首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the results of an experiment conducted in May 2002 on the radio path St. Petersburg-Spitsbergen with a length of D = 2150 km and equipped with instrumentation for oblique ionospheric sounding (OIS). The features of OIS ionograms at various degrees of magnetic activity are revealed, and a comparison of these ionograms with the vertical sounding (VS) data at the Sodankyla observatory (Finland) is performed. This observatory is located near the reflection point of the path in question. In order to estimate the auroral absorption, riometer data from the Sodankyla observatory were included in the analysis of the OIS and VS ionograms. The merits of the OIS method as a diagnostic tool of ionospheroic plasma in comparison with VS at high latitudes are demonstrated. These merits are mainly formulated for magnetically disturbed periods: in the presence of B events (black-outs), anomalous sporadic Es formations, and a series of other events.  相似文献   

2.
Experimental results from SPEAR HF heating experiments in the polar ionosphere are examined. Bi-static scatter measurements of HF diagnostic signals were carried out on the Pori (Finland)–SPEAR–St. Petersburg path at operational frequencies of 11,755 and 15,400 kHz and the London–SPEAR–St. Petersburg path at frequencies of 12,095 and 17,700 kHz, using a Doppler spectral method. The SPEAR HF heating facility generates heater-induced artificial field-aligned small-scale irregularities (AFAIs), which can be detected by HF diagnostic bi-static radio scatter techniques at St. Petersburg at a distance of about 2000 km. In accordance with the Bragg condition, HF bi-static backscatters were sensitive to small-scale irregularities having spatial sizes of the order of 9–13 m across the geomagnetic field line. The properties and behaviour of AFAIs have been considered in the winter and summer seasons under quiet magnetic conditions and under various status of the polar ionosphere (the presence of “thick” and “thin” sporadic Es layers, different structures of the F2 layer). The experimental results obtained have shown that AFAIs can be excited in the F as well as in the E regions of the polar ionosphere. The excitation of a very intense wide-band spectral component with an abrupt increase in the spectral width up to 16–20 Hz has been found in the signals scattered from striations. Along with a wide-band component, a narrow-band spectral component can be also seen in the Doppler sonograms and in the average spectra of the signals scattered from the SPEAR-induced striations. AFAIs were excited even when the HF heater frequency was up to 0.5 MHz larger than the critical frequency. A simulation of the ray geometry for the diagnostic HF radio waves scattered from AFAIs in the polar ionosphere has been made for the geophysical conditions prevailing during experiments carried out in both the winter and summer seasons.  相似文献   

3.
Wave-like disturbances (WDs) with periods of 30–120 min at altitudes of 125–500 km (100–1000 km in individual experiments) have been studied. The measurements of total duration more than 400 h have been performed under the conditions of a quiet ionosphere as well as during magnetic and ionospheric storms and two solar eclipses. It has been indicated that WDs exist almost permanently in the ionosphere. The effect of powerful energy sources leads to a change in the WD character and to variations in the WD spectral composition and amplitudes. The latter substantially vary during a day and depending on the disturbance of the ionosphere. The WD relative amplitudes vary from several percent to several tens of percent.  相似文献   

4.
5.
The results of observations of the solar eclipse ionospheric effects on March 29, 2006, are presented. The observations were conducted using the partial reflection method near Nizhni Novgorod and the vertical sounding method at the automatic ionospheric station near Murmansk. It has been obtained that the electron density at altitudes of 77 and 91 km decreases by a factor of more than 4; in this case the response of the ionosphere at an altitude of 91 km lags behind the eclipse maximum phase on the Earth by approximately 20 min. It has been established that the eclipse in the E and F1 regions of the polar ionosphere causes a change in the electron density by 15–20%. The delay time of this effect varies from 12 to 24 min depending on the altitude. It has been registered that the reflection virtual altitude at altitudes of the ionospheric F region increases in Murmansk and Nizhni Novgorod.  相似文献   

6.
The data, obtained using the methods of partial reflections and ionosphere vertical sounding on the Kola Peninsula and in Scandinavia, at Tumannyi (69.0° N, 35.7° E) and Sodankyla (67.37°N, 26.63°E) observatories, have been analyzed in order to detect earthquake responses. The strong earthquakes have been considered: one earthquake with a magnitude of 7.7 occurred at 0819:25 UT on July 17, 2006, on the western coast of Indonesia (9.33° S, 107.26° E), and another earthquake with a magnitude of 6.2 occurred 2253:59 UT on May 26, 2006, on Yava (7.94° S, 110.32° E). These earthquakes, the epicenters of which were located in the same region and at identical depths (10 km), were observed under quiet conditions in the geomagnetic field (ΣK p = 5.7 and 6.3) and during small solar flares. The response of the ionosphere to these flares was mainly observed in the parameters of the lower ionosphere in the D and E regions. It has been found out that the period of variations in the ordinary component of the partially reflected signal at altitudes of the E region increased before the earthquake that occurred on July 17, 2006. The f min variations at Sodankyla observatory started 20 h before the earthquake. The periods of these variations were 3–6 h. The same periods were found in the variations in other ionospheric parameters (foEs and h’Es). The variations in the ordinary component of partially reflected signals with periods of 2–5 hours were observed on the day of another earthquake (May 26, 2006). Internal gravity waves with periods of several hours, which can be related to the earthquakes, were detected in the amplitude spectra of the ordinary component of partially reflected signals and in other parameters in the lower ionosphere.  相似文献   

