首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Duhau  S. 《Solar physics》2003,213(1):203-212
A non-linear coupling function between sunspot maxima and aa minima modulations has been found as a result of a wavelet analysis of geomagnetic index aa and Wolf sunspot number yearly means since 1844. It has been demonstrated that the increase of these modulations for the past 158 years has not been steady, instead, it has occurred in less than 30 years starting around 1923. Otherwise sunspot maxima have oscillated about a constant level of 90 and 141, prior to 1923 and after 1949, respectively. The relevance of these findings regarding the forecasting of solar activity is analyzed here. It is found that if sunspot cycle maxima were still oscillating around the 141 constant value, then the Gnevyshev–Ohl rule would be violated for two consecutive even–odd sunspot pairs (22–23 and 24–25) for the first time in 1700 years. Instead, we present evidence that solar activity is in a declining episode that started about 1993. A value for maximum sunspot number in solar cycle 24 (87.5±23.5) is estimated from our results.  相似文献   

2.
The Babcock solar dynamo model and known interactions of the interplanetary magnetic field with the earth's magnetosphere are used to explain the relations found between geomagnetic indices at solar minimum and the sunspot number at the following solar maximum. We augment the work of Kane (1987) by updating his method of analysis, including recent smoothed aa and AP indices. We predict a smoothed maximum sunspot number of 163±40 to peak in October 1990±9 months for solar cycle 22. This value is close to the Schatten and Sofia (1987) predicted value of 170±25, using more direct solar indicators.Now at Dept. of Astronomy, Univ. of Washington  相似文献   

3.
Jain  Kiran  Tripathy  S.C.  Bhatnagar  A.  Kumar  Brajesh 《Solar physics》2000,192(1-2):487-494
We have obtained empirical relations between the p-mode frequency shift and the change in solar activity indices. The empirical relations are determined on the basis of frequencies obtained from BBSO and GONG stations during solar cycle 22. These relations are applied to estimate the change in mean frequency for the cycle 21 and 23. A remarkable agreement between the calculated and observed frequency shifts for the ascending phase of cycle 23, indicates that the derived relations are independent of epoch and do not change significantly from cycle to cycle. We propose that these relations could be used to estimate the shift in p-mode frequencies for past, present and future solar activity cycles, if the solar activity index is known. The maximum frequency shift for cycle 23 is estimated to be 265±90 nHz, corresponding to a predicted maximum smoothed sunspot number 118.1±35.  相似文献   

4.
Statistically significant correlations exist between the size (maximum amplitude) of the sunspot cycle and, especially, the maximum value of the rate of rise during the ascending portion of the sunspot cycle, where the rate of rise is computed either as the difference in the month-to-month smoothed sunspot number values or as the average rate of growth in smoothed sunspot number from sunspot minimum. Based on the observed values of these quantities (equal to 10.6 and 4.63, respectively) as of early 1989, one infers that cycle 22's maximum amplitude will be about 175 ± 30 or 185 ± 10, respectively, where the error bars represent approximately twice the average error found during cycles 10–21 from the two fits.  相似文献   

5.
Precursor prediction techniques have generally performed well in predicting the maximum amplitude of sunspot cycles, based on cycles 10–21. Single variate methods based on minimum sunspot amplitude have reliably predicted the size of the sunspot cycle 9 out of 12 times, where a reliable prediction is defined as one having an observed maximum amplitude within the prediction interval (determined from the average error). On the other hand, single variate methods based on the size of the geomagnetic minimum have reliably predicted the size of the sunspot cycle 8 of 10 times (geomagnetic data are only available since about cycle 12). Bivariate prediction methods have, thus far, performed flawlessly, giving reliable predictions 10 out of 10 times (bivariate methods are based on sunspot and geomagnetic data). For cycle 22, single variate methods (based on geomagnetic data) suggest a maximum amplitude of about 170 ± 25, while bivariate methods suggest a maximum amplitude of about 140 ± 15; thus, both techniques suggest that cycle 22 will be of smaller maximum amplitude than that observed during cycle 19, and possibly even smaller than that observed for cycle 21. Compared to the mean cycle, cycle 22 is presently behaving as if it is a + 2.6 cycle (maximum amplitude about 225). It appears then that either cycle 22 will be the first cycle not to be reliably predicted by the combined precursor techniques (i.e., cycle 22 is an anomaly, a statistical outlier) or the deviation of cycle 22 relative to the mean cycle will substantially decrease over the next 18 months. Because cycle 22 is a large amplitude cycle, maximum smoothed sunspot number is expected to occur early in 1990 (between December 1989 and May 1990).  相似文献   

