首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Experiment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets, an empirical model for estimating the vertical distribution of stratospheric ozone over China is proposed. By using this model, the vertical distribution of stratospheric (16–50 km) ozone can be estimated according to latitude, month and total ozone. Comparisons are made between the modeled ozone profiles and the ...  相似文献   

2.
Based on the Stratospheric Aerosol and Gas Experiment (SAGE) II and the Halogen Occultation Ex-periment (HALOE) ozone profiles and the Total Ozone Mapping Spectrometer (TOMS) total ozone data sets,the characteristics and variations of the vertical distribution of stratospheric ozone covering the latitude bands of 50oN±5oN,40oN±5oN,30oN±5oN,and 20oN±5oN and the longitude range of 75-135oE are investigated.The results indicate that the ozone distribution pattern over China not only has general behaviors,but also has particular char-acteristics.In view of the situation that ozone distribu-tions have substantial deviation from zonal symmetry in northern China,the differences of the vertical ozone dis-tribution between the east and the west part of northern China are studied.The results indicate that during winter,spring,and autumn,in the latitude bands of 50oN±5oN,40oN±5oN,ozone concentrations in the eastern part (105 -135oE) are obviously higher than those of the west (75-105oE) at the altitudes of ozone density maximum and below;during summer,in the latitude band of 50oN±5oN,the east-west ozone profile difference is small,but in the latitude band of 40oN±5oN,the east-west total ozone difference becomes as large as 14.0 DU,and the east-west ozone profile difference mainly exists in the lowermost stratosphere and troposphere.  相似文献   

3.
The mean spatiotemporal variations in tropopause parameters over the tropics (±35°, in latitude) in the Indian monsoon region are examined using the upper air data for an extended period obtained from radiosonde and Radio Occultation measurements. In general, the altitude of cold point tropopause (CPT) is a minimum near the equator and increases with latitude on either side. While CPT over the entire southern tropical latitudes and northern equatorial region is cooler (higher) during boreal winter and warmer (lower) during boreal summer, the annual pattern of CPT-temperature reverses in the northern hemispheric off-equatorial region. The temperature of lapse rate tropopause (LRT) is always negatively correlated with its altitude. While the annual variation of LRT-temperature in tropics is always positively correlated with CPT-temperature, the annual variation of LRT-altitude differs mainly in the off-equatorial regions. While the altitude of the convective tropopause is positively correlated with CPT-altitude over the latitude region 20°S–5°N, they are negatively correlated at the north of 10°N. In general, the tropical tropopause layer (TTL) is very thin (~3 km) near the equator and its thickness increases with latitude on either side of the equator to reach a peak value (of ~6 km) around ±30°. A pronounced decrease in TTL-thickness observed over the northern off-equatorial region during the ASM period can be attributed to the manifestation of very deep convection over the land near the Head Bay-of-Bengal region. The TTL-lapse-rate (γTTL) is large in the equatorial region and decreases with increase in latitude. While γTTL in the northern hemispheric off-equatorial region is low during winter, it increases and becomes comparable to that over equatorial region during the ASM period. The annual variations in CPT parameters as well as the TTL- thickness are significantly modulated by quasi-biennial oscillation and the El Niño Southern Oscillation.  相似文献   

4.
The main goals of this work are climatological analysis of characteristics of vertical wind in the stratosphere and estimation of potential opportunities of its influence on stratospheric aerosol particles. High-altitude, temporal, and latitude dependences of zonal mean vertical wind velocity for the period of 1992?C2006 from the UKMO atmospheric general circulation model are analyzed. It is shown that monthly averaged amplitudes of the vertical wind are approximately ±5?mm/s, while annual averaged ones are ±1?mm/s. The upward wind can provide the vertical lifting against gravity for sufficiently large (up to 3?C5???m) aerosol particles with a density up to 1.0?C1.5?g/cm3 at stratospheric and mesospheric altitudes. The vertical wind, probably, is a substantial factor for particle motion up to altitudes of 30?C40?km and can change essentially the sedimentation velocities and the residence times of stratospheric aerosols. The structure of the averaged fields of vertical wind supposes the opportunity of formation of dynamically stable aerosol layers in the middle stratosphere. With the problem regarding the action of a permanent source of monodisperse particles near the stratopause taken as an example, it is shown that if the action of the averaged vertical component is taken into account along with the gravitational sedimentation and turbulent diffusion, the standard vertical profiles of the relative concentration of particles change cardinally. Estimations for the levitation heights for particles of different densities and sizes in the stratosphere under action of gravity and vertical wind pressure are presented.  相似文献   