7.
The specific features of radio propagation from the viewpoint of physics of processes in the polar ionosphere have been studied in the present work based on the oblique-incidence sounding of the ionosphere (OISI) on the St. Petersburg-Belyi Nos (Amderma) polar radio path during substorm activity in the summer months of 1997. The OISI data were used to find the following parameters: maximum observable frequency during signal reflection from the E s layer (EsMOF), maximum observable frequency during signal reflection from the F 2 layer (F2MOF), and lowest observable frequencies for the E s and F 2 layers (EsLOF and F2LOF, respectively). Absolute MOF and LOF values were also found out. The total number of received rays was determined in addition to the above parameters. Isolated substorms against a quiet background were selected for the studies. These substorms resulted in substantial changes in the ionospheric radio channel and propagation conditions along the path. The results of the studies are as follows. (1) The following distinct regularities in the HF propagation along the path have been determined: (i) the range of operational frequencies Δ = MOF-LOF becomes substantially narrower during substorms; (ii) the radio propagation mechanism changes during a substorm; (iii) during substorms, the auroral absorption substantially and partially increases in the course of the expansion and recovery phases, respectively; (iv) multiray effect sharply increases at the beginning of the substorm active phase (T 0). (2) The indications of changes in the radio propagation parameters, which can possibly be used to predict the beginning of substorm development, have been formulated. (3) All revealed regularities in the HF propagation in the auroral zone have been explained from the geophysical viewpoint. It is important to use these regularities to organize radio communication and to solve the problems within the scope of the Space Weather Program.  相似文献   

8.
The experimental ionograms of the oblique-incidence sounding of the ionosphere, obtained on the St. Petersburg-Spitsbergen high-latitude HF radio path during the magnetically quiet period December 14–15, 2001, are compared with the model calculations of radiowave trajectories. For this purpose, the corresponding oblique-incidence ionograms are numerically synthesized using the technique based on the shooting method and the computer program for constructing HF radiowave trajectories. The three-dimensional electron density distribution, calculated using the mathematical model of the high-latitude ionosphere previously developed at the Polar Geophysical Institute (PGI), is used to model radio propagation. The numerical calculations make it possible mainly to explain the specific features of the experimental data on the oblique-incidence sounding of the ionosphere.  相似文献   

9.
The behavior of the HF signal parameters during magnetic storms and substorms has bee experimentally studied simultaneously on the Kiruna-Kirkenes auroral path, Kiruna-Longyearbyen polar path, and Murmansk-St. Petersburg subauroral path. The first two paths are equipped with the instruments making it possible to measure the values of the signal-to-noise ratio, Doppler frequency shift, and elevation angle. The method of oblique sounding of the ionosphere (OSI) was used on the Murmansk-St. Petersburg path. Two substantial substorms, a moderate storm, and an intense storm occurred during the studied period. Some new regularities have been revealed. On the Kiruna-Kirkenes and Kiruna-Longyearbyen paths, the signalto-noise ratio increased (due to the transition from the F 2 signal reflections to the E s reflections), the elevation angle increased (due to an increase in the ionospheric F 2 layer height and a decrease in the critical frequency), and the Doppler shift increased (due to the variations in ionization and the appearance of ionospheric irregularities during a substorm) when the signal was reflected from the F 2 layer close to the moment of the substorm or storm beginning T 0. It is possible to control the so-called “main effect” in the ionosphere on the Murmansk-St. Petersburg path.  相似文献   

10.
A morphological analysis of the results of sounding the lower equatorial ionosphere (the D region) in the region of action of strong tropospheric vortex disturbances (tropical cyclones, TC) is presented in this work. Based on the rocket sounding of the lower ionosphere at Thumba rocket site (8° N, 77° E) in May–June 1985 and on the satellite monitoring of TC in the northern Indian Ocean, it is demonstrated that a sharp depletion (by a factor of 2–4) of the electron concentration at altitudes of 60–80 km could be a response of the ionosphere during the TC active phase. In this case the lower boundary of the D region rose by several kilometers (not more than 5 km), and the temperature in the region of the stratopause slightly (by 2°–3°) increases. It is assumed that internal gravity waves (IGWs) generated by TC cause the effect on the lower ion-osphere.  相似文献   

