首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The identification of energy sources, pathways and trophic linkages among organisms is crucial for the understanding of food web dynamics. Stable isotopes were used to identify the trophic level of food web components and track the incorporation of organic matter of different origins in the coastal ecosystem adjacent to the Tagus estuary. It was shown that the river Tagus is a major source of organic carbon to this system. Also, the wide difference in δ13C among the primary consumers allowed the identification of the pelagic and the benthic energy pathways. The maximum trophic level observed was 2.4 for Sepia officinalis. This value is indicative of a short food web. It was concluded that the diet of the upper trophic level species relies directly on the lower food web levels to a considerable extent, instead of relying mostly on intermediate trophic level species. Moreover, the δ15N values of primary consumers were very close to that of particulate organic matter, probably due to poorly known processes occurring at the basis of the food web. This lowers the trophic length of the whole food web. Reliance on benthic affinity prey was high for all upper trophic level secondary consumers.  相似文献   

2.
L. L. Anokhina 《Oceanology》2006,46(3):385-395
From October 1999 to September 2000, six daily stations have been carried out to study the influence of the phases of the moon on the intensity of the vertical migrations of benthopelagic plankton in Golubaya Bay (near Gelendzhik). It was found that, at the full moon, the density and species diversity of the species of benthopelagic organisms are less than those in the first or the last quarters of the moon. The maximum abundance and diversity of benthopelagic organisms at the full moon occur at the beginning of the dark period. During the other phases of the moon, a gradual increase in the animal density is observed, whose maximum, as a rule, occurs in the middle of the night. At the full moon, benthopelagic animals are basically represented by juvenile individuals; all the adult individuals are males.  相似文献   

3.
The black scabbardfish is a deep water species of high commercial interest in the NE Atlantic. Specimens were collected from commercial trawls to the west of the British Isles and from longliners operating near Madeira between September 2008 and May 2010. Stomach content analysis was confined to samples from the northern area, because of a high number of empty stomachs from Madeira. Stable isotope analyses identified that black scabbardfish feeds on species with epipelagic and benthopelagic affinities. For the west of British Isles, the δN values were significantly different between seasons suggesting a change in the diet throughout the year. Black scabbardfish have higher δN and δC values compared with other co-occurring benthopelagic feeders and lower nitrogen values than the true benthic predators and/or scavengers. Comparison with stable isotope analysis in samples from Madeira indicated that black scabbardfish feed at a similar trophic level and has the same trophic niche width in both areas, assuming similar baseline isotope compositions. The diet in the northern area comprised fish (68% N), crustaceans (22% N) and cephalopods (15% N) with blue whiting (Micromesistius poutassou) constituting 40% of the prey. Seasonal shift in diet was observed, with a predominance of blue whiting (70%) in the first quarter of the year, shifting to a more diverse diet in the remainder of the year. These results indicate that the diet of black scabbardfish is closely linked with the seasonal migration of blue whiting and that they likely select prey in proportion to availability. This study demonstrates that the combined used of both methods can elucidate the trophic ecology of black scabbardfish, in situations where conventional methods alone provide insufficient data.  相似文献   

4.
渤海蓝点马鲛食物链结构的研究   总被引:2,自引:0,他引:2  
从60年代起,我国开始进行鱼类食性的研究(杨纪明、郑严,1962;杨纪明、林景祺,1966),并且开始以食性分析的方法,对特定海区内的鱼类食物关系进行研究(邓景耀等,1986;张其永等,1981),这为海洋食物链研究提供了初步资料。但至今尚未见有单种鱼食物链结构的研究报道。 蓝点马鮫 Scomberomorus niphonius (Cuvier et Valenciennes)为暖水性、洄游性、中上层鱼类。通常每年6月进入渤海产卵,11月前后离开渤海,向深海做越冬洄游(韦晟,1980)。蓝点马鲛作为渤海的重要经济鱼类之一,近些年来资源量一直保持相对稳定(韦晟,1982;朱德山、韦晟,1983)。进行蓝点马鲛的食物链研究,一方面有助于进行蓝点马鮫资源的预测、增殖及管理,另一方面对阐明渤海生态系统中的能量转换也具有一定意义。本文试图对蓝点马鲛食物链结构问题进行讨论。  相似文献   

