首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The Toro Negro Formation is a foreland sequence in western La Rioja province, Argentina, which records the late-stage tectonic evolution of the Vinchina Basin. Together with the underlying Vinchina Formation, these two units represent one of the thickest and longest continually exposed foreland sections in northwest Argentina. The Vinchina basin is uniquely situated between the Toro Negro and Umango blocks of the Western Sierra Pampeanas to the north and south, the Precordillera to the west, and the Sierra de Famatina to the east. New U-Pb dating of volcanic tephra provides improved age constraints on the pace of sedimentation, and U-Pb ages of detrital zircons serve to strengthen existing provenance interpretations. We show that deposition of the Toro Negro Formation spans roughly 6.9 to 2.3 Ma: Late Miocene to Early Pleistocene. A high-relief, erosional unconformity with the underlying Vinchina Formation developed sometime between 9.3 and 6.9 Ma, although stratigraphic considerations suggest it spanned only the later part of this time interval (perhaps 7.5–6.9 Ma). Above this unconformity, undecompacted sedimentation rates are remarkably high at ∼1.2 mm/yr, slowing to ∼0.3 mm/yr after ∼6 Ma. An unconformity in the upper part of the section is constrained to occur sometime between 5.0 and 3.0 Ma, probably beginning not long after 5.0 Ma. The timing of both unconformities broadly Matches the timing of inferred tectonic events in the Sierra Famatina ∼50 km to the east, the Fiambalá basin to the north, and the Bermejo basin to the south, suggesting they May record regional tectonism at these times. Provenance interpretations of detrital zircon spectra are consistent with previous interpretations based on sediment petrography. They show that provenance did not change significantly during the course of Toro Negro deposition, precluding major tectonically-induced drainage reorganization events. Sediments were derived primarily from the north (Toro Negro Block) and west (Precordillera). The data are consistent with a subtle increase in sediment supply from the Precordillera beginning around 6.5 Ma.  相似文献   

2.
Metamorphic basement and its Neoproterozoic to Cambrian cover exposed in the Sierra de Pie de Palo, a basement block of the Sierras Pampeanas in Argentina, lie within the Cuyania terrane. Detrital zircon analysis of the cover sequence which includes, in ascending order, the El Quemado, La Paz, El Desecho, and Angacos Formations of the Caucete Group indicate a Laurentian origin for the Cuyania terrane. The lower section represented by the El Quemado and La Paz Formations is interpreted as having an igneous source related to a rift setting similar to that envisioned for the southern and eastern margins of Laurentia at approximately 550 Ma. The younger strata of the El Desecho Formation are correlative with the Cerro Totora Formation of the Precordillera, and both are products of rift sedimentation. Finally, the Angacos Formation and the correlative La Laja Formation of the Precordillera were deposited on the passive margin developed on the Cuyania terrane. The maximum depositional ages for the Caucete Group include ca. 550 Ma for the El Quemado Formation and ca. 531 Ma for the El Desecho Formation. Four different sediment sources areas were interpreted in the provenance analysis. The main source is crystalline basement dominated by early Mesoproterozoic igneous rocks related to the Granite-Rhyolite province of central and eastern Laurentia. Possible source areas for 1600 Ma metamorphic detrital zircons of the Caucete Group include the Yavapai-Mazatzal province (ca. 1800–1600 Ma) of south-central to southwestern Laurentia. Younger Mesoproterozoic zircon is likely derived from Grenville-age medium- to high-grade metamorphic rocks and subordinate igneous rocks that form the basement of Cuyania as well as the southern Grenville province of Laurentia itself. Finally, Neoproterozoic igneous zircon in the Caucete Group records different magmatic pulses along the southern Laurentian margin during opening of Iapetus and break-up of Rodinia. Northwestern Cuyania terrane includes a small basement component derived from the Granite-Rhyolite province of Laurentia, which was the source for detrital zircons found in the middle Cambrian passive margin sediments of Cuyania.  相似文献   

