首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
《International Geology Review》2012,54(12):1471-1489
The Plat Sjambok Anorthosite crops out near Prieska Copper Mines in the Namaqua–Natal Province of southern Africa. It is a massif-type anorthosite, previously regarded as a late-tectonic intrusion and part of the ca. 1100 Ma bimodal Keimoes Suite. Our new ion probe U–Pb zircon data show that the Plat Sjambok massif intruded at 1259 ± 5 Ma, before the 1220 Ma Namaqua collision events and is thus approximately 150 million years older than the Keimoes Suite. Despite the proximity to Prieska Mines, the anorthosite is located in the Kaaien Terrane close to the Brakbos Fault, which is the boundary with the Areachap Terrane in which Prieska Mines is situated. We dated the Nelspoortjie Tonalite, the main country rock of the Plat Sjambok Anorthosite, by laser ablation ICPMS at 1273 ± 13 Ma. Both intrusions thus originated concurrently with the 1286–1241 Ma volcanic rocks of the Areachap Group, which developed in a subduction-related arc setting, prior to its collision with the Kaaien Terrane and Kaapvaal Craton. Metamorphic zircon rims in the Plat Sjambok Anorthosite give an age of 1122 ± 7 Ma, a time that corresponds to a quiet period in the Areachap Terrane. We propose a tectonic model in which formation of the Nelspoortjie Tonalite and Plat Sjambok Anorthosite was driven by intrusions from the mantle into a back-arc related tensional environment within the Kaaien Terrane, possibly situated above an Archaean crustal tongue. This led to heating in a thickened crustal setting in which the tonalite originated as a partial melt of amphibolite. The anorthosite then formed as a mixture of mantle-derived gabbro and Archaean crustal rocks, which explains the 2100–2600 Ma zircon–Hf crustal residence ages and the Sm–Nd trend towards an old crustal source. The anorthosite and its country rocks were only juxtaposed with the Prieska Copper Mining District by late-tectonic uplift and transpressional movements on the Brakbos Fault towards the end of the Namaqua tectogenesis.  相似文献   

2.
李晓春  于津海  桑丽芹  罗莉  朱国荣 《岩石学报》2009,25(12):3346-3356
早古生代西伯利亚克拉通南缘发生了大规模的增生-碰撞造山运动,本文研究的地区--奥里洪地块记录了巴尔古津微板块与西伯利亚克拉通碰撞造山的事件.对奥里洪地块出露的两种典型的高级变质岩--石榴辉石岩和石榴黑云片麻岩的矿物成分分析和变质温压计算,表明它们都经历了麻粒岩相的峰期变质作用,峰期变质温度达到770~800℃,而压力曾达到1.0GPa左右:峰后的退变质作用仍具有较高的温度,但压力明显降低(700~730℃,0.065GPa和710~766℃,0.50GPa),显示了一个近等温降压(ITD)的顺时针P-T轨迹特征.石榴黑云片麻岩中变质锆石的原位LA-ICP-MS U-Pb定年表明,麻粒岩相峰期变质年龄为479±2Ma,而峰前变质可能在500Ma就已经开始.峰后的退变质作用很可能发生在475~460Ma之后.整个造山作用持续了至少35Ma.对比蒙古-图瓦地块及中国东北佳木斯-额尔古纳地块已厘定出的变质作用及岩浆活动年龄可以发现,西伯利亚克拉通南缘不同地区增生-碰撞造山作用发生的时间是不同的,奥里洪地区造山作用相对年轻.  相似文献   