5.
The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Vertical profiles of both backscatter and extinction coefficients for dust and non-dust aerosols were extracted from a mixed Asian dust plume using the depolarization ratio from lidar observations.Vertical profiles of backscatter and extinction coefficients of non-dust particles were input into an inversion algorithm to retrieve the SSAs of non-dust aerosols.Atmospheric aerosol layers at different heights had different light-absorbing characteristics.The SSAs of non-dust particles at each height varied with aerosol type,which was either urban/industrial pollutants from China transported over long distances at high altitude,or regional/local pollutants from the Korean peninsula.Taking advantage of independent profiles of SSAs of non-dust particles,vertical profiles of SSAs of Asian dust mixed with pollutants were estimated for the first time,with a new approach suggested in this study using an empirical determination of the SSA of pure dust.The SSAs of the Asian dust-pollutants mixture within the planetary boundary layer (PBL) were in the range 0.88-0.91,while the values above the PBL were in the range 0.76-0.87,with a very low mean value of 0.76 ± 0.05.The total mixed dust plume SSAs in each aerosol layer were integrated over height for comparison with results from the Aerosol Robotics Network (AERONET) measurements.Values of SSA retrieved from lidar observations of 0.92 ± 0.01 were in good agreement with the results from AERONET measurements.  相似文献   

6.
Abstract

Carbonyl sulphide (OCS) is an important precursor of sulphate aerosols and consequently a key species in stratospheric ozone depletion. The SPectromètre InfraRouge d'Absorption à Lasers Embarqués (SPIRALE) and shortwave infrared (SWIR) balloon-borne instruments have flown in the tropics and in the polar Arctic, and ground-based measurements have been performed by the Qualité de l'Air (QualAir) Fourier Transform Spectrometer in Paris. Partial and total columns and vertical profiles have been obtained to study OCS variability with altitude, latitude, and season. The annual total column variation in Paris reveals a seasonal variation with a maximum in April–June and a minimum in November–January. Total column measurements above Paris and from SWIR balloon-borne instrument are compared with several MkIV measurements, several Network for the Detection of Atmospheric Composition Change (NDACC) stations, aircraft, ship, and balloon measurements to highlight the OCS total column decrease from tropical to polar latitudes. OCS high-resolution in situ vertical profiles have been measured for the first time in the altitude range between 14 and 30?km at tropical and polar latitudes. OCS profiles are compared with Atmospheric Chemistry Experiment (ACE) satellite measurements and show good agreement. Using the correlation between OCS and N2O from SPIRALE, the OCS stratospheric lifetime has been accurately determined. We find a stratospheric lifetime of 68?±?20 years at polar latitudes and 58?±?14 years at tropical latitudes leading to a global stratospheric sink of 49?±?14?Gg?S?y?1.  相似文献   

7.
Abstract

The Purple Crow Lidar (PCL) is a large power-aperture product monostatic laser radar which until 2010 was located at the Delaware Observatory (42°52′N, 81°23′W, 225 m elevation above sea level) near the campus of the University of Western Ontario. It is capable of measuring temperature from 10 to 110 km altitude, as well as water vapour in the troposphere and stratosphere. We use upper tropospheric and stratospheric vibrational Raman N2 backscatter-derived temperatures to form a climatology for the years 1999 to 2007 from 10 to 40 km attitude. The lidar temperatures are validated using nearby radiosonde measurements from Detroit and Buffalo. The measured temperatures show good agreement with the radiosonde soundings. An agreement of ±1 K is found during the summer months and ±2.5 K during the winter months, validating the calibration of the lidar to within the geophysical variability of the measurements. Comparison between the PCL measurements and the Committee on Space Research International Reference Atmosphere, 1986 (CIRA-86) and the Mass Spectrometer Incoherent Scatter-90 (MSIS-90) models show the models are as much as 5 K warmer below 25 km and 2 to 4 K colder above 25 km during the summer months, in large part because the measured tropopause height is consistently lower than in the models.  相似文献   