3.
This is a Reply to Hechenleitner and collaborators Comment, who proposed a Cretaceous age for the whole Llanos Formation (central Argentina, Sierras Pampeanas Province), based on neosauropod fossils, instead of Miocene as originally proposed by Ezpeleta et al. (2006) and Dávila et al. (2007). However, red beds that underlay the thick paleosoils of the Llanos Formation provided nine detrital U–Pb Paleogene (62 Ma, earliest Cenozoic) ages on zircon grains (Astini et al., 2009, Ezpeleta, 2009). On the base of this evidence, and other mammal remnant within the Sierras Pampeanas (where the Llanos Formation develops), we proposed this is a condensed unit with Mesozoic ages at the bottom and Mio-Pliocene (likely younger) to the top.  相似文献   

4.
Miocene sedimentary successions of the Ñirihuau and Collón Cura formations east of the El Maitén Belt constitute a partial record of the Andean exhumation, defining a synorogenic infill of the Ñirihuau Basin in the foothills of the North Patagonian fold and thrust belt. Gravimetric and seismic data allow recognizing the internal arrangement and geometry of these depocenters that host both units, separating a synextensional section previous to the Andean development at these latitudes, from a series of syncontractional units above. A series of progressive unconformities in the upper terms shows the synorogenic character of these units corresponding to the different pulses of deformation that occurred during the middle Miocene. New U–Pb ages constrain these pulses to the ∼13.5–12.9 Ma interval and allow reconstructing the tectonic history of this region based on the detrital zircon source populations. The U–Pb maximum ages of sedimentation give to the Ñirihuau Formation in particular a younger age than previously assumed. Additionally, synsedimentary deformation in strata of the upper exposures of the Collón Cura Formation associated with contractional structures and U–Pb ages allow identifying a younger paleoseismogenic pulse in ∼11.3 Ma. Thus, based on these data and a compilation of previous datasets, a tectonic evolution is proposed characterized by a contractional episode that migrated eastwardly since ∼19 to 15 Ma producing the Gastre broken foreland and then retracted to the eastern North Patagonian Precordillera, where out-of-sequence thrusts cannibalized the wedge top zone in the El Maitén belt at ∼13.5–11.3 Ma.  相似文献   

5.
Detrital modes of sandstones and conglomerates of the Toro Negro Formation (Late Miocene-early Pliocene) were used to analyze the evolution of the broken-foreland stage of the Vinchina Basin (28°30′–29°00′ S and 68°30′–68°20′ W) of NW Argentina. This basin located in the Western Sierras Pampeanas is bounded to the west by the Precordillera and to the east by the Famatina System. Three sandstone petrofacies: plutonic-metamorphic, volcanic and mixed petrofacies and three conglomerate lithic associations: basement, sedimentary and volcanic lithic associations were recognized, allowing to establish three source areas: Western Sierras Pampeanas (Toro Negro and Umango Ranges), Cordillera Frontal and Precordillera.During the Late Miocene, the Toro Negro Range (to the north) together with the Cordillera Frontal and Precordillera (to the west) were the main sources for depositional sequences I and II (lower member of the Toro Negro Formation). On the contrary, during the latest Miocene-early Pliocene, Depositional Sequence III (upper member) exhibited a progressive increase in the supply from the eastern Precordillera (to the west) with additional material from the Umango Range to the south. Besides, evidence of synchronic volcanism is recorded in the upper part of Depositional Sequence II and the lower part of Depositional Sequence III.The coexistence of the three source areas and the changing distribution patterns due to re-accommodation of sediment dispersal routes demonstrate that the evolution of this type of basin is much more complex than previously envisaged. Therefore, an integrated analysis using different tools (sedimentary facies, paleocurrent measurements, sandstone petrography and conglomerate composition) is needed for a clearer understanding of broken-foreland basins.  相似文献   

