首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
三峡坝区一次强风暴天气的多普勒雷达回波特征   总被引:1,自引:0,他引:1  
利用宜昌WSR-98D多普勒天气雷达资料,对2001年7月23日发生在三峡坝区的10级强对流风暴雷达回波进行了分析。结果发现:对流单体随环境风场发生东北移动且右向传播;风暴发生前20分钟,多普勒天气雷达速度图上有气旋性切变;风暴发生时回波顶出现坍塌。  相似文献   

2.
“2011.7.14”沈阳短时强降水多普勒雷达回波特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为了更好的预报、预警超级风暴单体引起的短时强降水,利用沈阳棋盘山多普勒雷达、营口多普勒雷达和自动站及地面、高空等气象资料,对2011年7月14日沈阳强降水超级单体风暴进行分析。结果表明:地面辐合线和切变线提前于降水2 h产生,而且地面辐合线和切变线的位置与风暴的生成位置重合。强对流风暴具有超级单体风暴特征,风暴出现弓形回波;速度图上存在“v”型入流缺口,相应速度场上出现中气旋,营口雷达基本反射率最大值达到61 dBz,反射率因子垂直剖面出现弱回波区和回波悬垂。当雷达回波发现中气旋,并预计此中气旋能维持1 h左右或者雷达回波发现弓形回波,沈阳棋盘山雷达基本反射率强度超过45 dBz时,可发布短时暴雨或雷雨大风等强对流气象灾害预警。  相似文献   

3.
阵风锋的雷达探测和研究   总被引:4,自引:2,他引:4       下载免费PDF全文
本文应用北京地区和美国Oklahoma地区天气雷达观测资料比较了两类阵风锋。快速运动的阵风锋常与猛烈发展的强风暴相伴随,它的出现,风暴将持续猛烈地发展。运动缓慢近于静止的阵风锋则常出现在风暴的减弱阶段,它的出现加速了风暴的消亡。阵风锋的形成与风暴中的下沉气流有关,两类不同的阵风锋反映了下沉气流与环境的不同作用。文中还对阵风锋形成雷达回波的原因进行了探索,认为阵风锋锋区的湍流对电磁波的散射是形成雷达回波的可能机制。应用多普勒天气雷达和高塔的探测资料,对阵风锋回波的强度进行了理论估算,估算值与雷达实测值比较一致。  相似文献   

4.
利用2010—2021年中国气象局灾情直报、地面观测、多普勒雷达资料,分析了伊犁河谷冰雹时空分布及雹云雷达回波:(1)5—8月是冰雹高发期,其中6月出现冰雹次数最多且雹暴发展最为旺盛;其日变化峰值在16—19时,19时出现最多。(2)冰雹易出现在河谷喇叭口地形的南北两侧,昭苏县的冰雹占伊犁河谷冰雹总数的一半以上且多为普通单体和多单体风暴,线风暴和超级单体风暴多发在霍城县。(3)统计32个雹云雷达回波初步凝练出预警指标:当反射率因子大于50 dBZ,回波顶高大于8 km,VIL出现跃增时,应警惕冰雹的发生;当回波顶高发展到11 km以上,出现冰雹的概率较大;(4)4类雹暴分别具有如下特征:普通单体多为高悬的质心;多单体风暴生命史较长,会反复影响同一地区;线风暴组织性较差,结构松散,低层常出现钩状回波;超级单体风暴基本具备所有典型回波特征,但有些个例中气旋不明显。  相似文献   

5.
一次强雷暴天气过程的雷达回波分析   总被引:1,自引:0,他引:1  
从分析多普勒雷达探测强风暴的回波入手,通过对回波资料的分析,提取风暴发生发展与雷达回波显示的强度和速度场结构之间的关系,初步得出冰雹预警和下击暴流预报的方法,为今后进行冰雹和大风灾害的临近预报提供分析的依据和方法。  相似文献   

6.
天山北坡一次致灾冰雹的多普勒雷达回波特征分析   总被引:2,自引:2,他引:0       下载免费PDF全文
利用石河子c波段多普勒天气雷达资料,对2007年7月3日下午发生在石河子垦区南部山脉与平原交界区151团的冰雹等强对流风暴的多普勒雷达回波演变特征进行详细分析。结果表明:该强对流风暴具有超级单体风暴的典型特征,强风暴前进方向的右侧出现钩状回波,西北侧呈现出“V”字型缺口;反射率因子垂直剖面呈现出弱回波区、回波悬垂和弱回波区左侧的回波墙,最大回波强度超过65 dBz,垂直累积液态水含量超过70 kg/m2;相应的径向速度图上出现中气旋。该超级单体的移动方向在盛行风向的右侧约30°,属于右移风暴。  相似文献   