3.
Ar/Ar thermochronology on 24 hornblendes, 3 biotites, 2 muscovites and 2 K-feldspars, collected along a 400 km-long NW-SE geotraverse through the Grenville Province in western Québec, is employed to provide time constraints on the intermediate and low temperature stages of cooling of part of the Grenville orogen. In the Grenville Front zone, the c. 1000 Ma time of exhumation previously established from thermobarometric and isotopic studies, is supported by the hornblende age data presented here. From 60 km to 160 km SE of the Front, reworked Archaean migmatites of the parautochthonous Réservoir Dozois terrane (RDT; 1004 Ma-old metamorphic monazites) contain hornblendes with 972– 950 Ma cooling ages. Assuming metamorphic geotherms between 25 and 30 °C km?1, calculated cooling and unroofing rates are about 6 °C Ma?1 and 0.33 km Ma?1 in the P–T range 725 °C–800 MPa and 450 °C–400 MPa. Hornblendes from monocyclic rocks of the Mont-Laurier and Morin terranes (MLT and MT; monazite ages c. 1165 Ma) give ages of about 1040 and 1010 Ma, respectively. Calculation of cooling-unroofing rates from peak metamorphic conditions in this area is hampered by thermal perturbations associated with the still poorly dated Grenville collision which took place approximately between 1060 and 1020 Ma. Cooling ages of c. 900 Ma for muscovite and biotite and 860–810 Ma for K-feldspar, show that cooling rates decreased to around 1.5 °C Ma?1 under retrograde greenschist facies conditions in the MLT. On a time vs. distance diagram, the hornblende data define several distinct age ranges, suggesting that each terrane had a characteristic thermal history. Thus, cooling was diachronous and probably non-homogeneous throughout this segment of the Grenville orogen. The time-lag between the cooling history of the parautochthon (972–950 Ma) and the allochthons (1040–1010 Ma) is compatible with an earlier (pre-1040 Ma) peak of metamorphism in the allochthons. The Réservoir Cabonga allochthon was transported toward the NNW from its probable root zone in the MLT during the 1060–1020 Ma Grenvillian collision as a partially cooled slab. The remobilization of the Archaean parautochthon is attributed to this collision. In the Grenville Front zone, slightly older cooling ages and cooling rates initially faster than in the remaining part of the parautochthon are probably as a result of rapid (tectonic?) exhumation shortly after collision. The minor delay (20–30 Ma) in unroofing of the MT compared to the adjacent MLT is most likely related to post-1040 Ma extensional displacement along the Labelle shear zone. In terranes like those described above where metamorphism is diachronous, determination of cooling rates and the history of exhumation may be meaningless without a firm control on the regional structure. However, identification of contrasting cooling histories contributes to unravelling the independent movement of terranes.  相似文献   

4.
A study of the NW Kakamas Domain in South Africa/Namibia provides a new, unified lithostratigraphy and evolutionary history applicable to the whole Namaqua Sector. The Mesoproterozoic history ranges from ~1350 Ma to 960 Ma, but isotopic evidence suggests it was built upon pre-existing Paleoproterozoic continental crust that extended west from the Archaean Craton. In eastern Namaqualand, early rift-related magmatism and sedimentation at ~1350 Ma occurred in a confined ocean basin. Subsequent tectonic reversal and subduction at ~1290–1240 Ma led to establishment of the Areachap, Konkiep and Kaaien Domains. In the Kakamas Domain, widespread deposition of pelitic sediments occurred at ~1220 Ma (Narries Group). These contain detrital zircons derived from proximal crust with ages between ~2020 Ma and 1800 Ma (western Palaeoproterozoic domains) and 1350–1240 Ma (eastern early Namaqua domains), suggesting pre-sedimentation juxtaposition. The pelites underwent granulite grade metamorphism at ~1210 Ma (peak conditions: 4.5–6 kbar and 770–850 °C), associated with voluminous, predominantly S-type granitoid orthogneisses between ~1210 Ma and 1190 Ma (Eendoorn and Ham River Suites) and low-angle ductile (D2) deformation which continued until ~1110 Ma, interspersed with periods of sedimentation. This enduring P-T regime is inconsistent with the expected crustal over-thickening associated with the generally-accepted collision-accretion Namaqualand model. Rather, we propose the Namaqua Sector is a ‘hot orogen’ developed in a wide continental back-arc with subduction west of the present-day outcrop. The observed high geotherm resulted from thinned back-arc lithosphere accompanied by an influx of mantle-derived melts. Ductile D2 deformation resulted from “bottom-driven” tectonics and viscous drag within the crust by convective flow in the underlying asthenospheric mantle. This extended tectonothermal regime ceased at ~1110 Ma when SW-directed thrusting stacked the Namaqua Domains into their current positions, constrained in the Kakamas Domain by late- to post-tectonic I-type granitoids intruded between ~1125 Ma and 1100 Ma (Komsberg Suite). The thermal peak then shifted west to the Bushmanland and Aus Domains, where voluminous granites (1080–1025 Ma) were associated with high-T/low-P granulite facies thermal metamorphism and mega-scale open folding (D3). Unroofing of the Namaqua Sector is marked by large-scale, NW-trending, sub-vertical transcurrent dextral shear zones and associated pegmatites and leucogranites at ~990 Ma.  相似文献   

