首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Soil-gas surveys are becoming more widely accepted as a tool for the preliminary determination of the extent of soil and ground water contamination by volatile organic compounds (VOCs). The interpretation of the results of published soil-gas surveys has been necessarily limited and qualitative due to a lack of adequate models. There has been considerable effort in the recent past to characterize the transport and fate of pesticides in soil. However, the behavior of pesticides generally differ substantially from those of VOCs.
This paper presents a computer model developed to simulate the diffusive transport of VOC vapor through unsaturated soils using a two-dimensional, finite-difference, solution to Fick's second law of diffusion. An effective diffusion coefficient that incorporates the effects of tortuosity, moisture content, and soil organic carbon content is computed. Although the model has not been validated due to the unavailability of adequate field or laboratory data, nevertheless, sensitivity analyses demonstrate the importance of soil moisture and, secondarily, organic matter content in controlling the migration of VOC vapor through the unsaturated zone. The interpretation of soil-gas surveys can be complicated by unknown spatial heterogeneities in soil moisture and organic carbon content, temporal variations in moisture content, extent of contaminant migration as a non-aqueous phase liquid and by the unknown extent of VOC liquid and contaminated ground water.  相似文献   

2.
Analysis of the vapor in passive vapor samplers retrieved from a streambed in fractured rock terrain implied that volatile organic carbon (VOC) discharge from ground water to surface water substantially increased following installation of a contaminant recovery well using air rotary drilling. The air rotary technique forced air into the aquifer near the stream. The injection produced an upward hydraulic gradient that appears to have transported water and contaminants from deeper parts of the aquifer through fractures into shallow parts of the aquifer. Once in the shallow flow regime, the contamination was transported to the stream, where it discharged during the next several weeks following well installation. After the recovery well was activated and began continuously pumping contaminated ground water to a treatment facility, the VOC concentrations in the stream bottom passive vapor samplers decreased to below detectable concentrations, suggesting that the withdrawal had captured the contaminated ground water that previously had discharged to the stream.  相似文献   

3.
Air sparging has been used for several years as an in situ technique for removing volatile compounds from contaminated ground water, but few studies have been completed to quantify the extent of remediation. To gain knowledge of the air flow and water behavior around air injection wells, laboratory tests and model simulations were completed at three injection flow rates (62, 187, and 283 lpm) in a cylindrical reactor (diameter - 1.2 m, depth = 0.65 m). Measurements of the air flux distribution were made across the surface of the reactor at 24 monitoring locations, six radial positions equally spaced along two orthogonal transects. Simulations using a multiphase flow model called T2VOC were completed for a homogeneous, axisymmetric configuration. Input parameters were independently measured soil properties. In all the experiments, about 75 percent of the flow injected exited the water table within 30 cm of the sparge well. Predictions with T2VOC showed the same. The averages of four flux measurements at a particular distance from the sparge well compare satisfactorily with T2VOC predictions. Measured flux values at a given radius varied by more than a factor of two, but the averages were consistent between experiments and agreed well with T2VOC simulations. The T2VOC prediction of the radial extent of sparging coincided with the distance out to which air flow from the sparge well could not be detected in the reactor. The sparging pattern was relatively unaffected by the air injection rate over the range of conditions studied. Changes in the injection rate resulted in nearly proportional changes in flux rates.  相似文献   