7.
广东大冰雹风暴单体的多普勒天气雷达特征   总被引:3,自引:1,他引:2       下载免费PDF全文
选取2004—2012年广东省12个大冰雹风暴单体为样本,利用多普勒天气雷达资料,计算了最大反射率因子及其高度等多个雷达参数,分析了三体散射、旁瓣回波和环境温度层上回波特征以及大冰雹与非冰雹风暴单体间的反射率因子垂直廓线差异。结果表明:大冰雹风暴单体发展均非常旺盛,最大反射因子多超过65 dBZ,对应高度几乎都达到5 km。除受周围大范围雷达回波影响外,大冰雹风暴单体均观测到了三体散射或旁瓣回波特征,并具有一定的预报提前量;在0℃和-20℃层高度上的最大反射率因子均超过54 dBZ。大冰雹风暴单体与非冰雹风暴单体相比,低层回波迅速增加,强核心区垂直伸展更深厚,回波垂直递减率更小。  相似文献   

8.
初夏孟湾风暴造成云南连续性强降水的中尺度分析   总被引:4,自引:2,他引:4  
利用常规气象资料、物理量场、卫星云图和多普勒雷达资料对孟湾风暴影响下云南初夏出现的4次连续性强降水天气过程的中尺度特征及其环流背景条件进行了分析。结果表明:孟湾风暴在孟加拉湾海域生成后,生命史一般为2~3天,风暴云团云顶亮温低于-65℃;孟湾风暴以分裂中尺度对流云团、外围云系以及登陆减弱的本身沿孟湾槽前和副高外围的西南气流北上影响云南;高原低涡切变、辐合通道和西南风速的辐合为孟湾风暴东北上云南提供了有利的环流背景和动力条件;孟湾风暴影响云南在多普勒雷达回波上存在许多共同的特征,往往是絮状回波产生连续性降水,强度为35~45dBZ,整体回波偏东移,西南急流、“牛眼”结构和风随高度顺转等中尺度特征的存在,既有利于孟湾风暴带来暖湿气流向北输送,又有利于北上云系中对流回波的发展。  相似文献   

9.
对2002年5月27日发生在安徽蚌埠地区的一次超级单体风暴过程的天气形势、卫星云图、雷达回波进行了分析,此次过程为该地区近50 a来发生的最强烈的一次超级单体风暴过程。本文尝试从常规的高空、地面环流形势中寻找特殊的异常信息,结合卫星云图、多普勒雷达资料对超级单体的结构及其演变过程进行分析。发现这次强对流性超级单体风暴过程是在较为有利的大尺度环流形势下,多尺度天气系统相互作用,由中尺度对流云体激发产生的超级单体风暴;文章揭示了该地区超级单体风暴的多普勒雷达回波典型特征,旨在对这类强天气的监测、识别和临近预报提供天气学及雷达回波分析的参考依据。  相似文献   

10.
对2006年7月14日到7月17日厦门连续暴雨天气从环流形势、雷达回波和卫星云图等几方面进行分析,发现此次暴雨过程是由0604号强热带风暴"碧利斯"登陆后与中低纬环流,主要有北方弱冷空气及华南偏南风低空急流的相互作用;卫星云图显示登陆后强热带风暴螺旋云带有再次加强;雷达回波上一个重要的特征就是有逆风区的存在。本文试探用雷达回波特征来警戒台风暴雨。  相似文献   

11.
一次强对流天气的多普勒特征分析   总被引:33,自引:24,他引:33  
利用天气图、卫星云图和5cm多普勒天气雷达的资料,详细分析了一次强对流天气的环流背景、回波发展演变过程和多普勒特征及其风场结构;初步分析了强对流天气瑟下垫面地理特征之间的密切关系。对多普勒天气雷达探测强对流天气的方法进行了初步探讨。  相似文献   

12.
一次雷暴大风的中尺度结构特征分析   总被引:14,自引:6,他引:14  
应用天津新一代天气雷达产品和255m气象铁塔资料等,分析了2004年6月22日20:00~21:40时(北京时)出现在天津地区的一次雷暴大风天气过程。分析证实:不仅具有弓状回波的对流系统能够产生雷暴大风,而且阵风锋也能够产生雷暴大风;只是弓状回波顶部和向前突起部分产生的大风更强烈。另外还探讨分析了雷暴大风的中尺度结构特征。  相似文献   

