale negative NOI periods (e.g. EN events) are generally associated with weaker trade winds, weaker coastal upwelling-favorable winds, warmer upper ocean temperatures, lower Pacific Northwest salmon catch, higher Alaska salmon catch, and generally decreased macrozooplankton biomass off southern California. The opposite physical and biological patterns generally occur when the index is positive. Simultaneous correlations of the NOI with north Pacific upper ocean temperature anomalies are greatest during the boreal winter and spring. Lagged correlations of the winter and spring NOI with subsequent upper ocean temperatures are high for several seasons. The relationships between the NOI and atmospheric and physical and biological oceanic anomalies in the NEP indicate this index is a useful diagnostic of climate change in the NEP, and suggest mechanisms linking variations in the physical environment to marine resources on interannual to decadal climate scales. The NOI time series is available online at: http://www.pfeg.noaa.gov.  相似文献   

12.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

13.
基于 TOGA- TAO锚定于热带太平洋海区的 53个浮标站 1994年冬季海表温度 ( SST)资料 ,采用多种分析非线性动力系统的方法。如谱分析 ,相空间重构法等 ,以及计算描述混沌行为的重要指标 ,如分维数、L yapunov指数等 ,对热带太平洋是否存在混沌现象进行判别分析。发现在热带太平洋 130°W至 12 0°W之间存在强混沌区 ,在西边界附近也存在混沌区。但通过吸引子的相型可以看出热带东太平洋与西太平洋是不同性质的非线性动力系统 ,导致系统出现混沌现象的原因可能是不同的。  相似文献   

14.
CCSM3对太平洋年代际振荡的敏感性试验   总被引:1,自引:0,他引:1  
利用NCAR的CCSM3模式进行控制试验和1870-1999年的130 a模拟试验(敏感性试验),与相应的再分析资料进行对比,分析了太平洋海区的海温变化趋势和北太平洋年代际变率的时空结构,并且讨论了CO2对于北太平洋年代际变率的影响.结果表明:CCSM3模式能够模拟出北太平洋年代际变率的主要特征,其空间分布类似于典型的...  相似文献   

15.
利用2008年大洋环球航次,研究了热带、亚热带太平洋和南印度洋中束毛藻丰度的大尺度分布特征,结果表明:在亚热带西北太平洋和热带东南亚海域束毛藻藻丝平均丰度较高,分别为25.2×103和33.3×103m-3,在热带中太平洋、热带东太平洋和南印度洋束毛藻平均丰度较低,分别为1.76×103,0.87×103和1.52×103m-3。各海区束毛藻丰度与水温无明显相关关系。总叶绿素a的分布特征与束毛藻不同,在太平洋呈西低、东高,在热带东南亚海域较高而在南印度洋较低,从总叶绿素a的粒级结构看,微微型浮游植物(0.2~2μm)所占比重最高,其次是微型浮游植物(2~20μm),小型浮游植物(20μm)所占比重最低。各海区束毛藻对总叶绿素a贡献的比例不同,在亚热带西北太平洋和热带东南亚海域较高,分别占总叶绿素a的7.79%和3.92%,在热带中太平洋、热带东太平洋和南印度洋占总叶绿素a的比例较低,均低于1%。在亚热带西北太平洋束毛藻固氮占真光层总新氮输入量的比例较高,这是该海域新氮的重要来源之一,而在热带中太平洋和热带东太平洋束毛藻固氮对真光层新氮的贡献比例则很低。  相似文献   

16.
海水的氧饱和度与韦斯方程   总被引:2,自引:0,他引:2  
1973年 ,联合国教科文组织 (U NESCO)汇同英国国立海洋研究所 (NOI)联合颁布了“国际海洋学用表”第二卷 ,即由国际海洋学用表与标准联合专家小组监督制订 ,由 NOI与 UNESCO,依据韦斯方程编辑出版的海水氧饱和度表。韦斯方程是海水中氧的溶解度与温度和盐度关系的一组方程式 ,它提供了一种计算海水中氧的溶解度的简便而又系统的方法。本文主要介绍了韦斯方程的推导过程、计算方法、数据引用、适用范围及公式精度等技术问题 ,供海洋科技工作者研究、参考 ,以利于进一步提高海水溶解氧的观测技术及计量标准工作的水平  相似文献   

17.
南海与西太平洋海水的交换:氧、氦同位素证据   总被引:3,自引:0,他引:3  
研究了西太平洋海域(7°~26°N,122°~130°E)不同深度海水的氧、氦同位素组成和分布特征.结果表明,巴士海峡附近海域几个深度上δ18O等值线均向东弯曲,δ3He等值线也出现了类似的分布特征,可能反映了南海海水与黑潮水的混合作用.氧、氦同位素的研究结果为南海海水通过巴士海峡侵入了西太平洋提供了地球化学证据.  相似文献   

18.
冬季北太平洋西部上层海洋的热量输送   总被引:1,自引:2,他引:1  
用海气界面净热量收支和1950-1979年表层水温资料,计算了冬季北太平洋西部上层海洋热通量散度场,指出冬季北太平洋西部黑潮将大量低纬暖水输送到中高纬度海域,在30-35°N最大;亲潮将极地冷水沿千岛群岛向南输送,在45-50°N最大;两者在40°N附近相遇,混合减弱后沿纬向东传。同时用EOF分析方法对热通量散度距平场分型,前3个主要型分别为:黑潮亲潮偶合型、北太平洋海流型和冷平流优势型。最后还揭示了第一主要型与北太平洋副热带高压之间有意义的相关关系。  相似文献   

19.
The composition and distribution of helium and oxygen isotopes in samples of seawater obtained at depths from surface to 300 m in the western Pacific(7°-26°N,122°-130°E) were discussed in detail.The results show that both δ18O and δ3He isoline extend eastward in the Pacific side of the Bashi Channel, which may suggest that the South China Sea water intrudes into the western Pacific by the Bashi Channel.  相似文献   

20.
A new method is presented to process and correct full-depth current velocity data obtained from a lowered acoustic Doppler current profiler (LADCP). The analysis shows that, except near the surface, the echo intensity of a reflected sound pulse is closely correlated with the magnitude of the difference in vertical shear of velocity between downcast and upcast, indicating an error in velocity shear. The present method features the use of echo intensity for the correction of velocity shear. The correction values are determined as to fit LADCP velocity to shipboard ADCP (SADCP) and LADCP bottom-tracked velocities. The method is as follows. Initially, a profile of velocity relative to the sea surface is obtained by integrating vertical shears of velocity after low-quality data are rejected. Second, the relative velocity is fitted to the velocity at 100–800 dbar measured by SADCP to obtain an “absolute” velocity profile. Third, the velocity shear is corrected using the relationship between the errors in velocity shears and echo intensity, in order to adjust the velocity at sea bottom to the bottom-tracked velocity measured by LADCP. Finally, the velocity profile is obtained from the SADCP-fitted velocity at depths less than 800 dbar and the corrected velocity shear at depths greater than 800 dbar. This method is valid for a full-depth LADCP cast throughout which the echo intensity is relatively high (greater than 75 dB in the present analysis). Although the processed velocity may include errors of 1–2 cm s−1, this method produced qualitatively good current structures in the Northeast Pacific Basin that were consistent with the deep current structures inferred from silicate distribution, and the averaged velocities were significantly different from those calculated by the Visbeck (2002) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号