4.
Groundwater elevation fluctuation has been recognized as one mechanism causing temporal indoor air volatile organic chemical (VOC) impacts in vapor intrusion risk assessment guidance. For dissolved VOC sources, groundwater table fluctuation shortens/lengthens the transport pathway, and delivers dissolved contaminants to soils that are alternating between water saturated and variably saturated conditions, thereby enhancing volatilization potential. To date, this mechanism has not been assessed with field data, but enhanced VOC emission flux has been observed in lab-scale and modeling studies. This work evaluates the impact of groundwater elevation changes on VOC emission flux from a dissolved VOC plume into a house, supplemented with modeling results for cyclic groundwater elevation changes. Indoor air concentrations, air exchange rates, and depth to groundwater (DTW) were collected at the study house during an 86-d constant building underpressurization test. These data were used to calculate changes in trichloroethylene (TCE) emission flux to indoor air, during a period when DTW varied daily and seasonally from about 3.1 to 3.4 m below the building foundation (BF). Overall, TCE flux to indoor air varied by about 50% of the average, without any clear correlation to changes in DTW or its change rate. To complement the field study, TCE surface emission fluxes were simulated using a one-dimensional model (HYDRUS 1D) for conditions similar to the field site. Simulation results showed time-averaged surface TCE fluxes for cyclic water-table elevations were greater than for stationary water-table conditions at an equivalent time-averaged water-table position. The magnitudes of temporal TCE emission flux changes were generally less than 50% of the time-averaged flux, consistent with the field site observations. Simulation results also suggested that TCE emission flux changes due to groundwater fluctuation are likely to be significant at sites with shallow groundwater (e.g., < 0.5 m BF) and permeable soil types (e.g., sand).  相似文献   

5.
Temporal and spatial variability of indoor air volatile organic compound (VOC) concentrations can complicate vapor intrusion (VI) assessment and decision-making. Indicators and tracers (I&T) of VI, such as differential temperature, differential pressure, and indoor radon concentration, are low-cost lines of evidence to support sampling scheduling and interpretation of indoor air VOC sampling results. This study compares peak indoor air chlorinated VOC concentrations and I&T conditions before and during those peak events at five VI sites. The sites differ geographically and in their VI conceptual site models (CSM). Relative to site-specific baseline values, the results show that cold or falling outdoor temperatures, rising cross slab differential pressures, and increasing indoor radon concentrations can predict peak VOC concentrations. However, cold outdoor air temperature was not useful at one site where elevated shallow soil temperature was a better predictor. Correlations of peak VOC concentrations to elevated or rising barometric pressure and low wind speed were also observed with some exceptions. This study shows how the independent variables that control or predict peak indoor air VOC concentrations are specific to building types, climates, and VI CSMs. More I&T measurements at VI sites are needed to identify scenario-specific baseline and peak related I&T conditions to improve decision-making.  相似文献   

6.
Vapor intrusion pathway evaluations commonly begin with a comparison of volatile organic chemical (VOC) concentrations in groundwater to generic, or Tier 1, screening levels. These screening levels are typically quite low reflecting both a desired level of conservatism in a generic risk screening process as well as limitations in understanding of physical and chemical processes that impact vapor migration in the subsurface. To study the latter issue, we have collected detailed soil gas and groundwater vertical concentration profiles and evaluated soil characteristics at seven different sites overlying chlorinated solvent contaminant plumes. The goal of the study was to evaluate soil characteristics and their impacts on VOC attenuation from groundwater to deep soil gas (i.e., soil gas in the unsaturated zone within 2 feet of the water table). The study results suggest that generic screening levels can be adjusted by a factor of 100× at sites with fine‐grained soils above the water table, as identified by visual observations or soil air permeability measurements. For these fine‐grained soil sites, the upward‐adjusted screening levels maintain a level of conservatism while potentially eliminating the need for vapor intrusion investigations at sites that may not meet generic screening criteria.  相似文献   

7.
The vapor intrusion impacts associated with the presence of chlorinated volatile organic contaminant plumes in the ground water beneath residential areas in Colorado and New York have been the subject of extensive site investigations and structure sampling efforts. Large data sets of ground water and indoor air monitoring data collected over a decade-long monitoring program at the Redfield, Colorado, site and monthly ground water and structure monitoring data collected over a 19-month period from structures in New York State are analyzed to illustrate the temporal and spatial distributions in the concentration of volatile organic compounds that one may encounter when evaluating the potential for exposures due to vapor intrusion. The analysis of these data demonstrates that although the areal extent of structures impacted by vapor intrusion mirrors the areal extent of chlorinated volatile organic compounds in the ground water, not all structures above the plume will be impacted. It also highlights the fact that measured concentrations of volatile organic compounds in the indoor air and subslab vapor can vary considerably from month to month and season to season. Sampling results from any one location at any given point in time cannot be expected to represent the range of conditions that may exist at neighboring locations or at other times. Recognition of this variability is important when designing sampling plans and risk management programs to address the vapor intrusion pathway.  相似文献   

