首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
There are many large-scale Cenozoic sedimentary basins with plentiful river deltas, deep-water fans and carbonate platforms in the southern South China Sea. The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene, and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area. However, systematic analyses are still lacking regarding its sediment composition and potential source suppliers. No consensus has been reached yet on the provenance evolution and sedimentary infilling processes, which seriously impeded the oil-and-gas exploration undertakings. By combining with sedimentary-facies identification, heavy mineral assemblages, elemental geochemistry and detrital zircon U-Pb dating, this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan. In general, the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity. The continual southward subduction of the proto-South China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo. The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts. From the late Eocene to the early Miocene, the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland. The Zengmu Basin was widely deposited with delta plain and neritic facies sediments, while the Brunei-Sabah Basin, to the farther east, was ubiquitously characterized by turbiditic sequences. The Crocker Fan successions are overall thick layers of modest-grained sandstones, which formed high-quality reservoirs in the southern South China Sea region.  相似文献   

2.
The East China Sea Shelf Basin generated a series of back-arc basins with thick successions of marine- and terrestrial-facies sediments during Cenozoic. It is enriched with abundant oil and gas resources and is of great significance to the petroleum exploration undertakings. Therein, the Lishui Sag formed fan delta, fluvial delta and littoral-to-neritic facies sediments during Paleocene–Eocene, and the research on its sedimentary environment and sediment source was controversial. This study analyzed the paleontological combination characteristics, and conducted a source-to-sink comparative analysis to restore the sedimentary environment and provenance evolution of the Lishui Sag during Paleocene–Eocene based on the integration of detrital zircon U-Pb age spectra patterns with paleontological assemblages. The results indicated that Lishui Sag was dominated by littoral and neritic-facies environment during time corroborated by large abundance of foraminifera, calcareous nannofossils and dinoflagellates. Chronological analysis of detrital zircon U-Pb revealed that there were significant differences in sediment sources between the east and west area of the Lishui Sag. The western area was featured by deeper water depths in the Paleocene–Eocene, and the sediment was characterized by a single Yanshanian peak of zircon U-Pb age spectra, and mainly influenced from Yanshanian magmatic rocks of South China Coast and the surrounding paleo-uplifts. However, its eastern area partly showed Indosinian populations. In particular, the upper Eocene Wenzhou sediments were featured by increasingly plentiful Precambrian zircons in addition to the large Indosinian-Yanshanian peaks, indicating a possible impact from the Yushan Low Uplift to the east. Therefore, it is likely that the eastern Lishui Sag generated large river systems as well as deltas during time. Due to the Yuquan Movement, the Lishui Sag experienced uplifting and exhumation in the late stage of the late Eocene and was not deposited with sediments until Miocene. Featured by transitional-facies depositions of Paleocene–Eocene, the Lishui Sag thus beared significant potential for source rock and oil-gas reservoir accumulation.  相似文献   

3.
台湾增生楔的构造单元划分及其变形特征   总被引:6,自引:0,他引:6  
台湾增生楔位于欧亚板块、菲律宾海微板块和南海的结合部位,是现代弧陆碰撞研究的理想场所。通过对南海973航次在该区域的多道地震剖面的解释,对该增生楔进行了构造单元的划分,并分析了变形特征。认为台湾增生楔是由3个部分,即弧陆碰撞产生的增生部分、洋内俯冲产生的增生部分和增生楔后端在恒春海脊和北吕宋海槽之间的构造楔组成,研究区的高屏斜坡、恒春海脊和北吕宋海槽西端变形带分别是3个部分的反映。自中中新世以来,南海洋壳开始沿着马尼拉海沟向菲律宾海微板块俯冲,形成增生楔中洋内俯冲增生部分;与此同时菲律宾海微板块开始向NW方向移动,前缘的吕宋岛弧自6.5Ma B.P以来与亚洲陆缘斜向碰撞,形成增生楔中弧陆碰撞增生部分。碰撞首先发生在台湾岛的北部,由于弧陆强烈的挤压作用,增生楔后端部分向北吕宋海槽倒冲楔人,使得上部的北吕宋海槽的沉积发生隆升变形。滨海的各个地貌单元可以和台湾陆上的地貌单元相联系,它们具有相似的地质特征,但是由于陆上部分增生历史久,不仅抬升为陆,而且地层的年代也更老。  相似文献   