5.
We have compared the distribution of mesopelagic, benthopelagic and benthic fauna between two areas: one on the continental side of the Catalan Sea (cCS: northwestern Mediterranean) and one to the SW of the Balearic Islands (SWB: southwestern Mediterranean) at depths between 147 and 2266 m. Based on 88 bathyal fish and crustaceans (Decapoda and Peracarida) dominant in these communities, we compared the maximum depth of occurrence (MDO) of (upper) middle-slope species and the minimum depth of occurrence (mDO) of lower-slope dwelling species. Mid-slope fish, decapods, peracarids and, within the latter, amphipods and cumaceans had a deeper MDO in the cCS than in the SWB. Depth differences between MDO of species were significant for all taxa, except isopods. In the same way, lower slope fish and decapods had a shallower mDO in the SWB than in the cCS. Within peracarids, the dominant taxon (amphipods) also followed this trend. Depth differences in mDO of species between the areas were significant for decapods and for amphipods (not for fish, nor all peracarids nor cumaceans). In summary, most taxa showed a deeper depth distribution of middle-slope species in the cCS, and a shallower depth distribution of lower-slope dwelling species in the SWB. This suggests that the whole community, from small detritus-feeders (peracarids) to top predators (fish) have a similar response to a common signal. Much basic information on the biology and possible environmental factors affecting deep-sea species distribution is not available, so causes of the trends demonstrated here cannot be fully evaluated. In spite of these obvious limitations, we have shown that (1) mesopelagic decapods (e.g., Gennadas elegans and Sergia robusta), with a higher dependence upon primary sources of food close to the surface primary production, showed greater differences in their mDO between the areas than benthopelagic (e.g., Acanthephyra eximia, Nematocarcinus exilis) and benthic (e.g., Stereomastis sculpta, Munida tenuimana, Geryon longipes) species, and (2) fish at lower trophic levels, deduced from fractional trophic levels, showed higher differences in the MDO than fish at higher trophic levels. Trophic position of species in food webs seems the most important factor affecting the distributional differences between contrasting areas.  相似文献   

6.
东山湾鱼类食物网研究   总被引:17,自引:1,他引:17  
本文分析了东山湾85种经济鱼类的食物关系,结果表明,东山湾鱼类的食性类型可分为:浮游生物食性;底栖生物食性;游泳动物食性;浮游生物和底栖生物食性;底栖生物和游泳动物食性及浮游生物,底栖生物和游泳动物食性等6种,这些鱼类可分为4个营养级:(1)杂食性鱼类;(2)低级肉食性鱼类;(3)中级肉食性鱼类;(4)高级肉食性鱼类,其中低级肉食性鱼类占优势。东山湾 鱼类食物网的能量流动可简要归纳为6种途径,小公  相似文献   

7.
8.
The internal organization of plankton communities plays a key role in biogeochemical cycles and in the functioning of aquatic ecosystems. In this study, the structure of a marine plankton community (including both unicellular and multicellular organisms) was inferred by applying an ecological network approach to species abundances observed weekly at the long‐term ecological research station MareChiara (LTER‐MC) in the Gulf of Naples (Tyrrhenian Sea, Mediterranean Sea) in the summers of 2002–2009. Two distinct conditions, characterized by different combination of salinity and chlorophyll values, alternated at the site: one influenced by coastal waters, herein named ‘green’, and the other reflecting more offshore conditions, named ‘blue’. The green and blue ‘phases’ showed different keystone biological elements: namely, large diatoms and small‐sized flagellates, respectively. Several correlations amongst species belonging to different trophic groups were found in both phases (connectance ~0.30). In the green phase, several links between phytoplankton and mesozooplankton and within the latter were detected, suggesting matter flow from microbes up to carnivorous zooplankton. A microbial‐loop‐like sub‐web, including mixo‐ and heterotrophic dinoflagellates and ciliates, was present in the green phase, but it was relatively more important in the blue phase. The latter observation suggests a more intense cycling of matter at the microbial trophic level in the blue phase. These results show that different modes of ecological organization can emerge from relatively small changes in the composition of aquatic communities coping with environmental variability. This highlights a significant plasticity in the internal structure of plankton webs, which should be taken into account in predictions of the potential effects of climatic oscillations on aquatic ecosystems and biogeochemical cycles therein.  相似文献   