6.
Provenance studies have been performed utilising major and trace elements, Nd systematics, whole rock Pb–Pb isotopes and zircon U/Pb SHRIMP data on metasedimentary rocks of the Sierra de San Luis (Nogolí Metamorphic Complex, Pringles Metamorphic Complex, Conlara Metamorphic Complex and San Luis Formation) and the Puncoviscana Formation of the Cordillera Oriental. The goal was the characterisation of the different domains in the study area and to give insights to the location of the source rocks. An active continental margin setting with typical composition of the upper continental crust is depicted for all the complexes using major and trace elements. The Pringles Metamorphic Complex shows indications for crustal recycling, pointing to a bimodal provenance. Major volcanic input has to be rejected due to Th/Sc, Y/Ni and Cr/V ratios for all units. The εNd(540 Ma) data is lower for the San Luis Formation and higher for the Conlara Metamorphic Complex, as compared to the other units, in which a good consistency is given. This is similar to the TDM ages, where the metapsammitic samples of the San Luis Formation are slightly older. The spread of data is largest for the Pringles Metamorphic Complex, again implying two different sources. The whole rock 207Pb/206Pb isotopic data lies in between the South American and African sources, excluding Laurentian provenances. The whole rock Pb–Pb data is almost indistinguishable in the different investigated domains. Only the PMC shows slightly elevated 208Pb/204Pb values. Possible source rocks for the different domains could be the Quebrada Choja in the Central Arequipa–Antofalla domain, the Southern domain of the Arequipa–Antofalla basement, the Brazilian shield or southern Africa. Zircon SHRIMP data point to a connection between the Puncoviscana Formation and the Conlara Metamorphic Complex. Two maxima around 600 Ma and around 1000 Ma have been determined. The Nogolí Metamorphic Complex and the Pringles Metamorphic Complex show one peak of detrital zircons around 550 Ma, and only a few grains are older than 700 Ma. The detrital zircon ages for the San Luis Formation show age ranges between 590 and 550 Ma. A common basin can be assumed for the Conlara Metamorphic Complex and the Puncoviscana Formation, but the available data support different sources for the rest of the Complexes of the Sierra de San Luis. These share the diminished importance or the lack of the Grenvillian detrital peak, a common feature for the late Cambrian–early Ordovician basins of the Eastern Sierras Pampeanas, in contrast to the Sierras de Córdoba, the PVF and the Conlara Metamorphic Complex.  相似文献   

7.
The evolution of the provenance areas for Late Neoproterozoic, Cambrian and Early Ordovician sedimentary and meta-sedimentary rocks of north central and northwest Argentina is discussed using 123 maximum ages of detrital zircons from 42 samples from this and previously published studies. Most detrital zircon ages fall into two groups: 1,200–900 Ma and 670–545 Ma. These ages are essentially identical for the non- to very low grade metamorphic late Neoproterozoic to Early Cambrian Puncoviscana Formation and the low to high grade metamorphic rocks of Eastern Sierras Pampeanas. Hence, both units are related to similar provenance areas at the same time of sedimentation. The time span from zircon crystallization in the Earth’s crust to exhumation and erosion may be very long. This is important when determining maximum ages of sedimentary rocks. Variation of zircon maxima may also be influenced by concurrent sedimentary cover of proposed provenance areas. For the late Mesoproterozoic to early Neoproterozoic zircon age group, an active mountain range of the southwest Brazilian Sunsás orogen is the most probable provenance area. The younger, late Neoproterozoic zircons are related to the continuously developing mountains of the Brasiliano orogen of southwest and south central Brazil. Young zircons, up to 514 Ma, from fossil-bearing Puncoviscana and Suncho Formation outcrops are related to late Early Cambrian volcanism contemporaneous with sedimentation. This situation continues through the Late Cambrian to the Early Ordovician, but the Sunsás orogen provenance diminishes as possible Río de la Plata craton origins become important.  相似文献   

8.
The provenance of Neoproterozoic to Early Paleozoic sedimentary rocks in the Sierras Pampeanas has been established using U–Pb SHRIMP age determination of detrital zircons in twelve metasedimentary samples, with supplementary Hf and O isotope analyses of selected samples. The detrital zircon age patterns show that the western and eastern sectors of the Sierras Pampeanas are derived from different sources, and were juxtaposed during the Early Cambrian ‘Pampean’ collision orogeny, thus defining initiation of the supercontinent stage of southwestern Gondwana. The Western Sierras Pampeanas (WSP), which extend northwards to the southern Puna (Antofalla) and the Arequipa Massif (Peru), constitute a single large continental basement of Paleoproterozoic age — the MARA block — that was reworked during the Grenvillian orogeny. The MARA block probably extends eastwards to include the Río Apa block (southern Brazil), but in this case without a Mesoproterozoic overprint. Detrital zircons from the WSP and Antofalla yield age peaks between 1330 and 1030 Ma, remarkably similar to the range of ages in the Grenville province of eastern Laurentia. The WSP Neoproterozoic sedimentary cover to this basement shows the same 1330–1030 component, but also includes important 1430–1380 Ma zircons whose juvenile Hf and O isotopic signatures strongly suggest derivation from the Grenville and the Southern Granite–Rhyolite provinces of eastern Laurentia. In contrast the Eastern Sierras Pampeanas metasedimentary rocks have a typically bimodal detrital zircon pattern with peaks at ca. 1000 and 600 Ma, which respectively indicate sources in the Natal–Namaqua belt and the East African orogen and/or the Dom Feliciano belt of SE Brazil and Uruguay. Sedimentary rocks in the Eastern Sierras Pampeanas and Patagonia deposited during the Late Early Cambrian–Early Ordovician interval, after the Pampean orogeny, have detrital patterns common to many sectors along the Terra Australis orogen, reflecting increasingly dominant input to the Paleozoic basins from the Neoproterozoic to Early Cambrian orogenic belts of the Gondwana margin.  相似文献   