4.
The China seas and adjacent areas contain numerous petroleum basins. One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution. The formation and evolution of petroleum basins along with the migration and accumulation of oil and gas are often closely related to the tectonic environment. The gravity and magnetic fields with high lateral resolution and wide coverage provide important data for regional tectonic research. Based on the gravity data in the Global Satellite Gravity Anomaly Database (V31.1) and magnetic data from the Earth Magnetic Anomaly Grid (2-arc-minute resolution) (V2), this study uses integrated gravity and magnetic field technique to obtain integrated gravity and magnetic field result for the China seas and adjacent areas, and then adopts the normalized vertical derivative of the total horizontal derivative technique to conduct partition. Finally, it identifies the relationship between the partition characteristics and tectonics as well as the patterns of petroleum basin occurrence. The research shows that the partition of gravity and magnetic field integrated result has a good correlation with the Neo-Cathaysian tectonic system and tectonic units. The petroleum basins are characterized according to three blocks arranged from north to south and four zones arranged from east to west. The north?south block structure causes the uneven distribution of oil and gas resources in the mainland area and the differences in the hydrocarbon-bearing strata. Petroleum basins are more abundant in the north than in the south. The ages of the main oil- and gas-bearing strata are “Paleozoic–Mesozoic, Paleozoic–Mesozoic–Cenozoic, and Paleozoic–Mesozoic”, in order from north to south. The difference in the overall type of oil and gas resources in all basins is controlled by the east–west zonation. From east to west, the oil and gas resource type exhibits a wave-like pattern of “oil and gas, gas, oil and gas, gas”. The vertical distribution is characterized by an upper oil (Mesozoic–Cenozoic) and lower gas (Mesozoic–Paleozoic) structure. Within the study area, the Paleozoic marine strata should be the main strata of future natural gas exploration.  相似文献   

5.
构造样式为盆内各类构造组合的几何形态表达,反映了盆地所处应力场性质变化与构造演化过程。本文基于近5年来针对东海陆架盆地所取得的地震资料解释成果,并综合盆地构造演化特征及其地球动力学背景,对盆地内中生界构造样式进行了系统的分类与总结,详细划分为5类构造样式:伸展构造样式、挤压构造样式、走滑构造样式、反转构造样式和底辟构造样式,并进一步细化为12种构造组合。同时,对东海陆架盆地内西部坳陷、中部低隆起、东部坳陷3个构造单元内的中生界构造样式发育情况分别进行了总结,各类构造样式自西至东具有各异的展布特征。综合盆内中生界构造样式几何学特点与展布特征可见,由于伊佐奈歧板块的俯冲、碰撞作用,区内处于挤压构造环境,进而形成了挤压背斜、断背斜、正反转等构造组合;大洋板块的后退翻卷及板块碰撞、俯冲的远程效应下,区内构造环境以伸展作用为主,形成了一系列NNE向裂陷盆地,发育了丰富的伸展构造组合;走滑-拉分构造的发育较好体现了构造环境的转变,地震剖面上见有花状断裂发育;岩浆底辟构造多发育于拉张环境下,与断裂展布息息相关,多沿NE-NNE向断裂展布。此外,新生代多期构造运动是影响中生界构造样式发育展布的重要因素。  相似文献   