9.
渤、黄、东海高营养层次重要生物资源种类的营养级研究   总被引:47,自引:0,他引:47  
利用2000年和2001年2次大面调查所收集的11970个胃含物样品分析结果,计算了黄海和东海生态系统高营养层次35个重要生物资源种类的营养级,同时,结合对渤海和黄海39个种类营养级历史数据的修正,讨论研究了我国海洋高营养层次生物资源种类营养级的研究策略和计算方法。主要研究结果为:(1)渤海重要生物资源种类营养级的变化范围为3.12~4.9,黄海为3.2~4.9,东海为3.29~4.55。近年来各海域高营养层次的营养级呈下降趋势,如渤海从1959年的4.1下降到1998~1999年的3.4,黄海从1985~1986年的3.7下降到2000~2001年的3.4;(2)高营养层次营养级波动主要是由于群落种类组成变化及单种类营养级年间波动引起的,而单种类营养级年间波动又直接与群体个体变小以及摄食食物的低营养层次化有关。因此,高营养层次的营养级变化是认识海洋生态系统生物生产动态的重要指标,需要对其进行长期和系统的监测;(3)建议在今后的研究中,根据简化食物网的概念,对占生物量绝对多数的重要生物资源种类的营养级进行重点研究并采用国际通用的标准划分计算营养级。  相似文献   

10.
This study aimed to characterize the structure and functioning of the benthic food web associated with the Ascophyllum nodosum zone of the rocky shore of Roscoff by using δ13C and δ15N. Several characteristics of the trophic ecology of the invertebrates associated with this mid-littoral habitat and which belong to different functional groups (e.g., grazers, filter-feeders, predators and omnivores) were highlighted. In particular, the filter feeder species (including mostly sponges) used macroalgae-derived organic matter as a substantial food requirement. The results also pointed out an important stable isotopes variability for strict coexisting primary consumers which: (1) is directly related to the high δ15N range of the food sources; (2) makes it impossible to establish a unique trophic level scale based on δ15N values, as previously done in coastal environments; and (3) points out the existence of major co-occurring trophic pathways which characterise the Ascophyllum nodosum habitat.  相似文献   

11.
西江三角洲岩心中的硅藻及其记录的古环境   总被引:2,自引:1,他引:1       下载免费PDF全文
通过对西江三角洲ZXZ1,ZXZ2两岩心沉积物样品的硅藻分析,共鉴定出硅藻168种和变种,隶属48个属;ZXZ1岩心可划分为六个硅藻带,ZXZ2岩心可划分为五个硅藻带。根据硅藻组合特征,结合粒度和14C测年结果,ZXZ1岩心的Ⅳ,Ⅴ,Ⅵ硅藻带和ZXZ2岩心的Ⅲ,Ⅳ,Ⅴ硅藻带属于全新世沉积;ZXZ1岩心的Ⅰ,Ⅱ,Ⅲ硅藻带和ZXZ2岩心的Ⅰ,Ⅱ硅藻带属于晚更新世沉积。分析了晚更新世以来沉积物的沉积相和沉积环境,结果表明,晚更新世时期ZXZ1岩心的沉积物属于近岸低盐海相沉积环境,而ZXZ2岩心的沉积物属于陆相沉积;在全新世时期两岩心均属近岸低盐的海相沉积环境。造成晚更新世时期两岩心沉积相的差异主要与断裂构造的升降运动有关。  相似文献   