9.
伊勒呼里山地区中生代火山岩由安山岩、粗面英安岩、流纹岩、流纹质凝灰岩和流纹质玻屑凝灰岩等组成。中生代火山岩中的锆石多呈半自形-自形晶,振荡环带发育,Th/U值略高(0.30~2.56),为岩浆成因。锆石U-Pb同位素年代学研究表明:塔木兰沟组安山岩年龄为(161.0±1.0)Ma(n=22),形成于中侏罗世;满克头鄂博组流纹岩年龄为(157.8±2.3)Ma(n=24),形成时代属于晚侏罗世;玛尼吐组火山岩2个样品的年龄分别为(154.0±2.0)Ma(n=23)和(151.7±1.4)Ma(n=25),形成时代属于晚侏罗世;白音高老组火山岩2个样品的年龄分别为(124.1±1.1)Ma(n=25)和(125.1±0.7)Ma(n=23),形成时代为早白垩世。捕获锆石的定年结果显示,本区存在前寒武纪岩浆事件(774 Ma)、加里东期岩浆事件(472 Ma)、印支期岩浆事件(214、210 Ma),这与周边基底岩石中锆石U-Pb的定年结果相吻合。  相似文献   

10.
出露于扬子克拉通北缘大洪山地区的打鼓石群一直被认为是一套中元古代沉积地层,其上被花山群不整合覆盖。但是由于缺少可靠的年龄依据,打鼓石群与同属扬子克拉通北缘的神农架群以及其他相关地层的对比关系一直存有争议。本文作者利用高精度高分辨率离子探针质谱仪(SHRIMP)测定了打鼓石群中凝灰岩的锆石U-Pb年龄,并利用激光烧蚀多接收器电感耦合等离子体质谱仪(LA-MC-ICPMS)测定了打鼓石群凝灰岩和基本同时代的神农架地区神农架群上亚群凝灰岩的锆石Lu-Hf同位素。这是迄今为止第一次测得了打鼓石群罗汉岭组凝灰岩年龄(1 225±19) Ma和(1 239±23) Ma;锆石Lu-Hf同位素结果显示打鼓石群罗汉岭组凝灰岩与神农架群上亚群野马河组凝灰岩具有相似的Lu-Hf同位素特征:176Hf/177Hf初始值介于0.282 172~0.282 397,εHf(t)值为4.9~12.0, TCDM=1 150~1 943 Ma。结合现有区域地质资料,我们认为打鼓石群与神农架群上亚群属于同时期沉积物,形成于超级地幔柱主导的哥伦比亚超大陆裂解背景。  相似文献   