6.
Compared to the northern South China Sea continental margin, the deep structures and tectonic evolution of the Palawan and Sulu Sea and ambient regions are not well understood so far. However, this part of the southern continental margin and adjacent areas embed critical information on the opening of the South China Sea (SCS). In this paper, we carry out geophysical investigations using regional magnetic, gravity and reflection seismic data. Analytical signal amplitudes (ASA) of magnetic anomalies are calculated to depict the boundaries of different tectonic units. Curie-point depths are estimated from magnetic anomalies using a windowed wavenumber-domain algorithm. Application of the Parker–Oldenburg algorithm to Bouguer gravity anomalies yields a 3D Moho topography. The Palawan Continental Block (PCB) is defined by quiet magnetic anomalies, low ASA, moderate depths to the top and bottom of the magnetic layer, and its northern boundary is further constrained by reflection seismic data and Moho interpretation. The PCB is found to be a favorable area for hydrocarbon exploration. However, the continent–ocean transition zone between the PCB and the SCS is characterized by hyper-extended continental crust intruded with magmatic bodies. The NW Sulu Sea is interpreted as a relict oceanic slice and the geometry and position of extinct trench of the Proto South China Sea (PSCS) is further constrained. With additional age constraints from inverted Moho and Curie-point depths, we confirm that the spreading of the SE Sulu Sea started in the Early Oligocene/Late Eocene due to the subduction of the PSCS, and terminated in the Middle Miocene by the obduction of the NW Sulu Sea onto the PCB.  相似文献   

7.
东海陆架盆地是位于中国东部华南大陆边缘的一个中、新生代叠合盆地,具有较大油气潜力。目前东海陆架盆地油气的发现均来自于新生界,对中生代残留地层的各方面特征认识不足:在空间上通常集中于特定构造单元,且基本位于盆地西部;在时间上主要涉及白垩纪和侏罗纪,且多是定性或半定量的研究。本文在前人研究的基础上,收集、整理了研究区目前最新、最全的反射地震资料和钻井数据,从钻遇中生界井的标定出发,以地震资料的层序划分和解释为基础,进行残留地层的研究,空间上统一盆地东、西两大坳陷带,时间上统揽白垩纪、侏罗纪以及前侏罗纪三个时期。结果表明,东海陆架盆地中生代残留地层遭受了后期严重的剥蚀改造,总体呈现东厚西薄、南厚北薄的特征,残留地层范围随时间不断东扩。对比各时期残留地层平面展布特征,揭示了东海陆架盆地的演变过程:三叠纪时期盆地原型为被动大陆边缘坳陷型盆地,早、中侏罗世时期为活动大陆边缘弧前盆地,晚侏罗世—晚白垩世时期为大陆边缘弧后伸展盆地;与此相对应,古太平洋板块俯冲肇始于晚三叠世—早、中侏罗世时期,板块后撤始于晚侏罗世。东海陆架盆地在中生代的东侧边界位于钓鱼岛隆褶带的东侧。  相似文献   

8.
平湖油气田主力含油气区位于平湖主断裂以东区域,油源主要来源于东部生烃凹陷的半封闭海湾暗色泥岩和煤层.公司于2011年11月在主断裂西部钻了一口探井XY井,目的是为探测主断裂西部含油气情况,扩大油气储量.结果钻遇油气层12m,测试获日产气14.66×104m3,日产油107.8 m3,取得了一定突破.为进一步评价西部含油气规模,钻后进行了油源对比研究,认为西部的油气主要是东部运移聚集的结果,西部源岩也有一定贡献.西部有形成一定规模油气藏的潜力.  相似文献   

9.
南海海域新生代沉积盆地的油气资源   总被引:9,自引:2,他引:7  
南海新生代经历过大陆张裂与分离、海底扩张和地块碰撞等构造演化历史,南海北部为被动大陆边缘,南部是碰撞挤压边缘,东部为俯冲聚敛边缘,西部是走滑边缘。在这种构造体制下,形成了许多沉积盆地。北部和西部边缘上发育着张性沉积盆地和走滑拉张盆地;在南部边缘上,其北部发育着张性盆地,南部为挤压环境下形成的盆地,如前陆盆地、前孤盆地;东部边缘上发育着前孤盆地。目前油气勘探实践证明,南海南部的油气资源比北部丰富。究其原因,南海北部为被动大陆边缘,张性沉积盆地的烃源岩体积较小,而南部挤压环境下形成的沉积盆地的烃源岩体积大;北部的地热流较南部小,因此地温梯度也较小,故南部边缘烃源岩的成熟度比北部高;由于南部边缘处于挤压构造环境,在沉积盆地中形成了许多挤压构造,而北部边缘一直处于张性构造环境,形成的构造较少且较小;同时,南部边缘沉积盆地中,烃源岩生烃与构造形成在时间上搭配较好。因此,在南海南部边缘沉积盆地中形成了许多大型油气田,而南海北部边缘沉积盆地中,大型油气田较少,中小型油气田较多。  相似文献   