5.
Early Palaeozoic subduction of the palaeo-Pacific plate and terrane accretion along the palaeomargin of the East Antarctic Craton is well-documented in North Victoria Land, where the Tonalite Belt is a complex of synkinematic intrusions emplaced within the Lanterman–Murchison Shear Zone at the boundary between the Wilson Terrane and the allochthonous Bowers Terrane. Stepwise leaching Pb/Pb and U–Pb studies of titanite separates carried out on two well-foliated samples of tonalites yielded ages of deformation bracketed between 490 and 480 Ma with an isochron age of 480 ±13 Myr. Ar/Ar and K–Ar ages of 477 Myr in the metamorphic rocks of accreted terranes point to fast cooling and uplift after accretion. The new titanite ages, compared with a regional distribution of magmatic and metamorphic ages, indicate an early Ordovician age for terrane collision and amalgamation. As a consequence of collision, subduction shifted to an outward position along the palaeomargin of the East Antarctic Craton.  相似文献   

6.
大量来自于华北陆块的高压变质岩被发现发育于苏鲁构造杂岩带中,给俯冲带上盘物质如何卷入陆-陆俯冲碰撞作用的研究带来新的契机.通过对乳山地区(含榴)斜长角闪岩进行岩石学、矿物化学及相平衡模拟的研究,发现其保留有3个不同变质演化阶段的矿物组合,峰前矿物组合为粗粒石榴子石+斜长石+角闪石+石英+钛铁矿;峰期矿物组合由石榴子石+单斜辉石+斜长石+角闪石+石英+钛铁矿组成,为典型高角闪岩相矿物组合;峰后退变质阶段矿物组合为角闪石+斜长石+石英+石榴子石+钛铁矿,发育有典型的“白眼圈”结构.相平衡模拟与温压计算表明,乳山午极石榴斜长角闪岩峰前变质阶段的P-T条件分别为P=6.4~7.0 kbar、T=610~640℃,表明其俯冲至30 km左右的地壳深度;峰期变质阶段P-T条件分别为P=9.3~10.0 kbar、T=700~730℃,表明其已俯冲至36~40 km的地壳深度,峰后退变质阶段P-T条件分别为P=5.2~5.8 kbar、T=680~710℃.锆石U-Pb定年结果表明乳山午极石榴斜长角闪岩原岩时代为1 734±24 Ma,龙角山水库斜长角闪岩变质时代为1 849±28 Ma,研究表明二者均来源于华北构造岩片.结合前人研究资料,推测乳山地区石榴斜长角闪岩原岩可能经历三叠纪俯冲作用并发生变质;其与杂岩带中来自华南的构造岩片发生混杂,共同构成华北-华南板块间宽约80~100 km的构造杂岩带.   相似文献   