6.
New Evidence for Long-Term Persistence in the Sun's Activity   总被引:2,自引:0,他引:2  
Possible persistence of sunspot activity was studied using rescaled range and detrended fluctuation analyses. In addition to actual Wolf numbers (1700–2000 A.D.), two solar proxies were used in this research, viz., an annual sunspot proxy obtained for 1090–1700 A.D. and sunspot numbers reconstructed from the decadal radiocarbon series (8005 B.C. – 1895 A.D). The reconstruction was made using a five-box carbon exchange model. Analyses showed that in all cases the scaling exponent is significantly higher than 0.5 in the range of scales from 25 yr up to 3000 yr. This indicates the existence of a long-term memory in solar activity, in agreement with results obtained for other solar indices.  相似文献   

7.
The purpose of the present communication is to identify the short-term (few tens of months) periodicities of several solar indices (sunspot number, Caii area and K index, Lyman , 2800 MHz radio emission, coronal green-line index, solar magnetic field). The procedure used was: from the 3-month running means (3m) the 37-month running means (37m) were subtracted, and the factor (3m – 37m) was examined for several parameters. For solar indices, considerable fluctuations were seen during the ± 4 years around sunspot maxima of cycles 18–23, and virtually no fluctuations were seen in the ± 2 years around sunspot minima. The spacings between successive peaks were irregular but common for various solar indices. Assuming that there are stationary periodicities, a spectral analysis was carried out which indicated periodicities of months: 5.1–5.7, 6.2–7.0, 7.6–7.9, 8.9–9.6, 10.4–12.0, 12.8–13.4, 14.5–17.5, 22–25, 28 (QBO), 31–36 (QBO), 41–47 (QTO). The periodicities of 1.3 year (15.6 months) and 1.7 years (20.4 months) often mentioned in the literature were seen neither often nor prominently. Other periodicities occurred more often and more prominently. For the open magnetic flux estimated by Wang, Lean, and Sheeley (2000) and Wang and Sheeley (2002), it was noticed that the variations were radically different at different solar latitudes. The open flux for < 45 solar latitudes had variations very similar (parallel) to the sunspot cycle, while open flux for > 45 solar latitudes had variations anti-parallel to the sunspot cycle. The open fluxes, interplanetary magnetic field and cosmic rays, all showed periodicities similar to those of solar indices. Many peaks (but not all) matched, indicating that the open flux for < 45 solar latitudes was at least partially an adequate carrier of the solar characteristics to the interplanetary space and thence for galactic cosmic ray modulation.  相似文献   

8.
Analyses of the summer temperature anomalies in northern Fennoscandia for A.D. –1991 and mean annual temperature in the northern hemisphere for A.D. 1000–1990 (both reconstructed by means of dendrochronological methods) are performed using Fourier and wavelet approaches. It is revealed that the century-type (65–140 yr) periodicity is present in both series during most of the full time range. A comparison of the northern Fennoscandian temperature record with a variety of indicators of solar activity (direct measurements and proxies) shows that this century-scale periodicity most probably was forced by a centennial cycle of solar activity (Gleissberg cycle). Despite the fact that the connection between the centennial variation of global northern hemispheric temperature and that of the Sun's activity is weaker, a link between the two can also not be excluded. The results obtained give us new evidence of the reality of the solar–climate link over a record long-time scale (at least during the last millennium). Variable length of the century-long temperature periodicity may reflect the corresponding changes in the length of the Gleissberg solar cycle. The effects, which can obscure the Sun's influence on the global hemispheric climate, are discussed.  相似文献   

9.
Kane  R.P. 《Solar physics》2001,202(2):395-406
For solar cycle 23, the maximum sunspot number was predicted by several workers, and the range was very wide, 80–210. Cycle 23 started in 1996 and seems to have peaked in 2000, with a smoothed sunspot number maximum of 122. From about 20 predictions, 8 were within 122±20. There is an indication that a long-term oscillation of 80–100 years may be operative and might have peaked near cycle 20 (1970), and sunspot maxima in cycles in the near future may be smaller and smaller for the next 50 years or so and rebound thereafter in the next 50 years or so.  相似文献   

10.
We use a precursor technique based on the geomagneticaa index during the decline (last 30%) of solar cycle 22 to predict a peak sunspot number of 158 (± 18) for cycle 23, under the assumption that solar minimum occurred in May 1996. This method appears to be as reliable as those that require a year of data surrounding the geomagnetic minimum, which typically follows the smoothed sunspot minimum by about six months.  相似文献   

11.
Two sets of nitrate (NO3 ) concentration data in Central Greenland ice, obtained through the GISP2 collaboration and by the University of Kansas, were analyzed statistically. The two records correlate well over time scales from a few years up to a century. They both contain quasi five-year, decadal and century-type time variations. A quasi five-year periodicity resulting from increases in the mean nitrate concentration before and after maximum sunspot number was confirmed. A tendency of solar proton events to occur more frequently during the rise/decline phases of the solar cycle may cause a quasi five-year variation. Century-type (60–110 yr) variability in nitrate outstrips the corresponding Gleissberg cycle in sunspots by 12–17 years and changes synchronously (correlates with zero phase shift) with the smoothed length of the solar Schwabe cycle. A significant correlation between century-type periodicities for nitrates in Greenland ice and northern Fennoscandian temperatures was established. The results show that despite a strong dependence on local meteorology, nitrate concentration in ice contains valuable information about global geophysical phenomena in the past.  相似文献   