10.
Formation and tectonic evolution of outer marginupfold zone of East China Sea ShelfTXFormationandtectonicevolutionofoutermargi...  相似文献   

11.
南海北缘新生代盆地沉积与构造演化及地球动力学背景   总被引:32,自引:0,他引:32  
南海北缘新生代沉积盆地是全面揭示南海北缘形成演化及与邻区大地构造单元相互作用的重要窗口。通过对盆地沉积-构造特征分析,南海北缘新生代裂陷过程显示出明显的多幕性和旋转性的特点。在从北向南逐渐迁移的趋势下,东、西段裂陷过程也具有一定的差异,西部裂陷活动及海侵时间明显早于东部,裂陷中心由西向东呈雁列式扩展。晚白垩世-早始新世裂陷活动应是东亚陆缘中生代构造-岩浆演化的延续,始新世中、晚期太平洋板块俯冲方向改变导致裂陷中心南移,印度欧亚板块碰撞效应是南海中央海盆扩张方向顺时针旋转的主要原因。  相似文献   

12.
Most of the basins developed in the continental core of SE Asia (Sundaland) evolved since the Late Cretaceous in a manner that may be correlated to the conditions of the subduction in the Sunda Trench. By the end of Mesozoic times Sundaland was an elevated area composed of granite and metamorphic basement on the rims; which suffered collapse and incipient extension, whereas the central part was stable. This promontory was surrounded by a large subduction zone, except in the north and was a free boundary in the Early Cenozoic. Starting from the Palaeogene and following fractures initiated during the India Eurasia collision, rifting began along large faults (mostly N–S and NNW–SSE strike-slip), which crosscut the whole region. The basins remained in a continental fluvio-lacustrine or shallow marine environment for a long time and some are marked by extremely stretched crust (Phu Khanh, Natuna, N. Makassar) or even reached the ocean floor spreading stage (Celebes, Flores). Western Sundaland was a combination of basin opening and strike-slip transpressional deformation. The configuration suggests a free boundary particularly to the east (trench pull associated with the Proto-South China Sea subduction; Java–Sulawesi trench subduction rollback). In the Early Miocene, Australian blocks reached the Sunda subduction zone and imposed local shortening in the south and southeast, whereas the western part was free from compression after the Indian continent had moved away to the north. This suggests an important coupling of the Sunda Plate with the Indo-Australian Plate both to SE and NW, possibly further west rollback had ceased in the Java–Sumatra subduction zone, and compressional stress was being transferred northwards across the plate boundary. The internal compression is expressed to the south by shortening which is transmitted as far as the Malay basin. In the Late Miocene, most of the Sunda Plate was under compression, except the tectonically isolated Andaman Sea and the Damar basins. In the Pliocene, collision north of Australia propagated toward the north and west causing subduction reversal and compression in the short-lived Damar Basin. Docking of the Philippine Plate confined the eastern side of Sundaland and created local compression and uplift such as in NW Borneo, Palawan and Taiwan. Transpressional deformation created extensive folding, strike-slip faulting and uplift of the Central Basin and Arakan Yoma in Myanmar. Minor inversion affected many Thailand rift basins. All the other basins record subsidence. The uplift is responsible for gravity tectonics where thick sediments were accumulated (Sarawak, NE Luconia, Bangladesh wedge).  相似文献   

13.
国内外深水区油气勘探新进展   总被引:15,自引:0,他引:15  
深水区油气资源丰富,近年来深水油气勘探不断升温。在全球6大洲18个深水盆地中已发现约580亿桶油当量的油气资源。目前,巴西、美国墨西哥湾的深水油气田已经投入生产,而且产量不断增加,西非地区也已进入开发阶段,西北欧、地中海以及亚太地区的许多国家也都在积极开展深水油气勘探或开发。海上油气钻探不断向深水区和超深水区发展,探井数目也在继续增加,投资力度不断加强,储量每年也有很大的增长。深水油气勘探成功率平均达到30%,其中,西非的勘探成功率最高。深水区烃源岩生烃潜力较好,最好的烃源岩主要分布于侏罗系、白垩系和第三系的地层中,储层以浊积岩储层为主,盖层通常比较发育,大多数圈闭都与地层因素有关。我国南海北部陆坡深水区盆地属准被动边缘盆地,从烃源岩、储层、盖层、圈闭到运聚条件等都具备了形成大型油气田的基本地质条件,具有丰富的资源前景。  相似文献   