11.
The purpose of this paper is to study the effect of the main ionospheric trough location on the form of oblique sounding ionograms on the Murmansk-St. Petersburg subauroral radio path. Using a mathematical model of the high-latitude ionosphere, we have calculated four different distributions of electron density along the radio path. One of the distributions has been obtained when the trough is absent, and the remaining three distributions contain troughs of approximately identical depth and width but located at different distances from the ends of the radio path. Using the program of two-dimensional ray tracing, we numerically synthesized oblique-incidence ionograms for each of the four obtained distributions of electron density. The calculations have shown that the location of the main ionospheric trough affects considerably the shape of oblique-incidence ionograms.  相似文献   

12.
The results of ionosphere sounding in Yakutsk during the September 16, 2004, earthquake that occurred in east Yakutia are presented. Variations in the critical frequency and height of F 2-layer and the radio reflection arrival angles illustrating the dynamics of the ionospheric disturbance are shown.  相似文献   

13.
Based on beacon sounding the ionosphere using coherent signals of low-orbiting navigation satellites, the following parameters of medium-scale traveling ionospheric disturbances have been determined: the effective thickness of the atmospheric waveguide and the altitude of its longitudinal axis, the horizontal spatial period, the velocity, the maximum amplitudes of disturbances, and the inclination of the disturbance phase front. It has been found that the horizontal spatial period of studied disturbances increases with increasing distance to an initiating impact location and its delay. In this case the minimum value of the horizontal spatial period always exceeds ∼150 km, and the disturbance amplitude increases with increasing horizontal period and distance from the initiating disturbance location and with decreasing altitude of the main ionization maximum. All disturbance parameters are independent of the initiating impact nature. It has been found that disturbances with relative amplitudes of 0.1–0.7 are often observed. Disturbances that are registered more often travel southward, and their absolute velocities are 7–60 m/s.  相似文献   

14.
An annular eclipse occurred over Europe in the morning hours of 3 October 2005. The well-defined obscuration function of the solar radiation during the eclipse provided a good opportunity to study the ionospheric/thermospheric response to solar radiation changes. Since the peak electron density behavior of the ionospheric F2 layer follows the local balance of plasma production, loss and transport, the ionospheric plasma redistribution processes significantly affect the shape of the electron density profile. These processes are discussed here based on a comparison of vertical incidence sounding (VS) and vertical total electron content (TEC) data above-selected ionosonde stations in Europe. The equivalent slab thickness, derived with a time resolution of 10 min, provides relatively good information on the variation of the electron density profile during the eclipse. The computations reveal an increased width of the ionosphere around the maximum phase. As indicated by the available measurements over Spain, the photo production is significantly reduced during the event leading to a slower increase of the total ionization in comparison with the neighboring days. The supersonic motion of the Moon's cool shadow through the atmosphere may generate atmospheric gravity waves that propagate upward and are detectable as traveling ionospheric disturbances at ionospheric heights. High-frequency (HF) Doppler shift spectrograms were recorded during the eclipse showing a distinct disturbance along the eclipse path. Whereas the ionosonde measurements at the Ebro station/Spain in the vicinity of the eclipse path reveal the origin of the wave activity in the lower thermosphere below about 180 km altitude, the similar observations at Pruhonice/Czech Republic provide arguments to localize the origin of the abnormal waves in the middle atmosphere well below the ionospheric heights. Although ionosonde and HF Doppler measurements show enhanced wave activity, the TEC data analysis does not, which is an indication that the wave amplitudes are too small for detecting them via this interpolation method. The total ionization reduces up to about 30% during the event. A comparison with similar observations from the solar eclipse of 11 August 1999 revealed a quite different ionospheric behavior at different latitudes, a fact that needs further investigation.  相似文献   