8.
A preliminary field evaluation of a new application of soil-gas measurement for delineation of subsurface organic contamination is described. The method measures carbon dioxide concentrations in soil gases and is based on the hypothesis that carbon dioxide concentrations from subsurface oxidation of organic compounds will be porportional to the extent of organic contamination. A correlation coefficient (r) of 0.81 (n=6) was observed between ground water dissolved organic carbon ground water concentrations and carbon dioxide concentrations in the overlying soil gases at one site. Soil-gas carbon dioxide concentrations measured ranged from 0.09 percent to 0.45 percent.  相似文献   

9.
Measurement and interpretation of mass fluxes in favor of concentrations is gaining more and more interest, especially within the framework of the characterization and management of large-scale volatile organic carbon (VOC) groundwater contamination (source zones and plumes). Traditional methods of estimating contaminant fluxes and discharges involve individual measurements/calculations of the Darcy water flux and the contaminant concentrations. However, taken into account the spatially and temporally varying hydrologic conditions in complex, heterogeneous aquifers, higher uncertainty arises from such indirect estimation of contaminant fluxes. Therefore, the potential use of passive sampling devices for the direct measurement of groundwater-related VOC mass fluxes is examined. A review of current passive samplers for the measurement of organic contaminants in water yielded the selection of 18 samplers that were screened for a number of criteria. These criteria are related to the possible application of the sampler for the measurement of VOC mass fluxes in groundwater. This screening study indicates that direct measurement of VOC mass fluxes in groundwater is possible with very few passive samplers. Currently, the passive flux meter (PFM) is the only passive sampler which has proven to effectively measure mass fluxes in near source groundwater. A passive sampler for mass flux measurement in plume zones with regard to long-term monitoring (several months to a year) still needs to be developed or optimized. A passive sampler for long-term monitoring of contaminant mass fluxes in groundwater would be of considerable value in the development of risk-based assessment and management of soil and groundwater pollutions.  相似文献   

10.
A large-scale air sparging/soil vapor extraction (AS/SVE) project constructed within coastal plain sediments in New Jersey has demonstrated substantial progress toward remediating ground water through removal of volatile organic compounds (VOCs). Potential concerns identified prior to project implementation regarding hydraulic mounding, reduction in hydraulic conductivity, development of air channels, and the absence of hydraulic containment were assessed and addressed through testing and operational features incorporated into the project. At the project site, AS/SVE has successfully reduced the presence of many VOCs to undetectable levels, while reducing the concentrations of the remaining VOCs by factors of two to 500. The physical agitation caused by air sparging, and incomplete transformation from sorbed and nonaqueous phases to the vapor phase, appears to temporarily increase VOC concentrations and/or mobility of dense nonaqueous phase liquids (DN APLs) within source areas at the project site, but this is addressed in terms of subsequent removal of VOCs by properly placed downgradient treatment lines and VOCs by properly placed downgradient treatment lines and DNAPL recovery wells. This case study identifies and evaluates project-specific features and provides empirical data for potential comparison to other candidates AS/SVE sites.  相似文献   