12.
We have extended our long-term study of coronal holes, solar wind streams, and geomagnetic disturbances through the rising phase of sunspot cycle 21 into the era of sunspot maximum. During 1978 and 1979, coronal holes reflected the influence of differential rotation, and existed within a slowly-evolving large-scale pattern despite the relatively high level of sunspot activity. The long-lived 28.5-day pattern is not produced by a rigidly-rotating quasi-stationary structure on the Sun, but seems to be produced by a non-stationary migratory process associated with solar differential rotation. The association between coronal holes and solar wind speed enhancements at Earth continues to depend on the latitude of the holes (relative to the heliographic latitude of Earth), but even the best associations since 1976 have speeds of only 500–600 km s-1 rather than the values of 600–700 km s-1 that usually occurred during the declining phase of sunspot cycle 20.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

13.
We examine the `Group' sunspot numbers constructed by Hoyt and Schatten to determine their utility in characterizing the solar activity cycle. We compare smoothed monthly Group sunspot numbers to Zürich (International) sunspot numbers, 10.7-cm radio flux, and total sunspot area. We find that the Zürich numbers follow the 10.7-cm radio flux and total sunspot area measurements only slightly better than the Group numbers. We examine several significant characteristics of the sunspot cycle using both Group numbers and Zürich numbers. We find that the `Waldmeier Effect' – the anti-correlation between cycle amplitude and the elapsed time between minimum and maximum of a cycle – is much more apparent in the Zürich numbers. The `Amplitude–Period Effect' – the anti-correlation between cycle amplitude and the length of the previous cycle from minimum to minimum – is also much more apparent in the Zürich numbers. The `Amplitude–Minimum Effect' – the correlation between cycle amplitude and the activity level at the previous (onset) minimum is equally apparent in both the Zürich numbers and the Group numbers. The `Even–Odd Effect' – in which odd-numbered cycles are larger than their even-numbered precursors – is somewhat stronger in the Group numbers but with a tighter relationship in the Zürich numbers. The `Secular Trend' – the increase in cycle amplitudes since the Maunder Minimum – is much stronger in Group numbers. After removing this trend we find little evidence for multi-cycle periodicities like the 80-year Gleissberg cycle or the two- and three-cycle periodicities. We also find little evidence for a correlation between the amplitude of a cycle and its period or for a bimodal distribution of cycle periods. We conclude that the Group numbers are most useful for extending the sunspot cycle data further back in time and thereby adding more cycles and improving the statistics. However, the Zürich numbers are slightly more useful for characterizing the on-going levels of solar activity.  相似文献   

14.
A few prediction methods have been developed based on the precursor technique which is found to be successful for forecasting the solar activity. Considering the geomagnetic activity aa indices during the descending phase of the preceding solar cycle as the precursor, we predict the maximum amplitude of annual mean sunspot number in cycle 24 to be 111 ± 21. This suggests that the maximum amplitude of the upcoming cycle 24 will be less than cycles 21–22. Further, we have estimated the annual mean geomagnetic activity aa index for the solar maximum year in cycle 24 to be 20.6 ± 4.7 and the average of the annual mean sunspot number during the descending phase of cycle 24 is estimated to be 48 ± 16.8.  相似文献   

15.
Kane  R.P. 《Solar physics》1999,189(1):217-224
A simple method MEM-MRA, where spectral peaks are located by MEM (Maximum Entropy Method) and about a dozen most prominent ones are used in MRA (Multiple Regression Analysis) to estimate their amplitudes and phases, was applied to the sunspot number (Rz) series of 1748–1996. Spectral characteristics were different in the successive 3 intervals of 83 years each. Hence, for predictions, only data for the recent 83 years were considered relevant. From the spectra for 1914–1996, the most significant peaks at 5.3, 8.3, 10.5, 12.2, 47 years were used for reconstruction. The match between observed and reconstructed values was good (correlation +0.90). When extrapolated, the reconstructed values indicate a sunspot number maximum for the present solar cycle 23 as 140±9, to occur in year 2000 and for the next solar cycle 24 as 105±9, to occur in year 2010–2011.  相似文献   