12.
Literature on trophic relationships in the Benguela ecosystem has stressed the importance of cephalopods as prey of groundfish. The groundfish community of the shelf and upper slope of southern Africa is dominated by the Cape hakes, and the results presented (1984–1991) confirm that both species of hake are important predators of cephalopods, especially taking into consideration the abundance of hake in the ecosystem. However, geographic, seasonal and species variability are evident in the patterns observed. The main prey species are Sepia spp. (predominantly Sepia australis), Loligo vulgaris reynaudii, Todaropsis eblanae and Lycoteuthis ?diadema. The last-named is an important food organism for fish. Its systematic status needs revision, however. Qualitative results of studies of cephalopod predation are also provided for kingklip and monkfish.  相似文献   

13.
Many marine ecosystems exhibit a characteristic “wasp-waist” structure, where a single species, or at most several species, of small planktivorous fishes entirely dominate their trophic level. These species have complex life histories that result in radical variability that may propagate to both higher and lower trophic levels of the ecosystem. In addition, these populations have two key attributes: (1) they represent the lowest trophic level that is mobile, so they are capable of relocating their area of operation according to their own internal dynamics; (2) they may prey upon the early life stages of their predators, forming an unstable feedback loop in the trophic system that may, for example, precipitate abrupt regime shifts. Experience with the typical “boom-bust” dynamics of this type of population, and with populations that interact trophically with them, suggests a “predator pit” type of dynamics. This features a refuge from predation when abundance is very low, very destructive predation between an abundance level sufficient to attract interest from predators and an abundance level sufficient to satiate available predators, and, as abundance increases beyond this satiation point, decreasing specific predation mortality and population breakout. A simple formalism is developed to describe these dynamics. Examples of its application include (a) a hypothetical mechanism for progressive geographical habitat expansion at high biomass, (b) an explanation for the out-of-phase alternations of abundances of anchovies and sardines in many regional systems that appear to occur without substantial adverse interactions between the two species groups, and (c) an account of an interaction of environmental processes and fishery exploitation that caused a regime shift. The last is the example of the Baltic Sea, where the cod resource collapsed in concert with establishment of dominance of that ecosystem by the cod’s ‘wasp-waist” prey, herring and sprat.  相似文献   

14.
Abundance and biomass of the most important fish species inhabited the Barents and Norwegian Sea ecosystems have shown considerable fluctuations over the last decades. These fluctuations connected with fishing pressure resulted in the trophic structure alterations of the ecosystems. Resilience and other theoretical concepts (top-down, wasp-waste and bottom-up control, trophic cascades) were viewed to examine different response of the Norwegian and Barents Sea ecosystems on disturbing forces. Differences in the trophic structure and functioning of Barents and Norwegian Sea ecosystems as well as factors that might influence the resilience of the marine ecosystems, including climatic fluctuation, variations in prey and predator species abundance, alterations in their regular migrations, and fishing exploitation were also considered. The trophic chain lengths in the deep Norwegian Sea are shorter, and energy transfer occurs mainly through the pelagic fish/invertebrates communities. The shallow Barents Sea is characterized by longer trophic chains, providing more energy flow into their benthic assemblages. The trophic mechanisms observed in the Norwegian Sea food webs dominated by the top-down control, i.e. the past removal of Norwegian Spring spawning followed by zooplankton development and intrusion of blue whiting and mackerel into the area. The wasp-waist response is shown to be the most pronounced effect in the Barents Sea, related to the position of capelin in the ecosystem; large fluctuations in the capelin abundance have been strengthened by intensive fishery. Closer links between ecological and fisheries sciences are needed to elaborate and test various food webs and multispecies models available.  相似文献   