11.
The Sierras Pampeanas orogen, in northwestern Argentina, hosts significant Sn–W mineralization in a variety of mostly epizonal granite stocks emplaced in variably metamorphosed country rocks. The San Blas, Huaco and El Durazno granite stocks in the Sierra de Velasco, the La Quebrada granite in the Sierra de Mazán, the Cerro Colorado granite in the Cerro Negro, and the Los Mudaderos and Sauce Guacho granite stocks in the Sierra de Ancasti, are largely peraluminous (ASI between 1.05 and 1.38) and represent S-type granites, are strongly fractionated (i.e., high Rb–Sr ratio), have a low oxidation state (low Fe2O3/Fe2O3 ratio) and are geotectonically linked to syncollisional magmatism. The U–Pb SHRIMP analyses on zircons from the Cerro Colorado and La Quebrada granites, located in the Cerro Negro and Sierra de Mazán, respectively, revealed ages from Lower Ordovician (Tremadocian) to Carboniferous. All granites display elevated LREE values, low HREE values and negative Eu anomalies. With regards to total REE values, two groups of granite stocks can be recognized. The granites with lower REE contents are highly evolved granites and are related to Sn–W mineralization. The mineralized granites display higher values of Sn, W and Rb, and lower values of Sr and Ba compared to barren granites. These trace element characteristics appear to be diagnostic for Sn–W mineralized granite stocks in the western Sierras Pampeanas. The western Sierras Pampeanas contains locally geochemically evolved Carboniferous granites, which are interpreted to be the main control of significant Sn–W mineralization. The Carboniferous age of western Sierras Pampeanas Sn–W mineralization sets it apart from the Triassic age of the Sn–W mineralization in the Eastern Tin belt of Bolivia.  相似文献   

12.
大兴安岭北部漠河盆地额木尔河群自下而上由绣峰组、二十二站组、漠河组和开库康组组成, 目前对额木尔河群形成时代还存在不同的认识。绣峰组含砾粗砂岩及二十二站组碎屑岩中流纹质凝灰岩夹层激光探针(LA-ICP-MS)锆石U-Pb测年结果表明, 绣峰组含砾粗砂岩中的碎屑锆石U-Pb年龄变化于距今2195~163 Ma之间, 暗示了源区有古元古代基底存在, 这一年龄数据与盆地周缘分布的基底岩石时代相吻合。碎屑锆石中5个最年轻锆石的206Pb/238U年龄加权平均值为167±2 Ma, 反映绣峰组沉积下限为中侏罗世中期; 二十二站组流纹质凝灰岩岩浆锆石206Pb/238U年龄加权平均值为148±2 Ma, 由此限定二十二站组形成时代为晚侏罗世晚期。锆石U-Pb年龄数据反映额木尔河群沉积时间为中-晚侏罗世, 这一认识对恢复漠河盆地形成演化历史及油气资源勘查提供了新的证据。   相似文献   

13.
扬子西缘广泛出露的新元古代澄江组是一套与晋宁运动密切相关的沉积岩夹火山岩系,其形成时限对华南新元古代区域地层格架、地层划分对比及古大陆再造具有重要意义。出露于滇中易门地区的新元古代澄江组底部发育有厚数米的凝灰岩夹层,本次采集凝灰岩进行LA-ICP-MS锆石U-Pb定年研究,结果表明,锆石206Pb/238U年龄加权平均值为812±5. 5Ma(n=17,MSWD=0.46),可以代表滇中澄江组的底界年龄,从而进一步确定澄江组底界年龄为812Ma左右。此外,凝灰岩中捕获的锆石年龄信息指示扬子西缘可能存在2. 5Ga、1. 8~1. 6Ga、1. 5Ga、1. 3Ga及1.0Ga等数期重要的区域构造-热事件。  相似文献   

14.
LA-ICP-MS U-Pb dating and in situ Hf isotope analysis were carried out for the detrital zircons to constrain the depositional age and provenance of the Wawukuang Formation, which is believed as the earliest unit of the Laiyang Group in the Jiaolai Basin, and its implications. Most of these detrital zircons from the feldspar quartz sandstone in the Wawukuang Formation are magmatic in origin, which are euhedral-subhedral and display oscillatory zoning in CL images; whereas few Late Triassic detrital zircons are metamorphic in origin and structureless in CL images. U-Pb isotopic dating of 82 zircon grains yields age populations at ca. 129 Ma, 158 Ma, 224 Ma, 253 Ma, 461 Ma, 724 Ma, 1851 Ma and 2456 Ma. U-Pb dating and Hf isotopic results indicate that: 1) the Wawukuang Formation deposited during the Early Cretaceous (129-106 Ma); 2) the detrital zircons with the ages of 1851 Ma and 2456 Ma mainly sourced from the Precambrian basement rocks of the North China Craton; the Neoproterozoic (729-721 Ma) magmatic zircons and the Late Triassic (226-216 Ma) metamorphic zircons sourced from the Su-Lu terrane; The Late Paleozoic detrital zircons could source from the Late Paleozoic igneous rocks in the northern margin of the North China Craton; the Late Triassic (231-223 Ma) magmatic zircons and the 158-129 Ma zircons sourced from the coeval igneous rocks in the Jiaobei and Jiaodong; 3) the deposition age and provenance of the Jiaolai Basin are different from those of the Hefei Basin; 4) the recognition of clastic sediments from the Su-Lu terrane in the Wawukuang Formation suggests that the Su-Lu terrane was under denudation in the Early Cretaceous. ©, 2015, Science Press. All right reserved.  相似文献   