16.
Using the smoothed time series of maximum CME speed index for solar cycle 23, it is found that this index, analyzed jointly with six other solar activity indicators, shows a hysteresis phenomenon. The total solar irradiance, coronal index, solar radio flux (10.7?cm), Mg?ii core-to-wing ratio, sunspot area, and H?? flare index follow different paths for the ascending and the descending phases of solar cycle?23, while a saturation effect exists at the maximum phase of the cycle. However, the separations between the paths are not the same for the different solar activity indicators used: the H?? flare index and total solar irradiance depict broad loops, while the Mg?ii core-to-wing ratio and sunspot area depict narrow hysteresis loops. The lag times of these indices with respect to the maximum CME speed index are discussed, confirming that the hysteresis represents a clue in the search for physical processes responsible for changing solar emission.  相似文献   

17.
Defining the first spotless day of a sunspot cycle as the first day without spots relative to sunspot maximum during the decline of the solar cycle, one finds that the timing of that occurrence can be used as a predictor for the occurrence of solar minimum of the following cycle. For cycle 22, the first spotless day occurred in April 1994, based on the International sunspot number index, although other indices (Boulder and American) indicated the first spotless day to have occurred earlier (September 1993). For cycles 9–14, sunspot minimum followed the first spotless day by about 72 months, having a range of 62–82 months; for cycles 15–21, sunspot minimum followed the first spotless day by about 35 months, having a range of 27–40 months. Similarly, the timing of first spotless day relative to sunspot minimum and maximum for the same cycle reveals that it followed minimum (maximum) by about 69 (18) months during cycles 9–14 and by about 90 (44) months during cycles 15–21. Accepting April 1994 as the month of first spotless day occurrence for cycle 22, one finds that it occurred 91 months into the cycle and 57 months following sunspot maximum. Such values indicate that its behavior more closely matches that found for cycles 15–21 rather than for cycles 9–14. Therefore, one infers that sunspot minimum for cycle 23 will occur in about 2–3 years, or about April 1996 to April 1997. Accepting the earlier date of first spotless day occurrence indicates that sunspot minimum for cycle 23 could come several months earlier, perhaps late 1995.The U.S. Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

18.
We study the solar cycle evolution during the last 8 solar cycles using a vectorial sunspot area called the LA (longitudinal asymmetry) parameter. This is a useful measure of solar activity in which the stochastic, longitudinally evenly distributed sunspot activity is reduced and which therefore emphasizes the more systematic, longitudinally asymmetric sunspot activity. Interesting differences are found between the LA parameter and the more conventional sunspot activity indices like the (scalar) sunspot area and the sunspot number. E.g., cycle 19 is not the highest cycle according to LA. We have calculated the separate LA parameters for the northern and southern hemisphere and found a systematic dipolar-type oscillation in the dominating hemisphere during high solar activity times which is reproduced from cycle to cycle. We have analyzed this oscillation during cycles 16–22 by a superposed epoch method using the date of magnetic reversal in the southern hemisphere as the zero epoch time. According to our analysis, the oscillation starts by an excess of the northern LA value in the ascending phase of the solar cycle which lasts for about 2.3 years. Soon after the maximum northern dominance, the southern hemisphere starts dominating, reaching its minimum some 1.2–1.7 years later. The period of southern dominance lasts for about 1.6 years and ends, on an average, slightly before the end of magnetic reversal.  相似文献   

19.
Meyer  F. De 《Solar physics》2003,217(2):349-366
The mean annual sunspot record for the time interval 1700–2002 can be considered as a sequence of independent, partly overlapping events, triggered quasi-periodically at intervals of the order of 11 years. The individual cycles are approximated by the step response of a band-pass dynamical system and the resulting model consists of the superposition of the response to the independent pulses. The simulated sunspot data explain 98.4% of the cycle peak height variance and the residual standard deviation is 8.2 mean annual sunspots. An empirical linear relationship is found between the amplitude of the transfer function model for each cycle and the pulse interval of the preceding cycle that can be used as a tool of short-term forecasting of solar activity. A peak height of 112 for the solar cycle 23 occurring in 2000 is predicted, whereas the next cycle would start at about 2007 and will have a maximum around 110 in 2011. Cycle 24 is expected to have an annual mean peak value in the range 95 to 125. The model reproduces the high level of amplitude modulation in the interval 1950–2000 with a decrease afterwards, but the peak values for the cycles 18, 19, 21, and 22 are fairly underestimated. The semi-empirical model also recreates recurring sunspot minima and is linked to the phenomenon of the reversal of the solar magnetic field.  相似文献   

20.
Ramesh  K.B. 《Solar physics》2000,197(2):421-424
An improved correlation between maximum sunspot number (SSNM) and the preceding minimum (SSNm) is reported when the monthly mean sunspot numbers are smoothed with a 13-month running window. This relation allows prediction of the amplitude of a sunspot cycle by making use of the sunspot data alone. The estimated smoothed maximum sunspot number (126±26) and time of maximum epoch (second half of 2000) of cycle 23 are in good agreement with the predictions made by some of the precursor methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号