8.
Analysis is presented of height changes of the tropopause as approximated by the level of 3.5 pvu of vertical component of Ertel potential vorticity, for the cases of sharp (exceeding 100 DU per day) changes in total ozone (TO) on the basis of a special series of synchronous values of the tropopause characteristics and TO at the 1 × 1° grid within 30°–70°N latitude belt in 2009. Occurrence frequency of the cases is estimated depending on latitude and longitude. It is shown that sharp increase (decrease) in TO is unambiguously associated with decreasing (increasing) tropopause height, regardless of its oscillations during the day. Separate cases of sharp TO changes are studied, and changes in the tropopause characteristics are quantitatively specified.  相似文献   

9.
A state-of-the art Rayleigh and Mie backscattering lidar was set up at Gadanki (13.5N, 79.2E) in the Tropics in India. Using this system, regular observations of upper tropospheric clouds, aerosols at stratospheric heights and atmospheric temperatures in the range from 30 to 80 km were made. In this paper, the data collected during the period of 1998–99 were selected for systematic investigation and presentation. The Mie scattering lidar system is capable of measuring the degree of depolarization in the laser backscattering. Several tropical cirrus cloud structures have been identified with low to moderate ice content. Occasionally, thin sub-visible cirrus clouds in the vicinity of the tropical tropopause have also been detected. The aerosol measurements in the upper troposphere and lower stratosphere show low aerosol content with a vertical distribution up to 35 km altitude. Rayleigh-scattering lidar observations reveal that at the tropical site, temperature inversion occurs at mesospheric heights. Atmospheric waves have induced perturbations in the temperatures for several times at the upper stratospheric heights. A significant warming in the lower mesosphere associated with a consistent cooling in the upper stratospheric heights is observed particularly in the winter season during the events of sudden stratospheric warming (SSW).  相似文献   

10.
This case study investigates a stratospheric intrusion event down to the earth’s surface (near sea-level pressure) of the greater area of Athens (23.43°E 37.58°N), which occurred on 9 October 2003 and caused a remarkable increase in surface ozone concentrations not related to photochemical production. This event is among the rare case studies investigating, on the one hand, a deep stratospheric intrusion down to the earth’s surface at near sea-level pressure and, on the other, an event affecting the near surface ozone of a megacity such as Athens. The synoptic situation is described by a deep upper lever trough at 300 and 500 hPa extending over Greece, which is related to a deep tropopause fold as revealed by vertical cross sections of potential vorticity, relative humidity, divergence and vertical velocity. The analysis of potential vorticity at several isentropic levels indicates a hook-shaped streamer of high PV values (greater than 4 pvu at the 315 K isentropic level) over southeast Europe, which coincides with a streamer of dry air as observed from satellite images of water vapor. The aforementioned structure characterizes a textbook case study of stratosphere-to-troposphere transport. The Lagrangian particle dispersion model FLEXPART was used to calculate the trajectories of air particles reaching the receptor site and the fraction of particles with stratospheric origin. It reveals an important direct stratospheric impact within 1 day related to the tropopause fold described in this study with the fraction of stratospheric particles reaching maximum values of 1.9 and 4.5% for threshold values of the dynamical tropopause 2 and 1.5 pvu, respectively. Furthermore, a larger indirect aged stratospheric contribution is also revealed 4 to 5 days prior to the release, related to stratospheric intrusion events at the western Atlantic Ocean, reaching maximum values of 2.5 and 6.9% of particles crossing the 2 and 1.5 pvu potential vorticity surfaces, respectively.  相似文献   

11.
The slope of the tropopause is calculated from the data of its height in the points of a regular grid. From the NCEP Reanalysis-2 for 1990–2007, the slope angles are calculated of the tropopause approximated by different constant values of Ertel potential vorticity within the latitude band of 30°–70° N. Effects of horizontal resolution of the data under use on the calculation results are studied on the basis of ten-day samples of objective analysis by UKMO, NCEP, and operative objective analysis of Hydrometeorological Center of Russia in different seasons of 2009.  相似文献   

12.
A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measure- ments from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ± 10% ( ± 5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO 2 concentration are also investigated.  相似文献   