14.
The North Yellow Sea Basin ( NYSB ), which was developed on the basement of North China (Huabei) continental block, is a typical continental Mesozoic Cenozoic sedimentary basin in the sea area. Its Mesozoic basin is a residual basin, below which there is probably a larger Paleozoic sedimentary basin. The North Yellow Sea Basin comprises four sags and three uplifts. Of them, the eastern sag is a Mesozoic Cenozoic sedimentary sag in NYSB and has the biggest sediment thickness; the current Korean drilling wells are concentrated in the eastern sag. This sag is comparatively rich in oil and gas resources and thus has a relatively good petroleum prospect in the sea. The central sag has also accommodated thick Mesozoic-Cenozoic sediments. The latest research results show that there are three series of hydrocarbon source rocks in the North Yellow Sea Basin, namely, black shales of the Paleogene, Jurassic and Cretaceous. The principal hydrocarbon source rocks in NYSB are the Mesozoic black shale. According to the drilling data of Korea, the black shales of the Paleogene, Jurassic and Cretaceous have all come up to the standards of good and mature source rocks. The NYSB owns an intact system of oil generation, reservoir and capping rocks that can help hydrocarbon to form in the basin and thus it has the great potential of oil and gas. The vertical distribution of the hydrocarbon resources is mainly considered to be in the Cretaceous and then in the Jurassic.  相似文献   

15.
The Qiongdongnan Basin has the first proprietary high-yield gas field in deep-water areas of China and makes the significant breakthroughs in oil and gas exploration. The central depression belt of deep-water area in the Qiongdongnan Basin is constituted by five sags, i.e. Ledong Sag, Lingshui Sag, Songnan Sag, Baodao Sag and Changchang Sag. It is a Cenozoic extensional basin with the basement of pre-Paleogene as a whole. The structural research in central depression belt of deep-water area in the Qiongdongnan Basin has the important meaning in solving the basic geological problems, and improving the exploration of oil and gas of this basin. The seismic interpretation and structural analysis in this article was operated with the 3D seismic of about 1.5×10~4 km~2 and the 2D seismic of about 1×10~4 km. Eighteen sampling points were selected to calculate the fault activity rates of the No.2 Fault. The deposition rate was calculated by the ratio of residual formation thickness to deposition time scale. The paleo-geomorphic restoration was obtained by residual thickness method and impression method. The faults in the central depression belt of deep-water area of this basin were mainly developed during Paleogene, and chiefly trend in NE–SW, E–W and NW–SE directions. The architectures of these sags change regularly from east to west: the asymmetric grabens are developed in the Ledong Sag, western Lingshui Sag, eastern Baodao Sag, and western Changchang Sag; half-grabens are developed in the Songnan Sag, eastern Lingshui Sag, and eastern Changchang Sag. The tectonic evolution history in deep-water area of this basin can be divided into three stages,i.e. faulted-depression stage, thermal subsidence stage, and neotectonic stage. The Ledong-Lingshui sags, near the Red River Fault, developed large-scale sedimentary and subsidence by the uplift of Qinghai-Tibet Plateau during neotectonic stage. The Baodao-Changchang sags, near the northwest oceanic sub-basin, developed the large-scale magmatic activities and the transition of stress direction by the expansion of the South China Sea. The east sag belt and west sag belt of the deep-water area in the Qiongdongnan Basin, separated by the ancient Songnan bulge, present prominent differences in deposition filling, diaper genesis, and sag connectivity. The west sag belt has the advantages in high maturity, well-developed fluid diapirs and channel sand bodies, thus it has superior conditions for oil and gas migration and accumulation. The east sag belt is qualified by the abundant resources of oil and gas. The Paleogene of Songnan low bulge, located between the west sag belt and the east sag belt, is the exploration potential. The YL 8 area, located in the southwestern high part of the Songnan low bulge, is a favorable target for the future gas exploration. The Well 8-1-1 was drilled in August 2018 and obtained potential business discovery, and the Well YL8-3-1 was drilled in July 2019 and obtained the business discovery.  相似文献   