15.
湖南冷家溪群划分及同位素年龄约束   总被引:4,自引:0,他引:4  
依据区域岩石组合特征,参照岩石地层的划分原则,对冷家溪群进行重新划分:下部为海相深水盆地沉积细碎屑岩系,划分出易家桥组、潘家冲组、雷神庙组;上部为盆地斜坡相浊流(扇)沉积粗碎屑岩系,分为黄浒洞组、小木坪组、大药菇组。在冷家溪群各岩组中的凝灰岩夹层内取得一批新的SHRIMP锆石U-Pb测年数据,对其沉积时代归属提供了新的约束。锆石SHRIMP年龄数据表明其沉积时限介于820~>862 Ma之间,时代属于新元古代早期。  相似文献   

16.
羌塘地块南部广泛出露陆相红层,1:25万区域地质调查将大部分红层划归为中新统康托组,但缺乏可靠的年代学依据。野外观测发现火山岩与红层之间存在喷发不整合接触关系,室内从火山岩选出很多岩浆锆石;应用离子探针U-Pb同位素测年方法精确测定岩浆锆石年龄,能够为研究火山喷发期次和红层形成时代提供重要依据。对羌塘地块南部红层内部粗面安山岩夹层—比洛错火山岩和扎加藏布北侧红层上覆安山岩,挑选岩浆锆石进行高精度的离子探针U-Pb同位素测年,发现比洛错粗面安山岩锆石206Pb/238U同位素年龄为(83.3±1.3)Ma,扎加藏布北侧安山岩锆石206Pb/238U同位素年龄为(75.65±0.82)Ma。这些年龄良好地揭示了晚白垩世不同期次的火山喷发时代,同时为红层形成时代和红层盆地演化提供了重要的年代学约束。根据比洛错和扎加藏布北侧火山岩的锆石U-Pb同位素测年资料,将羌塘盆地南部红层时代归属上白垩统阿布山组,这对分析羌塘地块南部油气地质构造保存条件和构造地貌演化具有重要意义。  相似文献   

17.
张英利  王宗起  闫臻  王涛 《地质学报》2012,86(4):548-560
库鲁克塔格地区是土什布拉克组的命名地和典型剖面分布区,主要由灰绿色砂岩及粉砂岩组成。运用LA-ICP-MS U-Pb方法,对土什布拉克组3件砂岩碎屑锆石进行U-Pb年龄测定,共获得了183组U-Pb有效年龄,既限定了地层的最早形成时代,同时又获取研究区早古生代的演化资料。获得14个较年轻锆石年龄表明,土什布拉克组形成于中—晚志留世。碎屑锆石的谐和年龄表明,物源主要集中在422~537 Ma、559~999 Ma、1018~1574Ma和1604~2498Ma。碎屑锆石年龄394~537Ma和CL图像揭示,在早古生代时期发育大量岩浆岩,但目前地表仅有少量的岩浆岩记录。研究区新元古代的岩浆锆石年龄值,可能与罗迪尼亚超大陆的聚合-裂解有关。碎屑锆石也表明研究区发育区域变质作用,部分与哥伦比亚超大陆有关。  相似文献   