13.
计算几何法在风暴识别中的应用   总被引:1,自引:0,他引:1  
风暴的合并与分裂对其发展有着重要的影响,是风暴识别与追踪工作中的难点问题。为了避免由资料处理过程引起的虚假合并,以及通过识别风暴的合并与分裂临界区域,对判断风暴的发展趋势提供有效的追踪参数,基于SCIT(Storm Cell Identification and Tracking Algorithm)风暴识别的基础,利用计算几何的凸壳与DT(Delaunay Triangle)算法,结合风暴内部的结构信息,识别出了风暴带以及风暴带合并与分裂的临界区域。并且给出了实现的个例以及算法的评价结果,为风暴合并与分裂的追踪工作提供了一个新的参数。  相似文献   

14.
郑峰 《气象科学》2006,26(3):323-327
利用NCEP 1x1再分析资料诊断2001年8月3~4日发生在浙南闽北的东风波及其诱生中尺度低涡的暴雨过程。根据螺旋度(Helicity)分析了过程中的暴雨演变以及雁荡山脉[1]诱生中尺度低涡发生发展的原因。同时,利用中尺度有限区域模式MM5V2对该东风波诱生中尺度低涡进行模拟。结果表明:螺旋度大值中心和锋区的强度和位置的演变较好反映了暴雨落区和中尺度低涡的诱生、移动。螺旋度的时空演变对暴雨发生有很好的预示意义,高、低层螺旋度的低层正值辐合与高层负值辐散的配置是引起降水的重要机制;螺旋度计算较中尺度模式诱生低涡的初生位置、路径预报准确率高,两者集成可以提高诱生低涡的预报准确率。  相似文献   

15.
一次强飑线天气过程的新一代天气雷达探测和临近预报   总被引:8,自引:2,他引:8  
李向红  薛荣康  唐伍斌 《气象》2006,32(9):60-66
利用位于桂林的新一代天气雷达资料对2005年5月5日影响广西桂林的锋前强飑线过程进行了详细的分析。分析飑线整体演变和内部对流单体演变表明:此飑线为后续线型和断续线型的结合。由镶嵌在飑线中的小尺度超级单体造成对流性大风。对流单体并入飑线前,可发展为成熟的超级单体,有TBSS和BWER等特征,垂直累积液态水含量可达70kg·m-2,造成局地大冰雹。可根据VIL值确定大多数强风暴位置和辨别带有大冰雹的风暴,对强对流天气做临近预报。  相似文献   

16.
以中国气象科学研究院灾害天气国家重点实验室的区域雷达组网三维数字产品作为数据输入,在雷达基数据的SCIT(The Strom Cell Identification and Tracking)算法基础上,完成了三维格点风暴单体识别、追踪和预报,用Davis发展的客观诊断评估方法识别雷达拼图资料中的中尺度对流系统,实现了雷达数据的中尺度对流系统识别、跟踪和预报,并利用这两种方法对多个强天气过程进行风暴和中尺度对流系统识别、跟踪及预报.在单雷达区域内用原SCIT和修改后的SCIT算法做了风暴单体定量识别检验.结果表明,(1)修改后的SCIT算法能够实现三维风暴的自动识别、跟踪和预报,在单雷达区域内与原算法识别风暴数量大体相当,中尺度对流系统识别方法能够实现中尺度对流系统的自动识别,并完成跟踪和预报;(2)SCIT算法预报误差较小,中尺度对流系统算法预报误差相对较大,它们的预报误差随时间延长而增大.  相似文献   

17.
陈艳  张武  张利  柳月  宋松涛 《干旱气象》2013,(3):517-522
利用全球自动观测网(AERONET)纳木错观测点(90.962°E,30.773°N)2009年1~12月的地基观测数据,对青藏高原中部气溶胶光学厚度的分布进行了分析研究,并利用观测结果对MODIS气溶胶光学厚度(AOD)产品进行检验。结果表明,2009年1~12月期间,气溶胶光学厚度月平均值呈现双峰双谷状分布,3月的值最大。9月以后的波长指数a较小,这一时期气溶胶粒子的粒径较大。混浊系数卢的平均值为0.063,说明该地区的空气较为清洁。利用该地基观测资料对MODISAOD产品进行检验,结果表明两者的相关系数平方为0.14,没有通过95%的置信度检验,适用性不显著,需要进一步订正该地区的MODIS气溶胶光学厚度产品。  相似文献   