7.
Ailaoshan orogenic belt located at the northeastern margin of the Indochina block, southeastern Tibet, was formed by subduction and collision between the Indochina and South China blocks in Triassic and slip shearing resulted from the extrusion of the Indochina block in Cenozoic. The high‐pressure pelitic granulite is located at the southeastern margin of the Ailaoshan metamorphic belt, occurs as a slice of about 500~700m in thickness, consists of garnet, sillimanite, feldspar, biotite and quartz with accessory of kyanite, sapphirine, spinel, rutile, ilmenite, zircon and apatite. The petrography and mineral chemistry show that the high‐pressure pelitic granulite had suffered three stages of metamorphism: 1) the prograde metamorphism recorded by the mineral assemblage of garnet, kyanite, feldspar, biotite and rutile; 2) the peak metamorphism shown by the mineral assemblage of garnet, sillimanite, sapphirine, ternary feldspar, K‐feldspar, plagioclase, biotite, spinel, quartz, rutile and zircon mantle; 3) the retrograde metamorphism recorded by the mineral assemblage of biotite, muscovite, plagioclase, quartz and zircon rim. Zircon SHRIMP U‐Pb dating indicates that the protolith of the pelite granulite was deposited before 336 Ma, the prograde to peak metamorphism occurred at P‐T conditions of ≥10.4 kbar at 850~919 °C in 235 Ma, and the retrograde metamorphism occurred at the P‐T condition of 3.5~3.9 kbar at 572~576 °C until to 33 Ma. They are consistent with the times of Indochina separated from Gondwanaland during late Paleozoic, the amalgamation of the south China and Indochina blocks during the Triassic, and the sinistral slip‐shearing since the Early Cenozoic respectively. It is inferred that that the sedimentary rock was subducted to the lower continental crust (30 km) and suffered granulite‐facies metamorphism due to the collision during Indosinian, then exhumed quickly to middle‐upper crust (10–12km) and superimposed retrograde metamorphism since the Cenozoic.  相似文献   

8.
浙西南八都杂岩早中生代泥质麻粒岩变质作用及构造意义   总被引:1,自引:0,他引:1  
遂昌-大柘泥质麻粒岩出露于华夏地块东北部的浙西南八都杂岩中,该岩石保留了典型的减压反应结构.但其变质演化特点、变质作用时代及构造意义目前尚不明确.通过系统的岩相学、矿物化学和同位素年代学分析,结果表明遂昌-大柘泥质麻粒岩记录了4个阶段的变质矿物组合,其中早期进变质阶段M1的矿物组合为石榴石+黑云母+石英;压力峰期变质阶段M2的矿物组合为石榴石+铝绿泥石+金红石+蓝晶石+刚玉+黑云母+石英±十字石,该矿物组合可能预示着岩石曾经历了超高压变质作用过程;峰期变质阶段M3的矿物组合为石榴石+黑云母+夕线石+石英±钾长石±斜长石±钛铁矿;峰后近等温降压M4-1阶段的矿物组合为石榴石+黑云母+夕线石+堇青石+石英+钛铁矿±尖晶石±斜长石±钾长石;M4-2阶段的矿物组合为石榴石+堇青石+夕线石+斜长石+黑云母+石英±钾长石.相平衡模拟结合传统地质温压计限定其峰期变质阶段的温压条件为T=780~810 ℃、P=8.0~9.2 kbar;峰期后近等温降压的M4-1阶段的温压条件为T=780~860 ℃和P=5.7~6.0 kbar,M4-2阶段的温压条件为T=~700 ℃和P=~4.4 kbar,具有典型的顺时针近等温减压型P-T轨迹特征.LA-ICP-MS U-Pb定年结果表明其麻粒岩相变质作用时代为233.5~238.9 Ma.变质作用历史说明浙西南地体可能卷入了古特提斯洋域内印支-华南-华北板块之间的俯冲-碰撞过程,并经历了早中生代的麻粒岩相变质作用后快速折返至地表.   相似文献   

9.
INTRODUCTIONTheDabieMountainsaretheeasternsectionoftheE WtrendingQinling DabieorogenicbeltbetweentheNorthChinablockandYangtzeblock ,andistransectedatitseasternendbyTan Lufault.Ultrahigh pressuremetamorphic (UHPM)rocksincludingcoesites (Okayetal.,1989;Wangetal.,1989)andmicrodiamonds (Xuetal.,1992b)bearingeclogitesareexposedintheDabieMountainsandSu Luorogen ,whichisthelargestUHPMbeltontheearthsurface .TheUHPMrocksarecomposedofdifferentkindsofmetamorphicrockssuchascoesite anddiamo…  相似文献   