11.
Site closure for soil vacuum extraction (SVE) application typically requires attainment or specified soil concentration standards based on the premise that mass flux from the vadose zone to ground water not result in levels exceeding maximum contaminant levels (MCLs). Unfortunately, realization of MCLs in ground water may not be attainable at many sites. This results in soil remediation efforts that may be in excess of what is necessary for future protection of ground water and soil remediation goals which often cannot be achieved within a reasonable time period. Soil venting practitioners have attempted to circumvent these problems by basing closure on some predefined percent total mass removal, or an approach to a vapor concentration asymptote. These approaches, however, are subjective and influenced by venting design. We propose an alternative strategy based on evaluation of five components: (1) site characterization, (2) design. (3) performance monitoring, (4) rule-limited vapor transport, and (5) mass flux to and from ground water. Demonstration of closure is dependent on satisfactory assessment of all five components. The focus of this paper is to support mass flux evaluation. We present a plan based on monitoring of three subsurface zones and develop an analytical one-dimensional vertical flux model we term VFLUX. VFLUX is a significant improvement over the well-known numerical one-dimensional model. VLEACH, which is often used for estimation of mass flux to ground water, because it allows for the presence of nonaqueous phase liquids (NAPLs) in soil, degradation, and a lime-dependent boundary condition at the water table inter-face. The time-dependent boundary condition is the center-piece of our mass flux approach because it dynamically links performance of ground water remediation lo SVE closure. Progress or lack of progress in ground water remediation results in either increasingly or decreasingly stringent closure requirements, respectively.  相似文献   

12.
Ground water remediation of volatile organic compound (VOC) contamination at a site in Michigan was initiated as a result of a consent agreement between the Michigan Department of Natural Resources (MDNR) and the responsible party. Under the direction of the MDNR, the responsible party conducted a remedial investigation/feasibility study using federal guidelines to define the extent of contamination at the site and to select a response action for site remediation. The selected alternative included a combination of ground water extraction, treatment, and recharge, and soil flushing. The extraction system withdraws ground water from various depths in heavily contaminated areas. The ground water is treated using an air stripper. A spray distribution system spreads effluent from the stripper over a recharge basin constructed over the most contaminated areas. Additional contaminant removal is achieved by volatilization from the spray and percolation through the gravel bed. Recharge water moves downward through the contaminated soils, thus flushing residual soil contaminants. The initial operating data demonstrated that the system can effectively remove trichloroethylene (TCE) from ground water (approximately 95 percent overall removal efficiency). The annualized capital and operation and maintenance (O & M) costs of the remedial action were estimated for several operating periods (15, 20, and 30 years).  相似文献   

13.
A remedial investigation (RI) was performed in an area downgradient from an abandoned missile silo at Vandenberg Air Force Base, California, as part of the United States Air Force Installation Restoration Program (IRP). A number of complementary investigative techniques were used to assure a reliable assessment of site contamination. These included the review of aerial photographs, the use of an organic vapor analyzer (OVA) and carbon adsorption/mass spectrometer (MS) method to conduct a soil-gas survey; magnetic and electromagnetic geophysical surveys; bedrock permeability testing; and the chemical analysis of soil, sediment, surface water, and ground water samples. The results from this investigation revealed the presence of an undocumented landfill and a small trichloroethylene plume in ground water at concentrations ranging from 6.7 ppb to 31 ppb. The investigation also identified local ground water flow direction, provided strong evidence of the location of potential sources of contamination, and defined the downgradient extent of ground water contamination. Because the identified contaminants have not as yet reached the environmentally sensitive wetland at the base of the slope below this facility, there is still time to propose remedial alternatives that would serve to protect this environmentally sensitive area.  相似文献   

14.
Monitoring of the vapor phase has emerged as a very convenient method for detecting volatile organic contaminants in the subsurface. It can provide a reliable way of placing ground water monitoring and recovery wells. The most common method uses a driveable ground probe (DGP) to extract a vapor-phase sample followed by direct injection of the vapor into a portable gas chromatograph (GC). However, many regional offices of regulatory agencies and consultants do not have ready access to such equipment. This research explores an alternative–the carbon adsorption method—in which the vapor is withdrawn by the DGP but concentrated on a small activated carbon trap (150mg). The carbon traps can be returned to a central laboratory for solvent extraction and GC analysis. This provides the advantages of increased sensitivity, reduction in field equipment and convenience of in-lab analyses (multiple GC injections are possible). A simple DGP and carbon trap system was constructed and tested at a field site. Vapor-phase concentrations of target compounds present in gasoline were mapped quite conveniently, ranging from 10,000μg/liter (vapor phase) to less than 10μg/L. These concentrations were also shown to decrease in the direction of the ground surface, as expected. Measurements of target compounds in soil showed that the vapor phase contributed a large fraction of the total contaminant burden where a non-aqueous-phase layer (NAPL) had been identified; as important, however, is the rather uniform contamination of the soil outside the NAPL region. Finally, the concentrations of target compounds in the vapor phase and ground water could be related in a manner roughly described by a simple equilibrium model, although exceptions were noted.  相似文献   