15.
To evaluate the relative importance of possible food sources, including riverine particulate organic matter, reeds, benthic microalgae, seaweeds, cultured laver (Porphyra) and coastal phytoplankton, for commercial bivalves and co-occurring benthic animals, 73 macrofaunal species were collected from intertidal and subtidal soft bottoms in the inner part of Ariake Sound, Kyushu, southern Japan, and their isotopic compositions were analyzed. The results revealed that (1) both intertidal and subtidal food webs were constituted of 3 trophic levels, (2) suspension-feeding bivalves utilize a mixture of benthic microalgae and coastal phytoplankton, and omnivores and carnivores incorporate benthic microalgae and phytoplankton through their intermediate prey, and (3) 3 bivalves (Scapharca kagoshimensis, Modiolus metcalfei and Atrina lischkeana) inhabiting both intertidal and subtidal bottoms showed similar seasonal fluctuations, suggesting no difference in the diet composition among the species and between the 2 habitats. We conclude that a large biomass of benthic microalgae which was approximately equal to that of phytoplankton and the strong tidal currents that would resuspend benthic microalgae and transport them to subtidal bottom areas account for the benthic microalgal and phytoplankton based trophic structure in the inner part of Ariake Sound.  相似文献   

16.
Studies of the trophic structure in methane‐seep habitats provide insight into the ecological function of deep‐sea ecosystems. Methane seep biota on the Chilean margin likely represent a novel biogeographic province; however, little is known about the ecology of the seep fauna and particularly their trophic support. The present study, using natural abundance stable isotopes, reveals a complex trophic structure among heterotrophic consumers, with four trophic levels supported by a diversity of food sources at a methane seep area off Concepción, Chile (~36° S). Although methanotrophy, thiotrophy and phototrophy are all identified as carbon fixation mechanisms fueling the food web within this area, most of the analysed species (87.5%) incorporate carbon derived from photosynthesis and a smaller number (12%) use carbon derived from chemosynthesis. Methane‐derived carbon (MDC) incorporation was documented in 22 taxa, including sipunculids, gastropods, polychaetes and echinoderms. In addition, wide trophic niches were detected in suspension‐feeding and deposit‐feeding taxa, possibly associated with the use of organic matter in different stages of degradation (e.g. from fresh to refractory). Estimates of Bayesian standard ellipses area (SEAB) reveal different isotopic niche breadth in the predator fishes, the Patagonian toothfish Dissostichus eleginoides and the combtooth dogfish Centroscyllium nigrum, suggesting generalist versus specialist feeding behaviors, respectively. Top predators in the ecosystem were the Patagonian toothfish D. eleginoides and the dusky cat shark, Bythaelurus canescens. The blue hake Antimora rostrata also provides a trophic link between the benthic and pelagic systems, with a diet based primarily on pelagic‐derived carrion. These findings can inform accurate ecosystem models, which are critical for effective management and conservation of methane seep and adjacent deep‐sea habitats in the Southeastern Pacific.  相似文献   

17.
The spatial and temporal characteristics of trophic structure of fish communities in the southern Huanghai Sea were examined based on the data sampled from bottom trawl surveys conducted during the autumn of 2000 and the spring of 2001. Hierarchical agglomerative cluster method and bootstrap randomization were used to identify significant trophic groups for each fish assemblage in the southern Huanghai Sea. A total of six major trophic groups were identified within this system, which classified predators based upon location in the water column or prey size ( i. e. , benthic to pelagic predators or fish to small invertebrate prey predators). The similarity level used to identify significant trophic groups in each assemblage ranged from 24% to 34%. Although planktivores were the dominant trophic group in each assemblage (60% - 79% ), there were spatial and temporal variations in the trophic structure, which reflected the differences in the abundance and availability of dominant preys. Simplified food webs were constructed to evaluate the most important trophic relationships between the dominant prey taxa and the fishes in each assemblage within this system. Although there were some differences in the key prey species among different food webs, pelagic prey items (mainly euphausiids and copepods) represent the most important energetic link between primary producers and higher trophic level predators. The trophic level for most fishes was between 3 and d, and the weighted mean trophic level for each assemblage ranged from 3.3 to 3.4. Compared with previous study in the mid-1980s, there was an obvious downward trend in the trophic level for most fish species, which resulted mainly from the fluctuation in key prey species in the Huanghai Sea. The decrease in the importance of Japanese anchovy seems to be offset by other abundant prey species such as Euphausia pacifica and copepods ( mainly Calanus sinicus ) .  相似文献   