10.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

11.
Phase equilibria modelling coupled with U–Pb zircon and monazite ages of garnet–cordierite gneiss from Vallikodu Kottayam in the Kerala Khondalite Belt,southern India are presented here.The results suggest that the area attained peak P–T conditions of^900C at 7.5–8 kbar,followed by decompression to 3.5–5 kbar and cooling to 450–480C,preserving signatures of the partial melting event in the field of high to ultra-high temperature metamorphism.Melt reintegration models suggest that up to 35%granitic melt could have been produced during metamorphism at^950C.The U–Pb age data from zircons(~1.0–~0.7 Ga)and chemical ages from monazites(~540 Ma and^941 Ma)reflect a complex tectonometamorphic evolution of the terrain.The^941 Ma age reported from these monazites indicate a Tonian ultra-high temperature event,linked to juvenile magmatism/deformation episodes reported from the Southern Granulite Terrane and associated fragments in Rodinia,which were subsequently overprinted by the Cambrian(~540 Ma)tectonothermal episode.  相似文献   

12.
The Strona-Ceneri Zone comprises a succession of polymetamorphic, pre-Alpidic basement rocks including ortho- and paragneisses, metasedimentary schists, amphibolites, and eclogites. The rock pile represents a Late Proterozoic or Palaeozoic subduction accretion complex that was intruded by Ordovician granitoids. Eclogites, which occur as lenses within the ortho-paragneiss succession and as xenoliths within the granitoids record a subduction related high-pressure event (D1) with peak metamorphic conditions of 710 ± 30 °C at 21.0 ± 2.5 kbar. After isothermal uplift, the eclogites experienced a Barrowtype (D2) tectonometamorphic overprint under amphibolite facies conditions (570-630 °C, 7-9 kbar). U-Pb dating on zircon of the eclogites gives a metamorphic age of 457 ± 5 Ma, and syn-eclogite facies rutile gives a 206Pb/238U age of 443 ± 19 Ma classifying the subduction as a Caledonian event. These data show that the main tectonometamorphic evolution of the Strona-Ceneri Zone most probably took place in a convergent margin scenario, in which accretion, eclogitization of MOR-basalt, polyphase (D1 and D2) deformation, anatexis and magmatism all occurred during the Ordovician. Caledonian high-pressure metamorphism, subsequent magmatism and Barrow-type metamorphism are believed to be related to subduction and collision within the northern margin of Gondwana. Editorial handling: Edwin Gnos  相似文献   

13.
Abstract The Taiwan orogen has been the focus of a number of models of mountain building processes, but little attention has been paid to high‐pressure (HP) metamorphic rocks that are found as exotic blocks intermingled within the deepest units of the mountain belt. In this study, we re‐appraise from updated petrological and thermodynamic databases the physical conditions of HP metamorphism in Taiwan, and we combine our findings with available geochronological data to estimate the thermal history of these rocks. Our results indicate that peak metamorphic conditions of ~550 °C and 10–12 kbar have been followed by a rapid isothermal decompression, with exhumation possibly as rapid as burial. These units have subsequently been stored at a pressure of ~3 kbar for ~4–5 Myr, before their final exhumation, probably facilitated by the accretion of passive margin sequences during the Late Cenozoic collision. Therefore, HP units in Taiwan maintain a record of processes at depth from the early stages of oceanic subduction to the present arc‐continent collision.  相似文献   