15.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

16.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   

17.
Different types of data can be collected to evaluate whether or not vapor intrusion is a concern at sites impacted with volatile organic compound (VOC) contamination in the subsurface. Typically, groundwater, soil gas, or indoor air samples are collected to determine VOC concentrations in the different media. Sample results are evaluated using a “multiple lines of evidence” approach to interpret whether vapor intrusion is occurring. Data interpretation is often not straightforward because of many complicating factors, particularly in the evaluation of indoor air. More often than not, indoor air sample results are affected by indoor or other background sources making interpretation of concentration‐based data difficult using conventional sampling approaches. In this study, we explored the practicality of compound‐specific isotope analysis (CSIA) as an additional type of evidence to distinguish between indoor sources and subsurface sources (i.e., vapor intrusion). We developed a guide for decision‐making to facilitate data interpretation and applied the guidelines at four different test buildings. To evaluate the effectiveness of the CSIA method for vapor intrusion applications, we compared the interpretation from CSIA to interpretations based on data from two different investigation approaches: conventional sampling and on‐site GC/MS analysis. Interpretations using CSIA were found to be generally consistent with the other approaches. In one case, CSIA provided the strongest line of evidence that vapor intrusion was not occurring and that a VOC source located inside the building was the source of VOCs in indoor air.  相似文献   

18.
Cleanup standards for volatile organic compounds in thick vadose zones can be based on indirect risk (transport to ground water) when contamination is below depths of significant direct risk. At one Arizona Superfund site, a one-dimensional vadose zone transport model (VLE-ACH) was used to estimate the continued transport of VOCs from the vadose zone to ground water. VLEACH is a relatively simple and readily available model that proved useful for estimating indirect risk from VOCs in the vadose zone at this site. The estimates of total soil concentrations used as initial conditions for VLF.ACH incorporated a variety of data from the site. Soil gas concentrations were found to be more useful than soil matrix data for estimating total soil concentrations at this arid-zone site. A simple mixing cell model was used with the VLEACH-derived mass loading estimates from the vadose zone over time to estimate the resulting changes in ground water concentrations. For this site, the results of the linked VLEACH/mixing cell simulations indicate it is likely that the federal MCI. for TCE will be exceeded in underlying ground water if remedial action on I he vadose zone is not pursued.  相似文献   

19.
Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (Re), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.  相似文献   

20.
The feasibility of surface application for remediating monoaromatic hydrocarbons (benzene, toluene, ethylbenzene, and xylenes — termed BTEX as a croup) dissolved in ground water under field conditions was investigated at a site within Canadian Forces Base. Borden. Ontario. The surface area was 25 m2 and underlain by 3 to 3.5 m of unsaturated sands soil. For periods of at least 216 hours, between 43 and 72 cm/d of water containing BTEX at concentrations that averaged between 8 and 11 mg/L were continuously applied by drip irrigation. Nitrogen was added to the soil as a nutrient for the final third of the investigation.
Before the applied water reached the water table. BTEX mass losses ranged from of to essentially KM) percent. Less than 6 percent of the BTEX mass losses could be attributed to volatilization from the unsaturated soil. The remaining BTEX mass losses were attributed to biodegradation, mostly in the top 50 cm of the soil, which contained more inorganic nitrogen and organic carbon than the deeper soil. Biodegradation rates increased with applied concentration, nitrogen addition, and exposure to BTEX. Benzene concentrations in ground water attained compliance with Canadian and American drinking water standards only after nitrogen application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号