15.
We present the results of studies of the subauroral and mid-latitude ionosphere variations in the north-eastern region of Asia. We used the data from network of vertical and oblique-incidence sounding ionosondes and optical measurements. Long-term experiments on the radio paths Magadan–Irkutsk and Norilsk–Irkutsk were carried out within the period 2005–2007. Vertical sounding stations operated in standard regime. Observation of airglow near Irkutsk was provided by the zenith photometer that measured intensities of 557.7 and 630.0 nm atomic oxygen emissions. The results may be summarized as follows. (1) Large daytime negative disturbances are observed during the main and recovery phases mainly at high latitudes, whereas the positive disturbances observed during the main phase at mid latitudes. The disturbances changed their sign between Yakutsk and Irkutsk. (2) During the main and recovery storm phases the fall of foF2 associated with the equatorward wall of the main ionospheric trough is observed in the afternoon and evening. (3) Fluctuations of the electron density more intensive at mid latitudes during the storm main phase are observed during all considered periods. They are classed as traveling ionospheric disturbances (TID). Such sharp gradients of electron density are responsible for the strong changes in the characteristics of the radio wave propagation, particularity MOF. (4) A large-scale ionospheric disturbance is noted at the meridional chain of ionosonds in December 2006 as the sharp increase of foF2. It appears in the evening in the minimum of Dst at high latitude and propagate to equator. (5) A maximum of 630 nm emission above Irkutsk corresponds to the foF2 increase. (6) The obtained experimental data on the net of vertical and oblique-incidence sounding with high time resolution show that such net is the effective facility to study the conditions of the radio wave propagation and can be used for the diagnostic of the ionosphere.  相似文献   

16.
利用射线追踪研究电离层扰动   总被引:8,自引:1,他引:7       下载免费PDF全文
基于返回散射探测的电离层扰动电离图,本文建立了一个新的对称的准余弦电离层扰动数学模型.基于这种模型,利用HF射线追踪技术合成了HF电离层返回散射电离图,并利用迭代的技术拟合了高频返回散射设备探测的电离层扰动电离图的Pmin-f曲线(Pmin为最小时延,f为工作频率),从而推断了沿探测路径电离层扰动区域的位置及大小,扰动的临界频率波动的幅度.最后基于这种电离层扰动模型,利用射线追踪技术描述了不同电离层扰动参数下的电波传播情况,研究了其天波传播的跳距、覆盖区域的大小及射线“俘获”等.  相似文献   

17.
The problem of radiosignal reflection from a plane layered isotropic ionosphere has been considered. The vertical sounding ionograms for ionospheric layers with a complicated structure have been modeled. It has been demonstrated that the structure of reflected signals depends on the degree of ionospheric irregularities. Diffuse reflection of radiosignals, caused by the vertical irregularity of the ionosphere, has been detected.  相似文献   

18.
Based on data from ground-based vertical sounding stations, the behaviors of the ionosphere F region before a strong M 6.8 earthquake off the coast of Hokkaido, Japan, and during the moderate magnetic storm before this earthquake are compared. It was found that the critical frequency of the ionosphere F region (foF2) above the Wakkanai ground-based ionosphere vertical sounding station, which was located in the preparation zone of this earthquake, suffered a long-term disturbance of slightly more than an hour nearly half a day before the earthquake. The magnitude of earthquake-induced disturbance is comparable to that caused by a magnetic storm.  相似文献   

19.
Quasi-wave disturbances in the topside daytime ionosphere, related to auroral activity, have been detected using the data of radiosounding onboard the Intercosmos-19 satellite on April 28, 1979. A disturbance was caused by an abrupt enhancement of the eastward electrojet, which was not reflected in the variations in the AE and AU indices. According to the estimates, the period of electron density disturbances was about 0.5 h, the velocity was 350 m/s, and the length along the meridian was several hundreds of kilometers, which corresponds to medium-scale traveling ionospheric disturbances (TIDs). The disturbance amplitude was only 30 km in the hmF2 variations and 0.20–0.25 MHz in the foF2 variations but increased to 0.25–0.30 MHz in the plasma frequency variations at satellite altitudes of 520–580 km with increasing altitude. It is impossible to register so weak short-period variations during ground-based sounding. The method for detecting disturbance spatial characteristics has been proposed. The disturbance spectrum including three quasiperiodic structures has been revealed using this method. The optimal estimates have been made for the trend, described by the polynomial of the third degree, and for the expansion of the residuals in terms of three harmonics.  相似文献   

20.
Tomography sounding data for the first half of November 2007 are presented. The sounding was conducted over three points located at the same meridian—Yuzhno-Sakhalinsk (47° N, 143° E), Poronaisk (49° N, 143° E), and Nogliki (51° N, 143° E)—in order to find the possible influence of a tropical cyclone on the upper ionosphere. A change in the foF2 parameter by on average no more than 10–20% is a possible response of the upper ionosphere localized over the tropical cyclone (TC) zone (in the given case, 25°–30° northward and 5°–20° eastward) at a distance of approximately 3800–5500 km from it. A decrease or, vice versa, an increase in foF2 is related to the delay of the measurement moment relative to the beginning of the TC action. The complexity of a morphological analysis of the given event is that a tropical cyclone is a “wideband” (in the longitudinal and, to a lesser degree, in the latitudinal directions) and lasting disturbance source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号