18.
Ecosystem dynamics driven by top-down controls have been well documented in rocky intertidal communities, while the effects of bottom-up influences are comparatively poorly understood. We hypothesized that large-scale signatures of the physical environment may be identifiable along the South African coastline as it is subject to two very different current systems (Benguela and Agulhas Currents) that profoundly influence primary production and thus both food type and availability. Through stable isotope analysis, we examined biogeographic patterns in multiple trophic levels at four sites along a 1400-km stretch of South African coastline and investigated the dietary role of macroalgal-derived organic carbon in rocky intertidal communities. The general positioning of trophic groups was comparable across all sites, with animals from the same trophic levels grouping together and with a δ15N fractionation of 1–2‰ between levels. The species found at all sites demonstrated east–west δ15N enrichment, presumably reflecting a biogeographic shift in nitrogen sources linked to upwelling on the west coast. Filter-feeders gave particularly clear results. Using discriminant analysis, mussels could be categorized into four geographic groups based on carbon and nitrogen signatures: east coast, southeast coast, south-west coast and west coast. Barnacles and polychaetes showed similar geographic groupings to mussels, but with shifts in actual values (1‰ depletion in δ13C and 3‰ enrichment in δ15N relative to mussels). This suggests that fractionation varies between species within a trophic level.  相似文献   

19.
The diets of eight demersal fish species from the upper continental slope (c. 24CM‐50 m) were determined from samples taken during late January and early February 2004, off the Wairarapa coast, North Island, New Zealand. Diets were from a combination of benthopelagic and benthic sources, with most species exhibiting ontogenetic shifts in diet, in that larger‐bodied food (fish and/or natant decapod prawns) was more important in the diets of larger fish. Javelinfish (Lepidorhynchus denticulatus), silver roughy (Hoplostethus mediterraneus), and capro dory (Capromimus abbreviatus) had predominantly benthopelagic diets, whereas the diets of sea perch (Helicolenus percoides), Bollons’ rattail (Caelorinchus bollonsi), two‐banded rattail (C. biclinozonalis), and silverside (Argentina elongata) were predominantly benthic, with the crab Carcinoplax victoriensis an important food item. The diet of Oliver's rattail (C. oliverianus) was a mix of benthopelagic and benthic organisms. Generally, levels of dietary overlap between the eight species were low. Overall, the diets of these fish probably reflect regional and seasonal levels of food availability. Notes on food observed in the stomachs of a further 18 species, for which there were fewer than 10 stomach samples per species are also provided.  相似文献   

20.
The faunal communities of four intertidal habitats namely sand, mud, seagrass (Zostera noltii) and seagrass patches (mixSM) of a temperate coastal lagoon, Ria Formosa (southern Portugal), were sampled. A total of 47 species were taken in 428 bottomless drop sampler samples, with the highest number of species and the more commonly occurring species belonging to the Mollusca phylum. The dominance of these gastropod species underlines the importance of the grazing food chain in these habitats. Bittium reticulatum was the most abundant species, being especially abundant in the seagrass habitat. The most frequent and highest biomass species in the community was Carcinus maenas, a predator that makes use of the available resources and that is adapted to the highly variable intertidal environment. Pomatoschistus microps was the most abundant fish species, with highest densities in the mud habitat, which demonstrates an ability to occupy a low depth area. The seagrass habitat had the highest diversity, abundance and biomass, followed by the mixSM habitat and was different from all the others. Assemblages were highly influenced by the presence of vegetation, providing forage and refuge from predation. A well defined summer group was identified in all habitats. These results highlight the importance of seagrass beds and the idea that their decrease implies the decrease of lagoon production through the impoverishment of the trophic structure of the lagoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号