18.
In north-eastern Greece the mid-greenschist facies Makri Unit and the anchizonal Melia Formation belong to the eastern Circum-Rhodope Belt that forms the uppermost tectonostratigraphic unit of the Rhodope metamorphic nappe pile. The two metasedimentary successions had different source areas, although they now lie in close proximity in the Rhodope Massif. The U-Pb isotopic ages of detrital zircons from a metasandstone of the Makri Unit analysed using LA-SF-ICP-MS and SHRIMP-II gave age clusters at ca. 310-290 Ma and at ca. 240 Ma for magmatic zircons, which may have been derived from Carboniferous-Permian basement rocks of the Thracia Terrane (Lower Tectonic Unit of the Rhodope Massif) that subsequently underwent Triassic rifting. The youngest detrital zircon grains found so far indicate that the metasedimentary succession of the Makri Unit, or at least parts of it, cannot be older than Late Triassic. By contrast, clastic sedimentary rocks of the Melia Formation contain the primary detrital mineral assemblage of epidote, zoisite, garnet, and phengitic mica, which is absent in the Makri Unit, and clearly points to metamorphic rocks being the major source for these sediments. U-Pb analyses of detrital zircons gave a prominent age cluster at ca. 315-285 Ma for magmatic zircons. Inherited cores indicate the involvement of Pan-African and Late Ordovician-Early Silurian crustal sources during Late Carboniferous-Early Permian igneous event(s). Moreover, U-Pb detrital zircon geochronology indicates that the Melia Formation cannot be older than latest Middle Jurassic. We suggest that the Melia Formation was deposited in front of a metamorphic nappe pile with Rhodopean affinities in Tithonian or Cretaceous times. Both the Makri Unit and the Melia Formation have been tectonically juxtaposed from different sources to their present location during Balkan and Alpine orogenic processes.  相似文献   

19.
This paper summarizes the geology of the Paleozoic La Modesta Formation in Patagonia, Argentina, and presents new SHRIMP U–Pb dating of detrital zircons from muscovite-chlorite schist and tourmalinite. Also complementary geochemical and lead isotopic data are presented, indicating that the protoliths were formed from upper crustal rocks by the contribution of a large input from recycled (or felsic) sources. The maximum age of sedimentation of La Modesta Formation is about 446 ± 6 Ma. The basin closure (or eventually a paleocurrent shift) occurs at Lower Devonian before the exhumation of the Middle-Devonian granitoids of the Rio Deseado Complex (Deseado Massif). Many of the detrital zircons are igneous and record Ordovician ages, with a prominent Lower Ordovician-age peak at approximately 473 Ma. Most favourable candidates to provide the younger zircons in the basin would Ordovician granites of the Rio Deseado Complex (Deseado Massif) and Punta Sierra Plutonic Complex (Somun Cura Massif). Older zircons have peaks of different importance (including Brasiliano and Grenvillian ages) between 530 and 700, 750–1500, 1750–2000 and 2550–2700 Ma. La Modesta Formation is also a potential area of materials (detrital zircon) to the basin where the rocks of the Eastern Andean Metamorphic Complex and equivalent formations of the Andean region were generated.  相似文献   

20.
利用激光剥蚀电感耦合等离子质谱技术(LA-ICP-MS)对浙东南松阳县枫坪组地层底部的细砂岩进行了锆石U-Pb定年及稀土元素分析。样品中大部分碎屑锆石具有较好的振荡环带且Th/U值大于0. 1,表明其为岩浆成因。碎屑锆石中稀土元素含量变化范围较大,(La/Yb)_N值为0~0. 29,LREE/HREE值为0. 003×10~(-6)~0. 977×10~(-6),表明样品中锆石的轻、重稀土元素分异程度较小且重稀土元素相对富集,具有轻稀土元素含量低、重稀土元素含量高的左倾模式且具有负Eu异常、正Ce异常的特征,表明碎屑锆石主要以岩浆锆石为主,同时存在少量的变质锆石。碎屑锆石U-Pb测年结果表明,最年轻的锆石年龄为193 Ma,显示枫坪组沉积岩成岩年龄不晚于193 Ma。碎屑锆石年龄可分为4组,分别为2 461~1 743 Ma、887 Ma、435和422 Ma、330~193 Ma。碎屑锆石的主要年龄区间分别与已知的构造-岩浆热事件时间相对应(吕梁期、晋宁期、加里东期和印支-海西期),表明本区的构造岩浆活动与中国大地构造运动相一致,并具有幕式发展的特征。通过对枫坪组沉积岩碎屑锆石U-Pb年龄的系统分析并与可能物源区的年代学对比研究,认为枫坪组沉积岩物质来源主要是周边出露的中条期侵入岩体和浙东南出露的印支期花岗岩体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号