18.
The strom identification, tracking, and forecasting method is one of the important nowcasting techniques. Accurate storm identification is a prerequisite for successful storm tracking and forecasting. Storm identification faces two difficulties: one is false merger and the other is failure to isolate adjacent storms within a cluster of storms. The TITAN (Thunderstorm Identification, Tracking, Analysis, and Nowcasting) algorithm is apt to identify adjacent storm cells as one storm because it uses a single reflectivity threshold. The SCIT (Storm Cell Identification and Tracking) algorithm uses seven reflectivity thresholds and therefore is capable of isolating adjacent storm cells, but it discards the results identified by the lower threshold, leading to the loss of the internal structure information of storms. Both TITAN and SCIT have the problem of failing to satisfactorily identify false merger. To overcome these shortcomings, this paper proposes a novel approach based on mathematical morphology. The approach first applies the single threshold identification followed by implementing an erosion process to mitigate the false merger problem. During multi-threshold identification stages, dilation operation is performed against the storm cells which are just obtained by the higher threshold identification, until the storm edges touch each other or touch the edges of the previous storms identified by the lower threshold. The results of experiment show that by combining the strengths of the dilation and erosion operations, this approach is able to mitigate the false merger problem as well as maintain the internal structure of sub-storms when isolating storms within a cluster of storms.  相似文献   

19.
利用民勤站L波段探空雷达2004年5月23—24日的一次强沙尘暴过程加密探测资料,从气象要素的垂直廓线和能量天气学两个方面,分析了沙尘暴发生发展过程中大气层结及其演变特征。结果表明:沙尘暴过境前,500hPa以下的高空风速较小,低层800hPa以下基本为偏东气流,中高层为偏西气流,沙尘暴过境时近地层风速明显加大,700hPa以下为西北气流,高层为西南气流;相对湿度在沙尘暴过境前,高层明显高于低层,而过境后,整层大气的湿度明显增加,且800hPa附近出现逆湿现象,沙尘暴过境前后整层大气相对湿度在垂直方向上的变化趋势基本一致。沙尘暴发生前,近地层气温较高,200hPa附近存在超低温现象,250hPa附近存在比较厚的下沉逆温层,随着沙尘暴过境,低层的气温显著下降,近地层约800hPa处出现逆温层,而250hPa处的逆温层逐渐减弱;地面气象要素的变化为:沙尘暴过境之前,地面气压比较低,温度较高,风速也比较小,而沙尘暴一到,顿时气压升高,风速猛增,温度下降;沙尘暴过境前,500hPa以下处于对流不稳定,过境期间饱和能差逐渐减小,不稳定能量由高层向低层传递,单站的垂直运动发展加剧;沙尘天气结束后.整层大气的结构基本稳定.不稳定能量衰竭,饱和能差进一步减小,整层大气湿度有了较大的增加。  相似文献   

20.
山脉地形对热带风暴Fitow结构和运动影响的数值试验   总被引:9,自引:0,他引:9  
段丽  陈联寿  徐祥德 《气象学报》2006,64(2):186-193
热带风暴自东向西穿越琼州海峡时常常与海南西部的强天气相对应,尤其当风暴中心在海峡中部或海峡西端出口处有向西南方向的偏折时。Fitow(0114)是这类热带风暴的一个典型。通过对Fitow热带风暴的研究和分析,揭示了一个事实:Fitow在沿海峡西行过程中,其外围中尺度结构发生明显变化———风暴中心西南象限有一个中尺度对流(MCS)小涡生成和发展。受到这个诱生MCS小涡的“吸引”,Fitow在穿行海南岛北部和琼州海峡时,路径向西南方向偏折。数值模拟结果表明,海南岛中部的五指山地形对Fitow自东向西穿行海峡时的这种结构变化有显著影响:(1)当热带风暴Fitow(0114)自东向西穿过岛屿北部和琼州海峡时,其外围西北气流与山脉的辐合地带往往会诱生出中尺度强对流涡旋系统(MCS)。这种系统经过尺度分离和滤波处理后便会在山脉西北麓显现出来。(2)MCS小涡只生成在地形高度之下的大气层;地形高度之上并不显现这一小涡。用0高度作敏感试验的结果,在相同位置并不生成这种MCS小涡。(3)诱生小涡(MCS)的存在,对Fitow会产生“吸引”作用,使其向西南方向MCS所在处偏折。且MCS越深厚,维持时间越长,对Fitow中心的“吸引”程度越大,其中心向西南方向的偏折和移动越明显。0.0 km高度无MCS小涡时,Fitow中心并无这种偏折,而是向西北方向移动,在雷州半岛登陆。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号