13.
In 1978–1980 nine aircraft flights to an altitude of up to 15 km were made over western Europe. Sulfur dioxide was measured with a sensitive chemiluminescence method consisting of separate sampling and analysis stages and application of a wet chemical filter procedure (detection limit: 8 pptv SO2).The measurements performed in the upper troposphere and lower stratosphere lead to some unexpected results: (a) the meteorological conditions at the tropopause level have an important influence on the observed SO2 mixing ratio; (b) between the 500 mb and the actual tropopause level the SO2 mixing ratio is found to be <100 pptv, and weak vertical gradients of SO2 suggest only a small flux of tropospheric SO2 into the stratosphere; (c) increasing SO2 mixing ratios within the first kilometers of the stratosphere give strong support to a stratospheric source of SO2.In the light of improved one-dimensional models considering the vertical distribution of stratospheric sulfur compounds (Crutzen, 1981; Turco et al. 1981) it can be shown that the oxidation of organic sulfur compounds (e.g., OCS, CS2) seems to be a stratospheric source of SO2. Furthermore, the flux calculations based on the SO2 mixing ratios measured at the tropopause level indicate that the contribution of tropospheric (man-made) SO2 to the stratospheric aerosol layer is of only minor importance.  相似文献   

14.
Summary Umkehr observations taken during the 1957–2000 period at 15 stations located between 19 and 52° N have been reanalyzed using a significantly improved algorithm-99, developed by DeLuisi and Petropavlovskikh et al. (2000a,b). The alg-99 utilizes new latitudinal and seasonally dependent first guess ozone and temperature profiles, new vector radiative transfer code, complete aerosol corrections, gravimetric corrections, and others. Before reprocessing, all total ozone values as well as the N-values (radiance) readings were thoroughly re-evaluated. For the first time, shifts in the N-values were detected and provisionally corrected. The re-evaluated Umkehr data set was validated against satellite and ground based measurements. The retrievals with alg-99 show much closer agreement with the lidar and SAGE than with the alg-92. Although the latitudinal coverage is limited, this Umkehr data set contains ∼ 44,000 profiles and represent the longest (∼ 40 years) coherent information on the ozone behavior in the stratosphere of the Northern Hemisphere. The 14-months periods following the El-Chichon and the Mt. Pinatubo eruptions were excluded from the analysis. Then the basic climatological characteristics of the vertical ozone distribution in the 44–52° N and more southern locations are described. Some of these characteristics are not well known or impossible to be determined from satellites or single stations. The absolute and relative variability reach their maximum during winter–spring at altitudes below 24 km; the lower stratospheric layers in the middle latitudes contain ∼ 62% of the total ozone and contribute ∼ 57% to its total variability. The layer-5 (between ∼ 24 and 29 km) although containing 20% of the total ozone shows the least fluctuations, no trend and contributes only ∼ 11% to the total ozone variability. Meridional cross-sections from 19 to 52° N of the vertical ozone distribution and its variability illustrate the changes, and show poleward-decreasing altitude of the ozone maximum. The deduced trends above 33 km confirm a strong ozone decline since the mid-1970s of over 5% per decade without significant seasonal differences. In the mid-latitude stations, the decline in the 15–24 km layer is nearly twice as strong in the winter-spring season but much smaller in the summer and fall. The effect of including 1998 and 1999 years with relatively high total ozone data reduces the overall-declining trend. The trends estimated from alg-99 retrievals are statistically not significantly different from those in WMO 1998a; however, they are stronger by about 1% per decade in the lower stratosphere and thus closer to the estimates by sondes. Comparisons of the integrated ozone loss from the Umkehr measurements with the total ozone changes for the same periods at stations with good records show complete concurrence. The altitude and latitude appearances of the long-term geophysical signals like solar (1–2%) and QBO (2–7%) are investigated. Received April 12, 2001 Revised September 19, 2001  相似文献   

15.
《大气与海洋》2013,51(4):283-299
Abstract

The Middle Atmosphere Nitrogen TRend Assessment (MANTRA) series of high‐altitude balloon flights is being undertaken to investigate changes in the concentrations of northern hemisphere mid‐latitude stratospheric ozone, and of nitrogen and chlorine compounds that play a role in ozone chemistry. Four campaigns have been carried out to date, all from Vanscoy, Saskatchewan, Canada (52°01'N, 107°02'W, 511.0 m). The first MANTRA mission took place in August 1998, with the balloon flight on 24 August 1998 being the first Canadian launch of a large high‐altitude balloon in about fifteen years. The balloon carried a payload of instruments to measure atmospheric composition, and made measurements from a float altitude of 32–38 km for one day. Three of these instruments had been flown on the Stratoprobe flights of the Atmospheric Environment Service (now the Meteorological Service of Canada) in the 1970s and early 1980s, providing a link to historical data predating the onset of mid‐latitude ozone loss.