14.
Granulites from Huangtuling in the North Dabie metamorphic core complex in eastern China preserve rare mineralogical and mineral chemical evidence for multistage metamorphism related to Palaeoproterozoic metamorphic processes, Triassic continental subduction‐collision and Cretaceous collapse of the Dabie Orogen. Six stages of metamorphism are resolved, based on detailed mineralogical and petrological studies: (I) amphibolite facies (6.3–7.0 kbar, 520–550 °C); (II) high‐pressure/high‐temperature granulite facies (12–15.5 kbar, 920–980 °C); (III) cooling and decompression (4.8–6.0 kbar, 630–700 °C); (IV) medium‐pressure granulite facies (7.7–9.0 kbar, 690–790 °C); (V) low‐pressure/high‐temperature granulite facies (4.0–4.7 kbar, 860–920 °C); (VI) retrograde greenschist facies overprint (1–2 kbar, 340–370 °C). The PT history derived in this study and existing geochronological data indicate that the Huangtuling granulite records two cycles of orogenic crustal thickening events. The earlier three stages of metamorphism define a clockwise PT path, implying crustal thickening and thinning events, possibly related to the assembly and breakup of the Columbia Supercontinent at c. 2000 Ma. Stage IV metamorphism indicates another crustal thickening event, which is attributed to Triassic subduction/collision between the Yangtze and Sino‐Korean Cratons. The dry lower crustal granulite persisted metastably during the Triassic subduction/collision because of the lack of hydrous fluid and deformation. Stage V metamorphism records the Cretaceous collapse of the Dabie Orogen, possibly due to asthenosphere upwelling or removal of the lithospheric mantle resulting in heating of the granulite and partial melting of the North Dabie metamorphic core complex. Comparison of the Huangtuling granulite in North Dabie and the high‐pressure–ultrahigh‐pressure metamorphic rocks in South Dabie indicates that the subducted upper (South Dabie) and lower (North Dabie) continental crusts underwent contrasting tectonometamorphic evolution during continental subduction‐collision and orogenic collapse.  相似文献   

15.
帕米尔高原从西到东展布的8个新生代变质穹窿构成帕米尔高原变质地壳的主体,沙克达拉穹窿是其中最大的一个。沙克达拉穹窿变质杂岩中石榴矽线石片麻岩峰期组合(Grt+Ky+Bi+Rt+Pl+Qz)变质作用温压条件为T约810 ℃/P约10 kbar, 石榴石单斜辉石基性麻粒岩峰期组合(Grt+Cpx+Rt+Pl+Qz)变质作用温压条件为T约824 ℃/P约16.3 kbar, 榴闪岩退变较强,其残留峰期组合(Grt+Pl+Hbl+ilm+Qz)变质作用温压条件为T约683 ℃~873 ℃/P约8.6~11.7 kbar。基性麻粒岩变质锆石的U-Pb年龄为19~35 Ma,反映了从晚始新世到早中新世帕米尔高原下地壳加热加厚过程。帕米尔穹窿的变质作用可以与高喜马拉雅结晶岩系类比,在新生代印度亚洲大陆碰撞过程中,帕米尔陆内各地体沿前新生代缝合带的陆内俯冲可能是帕米尔下地壳加厚的主要动因。  相似文献   

16.
苟龙龙  张立飞 《岩石学报》2009,25(9):2271-2280
古南天山洋闭合过程中,由于洋壳俯冲产生的岛弧岩浆作用加热大陆地壳,在新疆西南天山木扎尔特一带形成了一套低压高温泥质麻粒岩相变质岩石.本文用Theriak-Domino热力学软件对该套岩石中的堇青石榴夕线石黑云母片麻岩和含夕线石堇青石榴黑云母片麻岩进行了岩石学相平衡计算研究,得到它们峰期变质的温压条件分别是:T=630~674℃,P=5.2~5.5kbar和T=645~684℃,P=5.4~5.7kbar.并采用独居石Th-U-Pb电子探针定年方法,对样品WQ006中的3颗独居石进行了原位年龄测定(38个分析点),得到2组等时线年龄,分别是376±8Ma和280σ8Ma(2σ).结合独居石的岩相学特征,提出了新疆西南天山低压高温麻粒岩相峰期变质作用的时代为280±8Ma,而376±8Ma(2σ)可能为原沉积岩的原岩/成岩年龄.表明西南天山洋壳开始俯冲发生在晚古生代,进一步证明了西南天山造山带俯冲碰撞发生在晚二叠纪之后的观点.  相似文献   