The primary measurements obtained from the balloon‐borne instruments were vertical profiles of ozone, NO2, HNO3, HCl, CFC‐11, CFC‐12, N2O, CH4, temperature, and aerosol backscatter. Total column measurements of ozone, NO2, SO2, and aerosol optical depth were made by three ground‐based spectrometers deployed during the campaign. Regular ozonesonde and radiosonde launches were also conducted during the two weeks prior to the main launch in order to characterize the local atmospheric conditions (winds, pressure, temperature, humidity) in the vicinity of the primary balloon flight. The data have been compared with the Model for Evaluating oZONe Trends (MEZON) chemical transport model, the University of California at Irvine photochemical box model, and the Canadian Middle Atmosphere Model (CMAM) to test our current understanding of model photochemistry and mid‐latitude species correlations. This paper provides an overview of the MANTRA 1998 mission, and serves as an introduction to the accompanying papers in this issue of Atmosphere‐Ocean that describe specific aspects and results of this campaign.  相似文献   

16.
In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.  相似文献   

17.
Sixteen years (1994 – 2009) of ozone profiling by ozonesondes at Valentia Meteorological and Geophysical Observatory, Ireland (51.94° N, 10.23° W) along with a co-located MkIV Brewer spectrophotometer for the period 1993–2009 are analyzed. Simple and multiple linear regression methods are used to infer the recent trend, if any, in stratospheric column ozone over the station. The decadal trend from 1994 to 2010 is also calculated from the monthly mean data of Brewer and column ozone data derived from satellite observations. Both of these show a 1.5 % increase per decade during this period with an uncertainty of about ±0.25 %. Monthly mean data for March show a much stronger trend of?~?4.8 % increase per decade for both ozonesonde and Brewer data. The ozone profile is divided between three vertical slots of 0–15 km, 15–26 km, and 26 km to the top of the atmosphere and a 11-year running average is calculated. Ozone values for the month of March only are observed to increase at each level with a maximum change of +9.2?±?3.2 % per decade (between years 1994 and 2009) being observed in the vertical region from 15 to 26 km. In the tropospheric region from 0 to 15 km, the trend is positive but with a poor statistical significance. However, for the top level of above 26 km the trend is significantly positive at about 4 % per decade. The March integrated ozonesonde column ozone during this period is found to increase at a rate of ~6.6 % per decade compared with the Brewer and satellite positive trends of ~5 % per decade.  相似文献   

18.
利用2008—2014年全国高垂直分辨率的L波段探空资料,统计分析了东亚夏季风爆发前后我国不同区域对流层顶高度变化特征。研究表明:夏季风爆发后,对流层顶高值区向北推进,最大值位于青藏高原南部及其东南部地区;对流层顶高度的向南梯度和向东梯度大值区均由爆发前的30°~40°N北移至40°~50°N;受地面加热和垂直运动的影响,中国东北部和中东部在夏季风爆发后对流层升温,平流层-对流层过渡层降温,大气温度梯度增加,对流层顶上升,其中中国东北部在夏季风爆发前,大气温度廓线为双峰结构,易出现双对流层顶,第一对流层顶较低;中国南部整层大气温度廓线在夏季风爆发后略有增加,对流层顶有所下降。  相似文献   

19.
The altitude distribution of nitric acid vapour was measured from observations of atmospheric thermal emission in the 11.3‐μm band during a balloon ascent launched at 2317 GMT on 22 July 1974 from Churchill, Manitoba (latitude 58.7°N). The total amount of nitric acid above the tropopause was 0.32 matmcm. The nitric acid layer was peaked at 24 km with a maximum mixing ratio of 5.5 ppbv. This measurement is similar to other available measurements of nitric acid in terms of layer shape and peak concentrations. The total amount of 0.32 matmcm is consistent with aircraft measurements of the latitudinal variation of nitric acid.  相似文献   

20.
王志恩  胡欢  陵周军 《气象学报》1996,54(4):437-446
文中提出了一种新的激光雷达测量臭氧的方法:双差分吸收方法。理论分析和数值模拟表明这种方法可以有效减小气溶胶消光和后向散射对臭氧测量的影响,从而使激光雷达在气溶胶影响严重地区测量的臭氧精度比传统差分吸收激光雷达大大提高。利用(289,313;277.1,299.1nm)或(268.4,289;277.1,299.1nm)4波长进行双差分吸收可以用于对流层大气气溶胶含量丰富或分布不均匀地区臭氧的测量。利用(299.1,341.5;308,353nm)4波长进行双差分吸收可以对火山爆发后平流层臭氧进行较精确的测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号