17.
近年来在东昆仑造山带中发现出露多处榴辉岩,由夏日哈木-苏海图、大格勒、宗加、尕日当(浪木日上游)、温泉、加当等多个榴辉岩、榴闪岩高压变质地体组成,呈透镜体或条带状产于金水口岩群中,构成了一条长达530 km的高压变质带.从榴辉岩的岩石学、地球化学、同位素年代学等方面进行系统梳理,结果表明岩石类型复杂,主要可分为榴辉岩、退变榴辉岩、榴闪岩,岩石地球化学显示东昆仑榴辉岩SiO2含量为41.58%~59.00%,平均值为50.19%,Al2O3含量为11.27%~18.54%,平均值为14.66%,TiO2含量为0.76%~1.59%,平均值为1.03%.稀土配分曲线主要为轻稀土富集型,微量元素配分主要介于E-MORB与N-MORB之间.获得加当榴闪岩变质年龄为440±13 Ma,原岩年龄为934±15 Ma,同时结合东昆仑地区榴辉岩锆石年龄对其进行分析,锆石单点206Pb/238U年龄在直方图上显示出丰富的信息,变质峰期年龄出现明显3个年龄峰,分别为451 Ma、432 Ma和412 Ma,原岩年龄出现峰值934 Ma,其中515~440 Ma记录了板块俯冲时段的岩浆热事件;440~420 Ma为陆壳俯冲-碰撞的记录;420~390 Ma是榴辉岩在折返过程中退化变质的反映.东昆仑榴辉岩变质时代与东昆仑原特提斯洋构造演化密切相关.   相似文献   

18.
STRUCTURAL AND THERMAL EVOLUTION OF THE SOUTH ASIAN CONTINENTAL MARGIN ALONG THE KARAKORAM AND HINDU KUSH RANGES,NORTH PAKISTAN  相似文献   

19.
High-pressure (HP) metamorphic rocks, including garnet peridotite, eclogite, HP granulite, and HP amphibolite, are important constituents of several tectonostratigraphic units in the pre-Alpine nappe stack of the Getic–Supragetic (GS) basement in the South Carpathians. A Variscan age for HP metamorphism is firmly established by Sm–Nd mineral–whole-rock isochrons for garnet amphibolite, 358±10 Ma, two samples of eclogite, 341±8 and 344±7 Ma, and garnet peridotite, 316±4 Ma.

A prograde history for many HP metamorphic rocks is documented by the presence of lower pressure mineral inclusions and compositional zoning in garnet. Application of commonly accepted thermobarometers to eclogite (grt+cpx±ky±phn±pg±zo) yields a range in “peak” pressures and temperatures of 10.8–22.3 kbar and 545–745 °C, depending on tectonostratigraphic unit and locality. Zoisite equilibria indicate that activity of H2O in some samples was substantially reduced, ca. 0.1–0.4. HP granulite (grt+cpx+hb+pl) and HP amphibolite (grt+hbl+pl) may have formed by retrogression of eclogites during high-temperature decompression. Two types of garnet peridotite have been recognized, one forming from spinel peridotite at ca. 1150–1300 °C, 25.8–29.0 kbar, and another from plagioclase peridotite at 560 °C, 16.1 kbar.

The Variscan evolution of the pre-Mesozoic basement in the South Carpathians is similar to that in other segments of the European Variscides, including widespread HP metamorphism, in which PTt characteristics are specific to individual tectonostratigraphic units, the presence of diverse types of garnet peridotite, diachronous subduction and accretion, nappe assembly in pre-Westphalian time due to collision of Laurussia, Gondwana, and amalgamated terranes, and finally, rapid exhumation, cooling, and deposition of eroded debris in Westphalian to Permian sedimentary basins.  相似文献   


20.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号