16.
南海北部深水区东西构造差异性及其动力学机制   总被引:1,自引:0,他引:1  
南海北部深水区位于南海洋陆转换带,构造运动活跃,构造特征复杂。同时,南海北部深水区石油、天然气、天然气水合物等矿产资源丰富。因此,加强南海北部深水盆地构造特征分析,揭示南海北部陆缘构造属性与南海形成演化机制,对于南海深部过程演变研究、油气资源评价与地质灾害防治等具有重要的意义。本论文通过对南海北部深水区陆架-陆坡结构、盆地构造特征与演化规律的分析,指出研究区东西存在明显的构造差异性,并分析了其动力学机制。南海北部深水区东部陆架-陆坡结构为宽洼窄隆型,而西部为窄洼宽隆型。东部珠江口盆地深水凹陷均为半地堑结构,剖面上呈不对称的箕状;西部琼东南盆地除北礁凹陷为南段北超的小型半地堑外,其它凹陷均为地堑结构,为南北双断式沉积体系。在构造演化方面,东部中中新世末结束裂后期进入新构造活动期,白云凹陷构造活动性增强,表现为快速的沉降和显著的晚期断裂作用;而西部晚中新世末才进入新构造活动期,深水区表现为快速沉积作用,断裂活动较弱。  相似文献   

17.
东海陆架西部凹陷带古新统砂岩锆石的U-P年龄表明,陆架西部古新世物源以中生代母岩为主,其次为元古代变质岩及少量古生代母岩。东海陆架东部凹陷带渐新统砂岩锆石的U-P年龄表明陆架东部渐新世物源以元古代变质岩为主,其次为中生代母岩及少量太古代变质岩与古生代母岩。陆架西部古新统砂岩锆石的U-P年龄与闽浙隆起带露头及钻孔揭示的基岩一致,而陆架东部渐新统砂岩锆石的U-P年龄比西部老。根据上述砂岩锆石U-P年龄,可以推测古近纪东海陆架盆地发育过程中,东海陆架东部地势较高。单颗粒锆石REE配分模式表明元古代锆石轻稀土(LREE)明显比其他样品高且含量相近,Ce正异常不明显;中生代锆石Ce正异常明显,但同时Eu负异常也很明显,与中生代基岩锆石相似;古生代锆石稀土元素含量偏低,La含量明显超过其他轻稀土元素。根据上述特征可以清晰指示砂岩的母岩类型与年代,推断古新世东海大陆架的基底性质与构造背景。  相似文献   

18.
This paper presents actuality of investigation and study of the crustal structure characters of East China Sea at home and abroad. Based on lots of investigation and study achievements and the difference of the crustal velocity structure from west to east, the East China Sea is divided into three parts - East China Sea shelf zone, Okinawa Trough zone and Ryukyu arc-trench zone. The East China Sea shelf zone mostly has three velocity layers, i.e., the sediment blanket layer (the velocity is 5.8-5.9 km/s), the basement layer (the velocity is 6.0-6.3 km/s), and the lower crustal layer (the velocity is 6.8-7.6 km/s). So the East China Sea shelf zone belongs to the typical continental crust. The Okinawa Trough zone is located at the transitional belt between the continental crust and the oceanic crust. It still has the structural characters of the continental crust, and no formation of the oceanic crust, but the crust of the central trough has become to thinning down. The Ryukyu arc-trench zone belongs to the transitional type crust as a whole, but the ocean side of the trench already belongs to the oceanic crust. And the northwest Philippine Basin to the east of the Ryukyu Trench absolutely belongs to the typical oceanic crust.  相似文献   

19.
Abstract

The South China Sea is located within the domain of a plate triple‐junction and can be divided into five major geotectonic blocks that control the formation and distribution of the mineral resources of the region: (1) the southern China faulted block, (2) the eastern Indochina faulted block, (3) the Nansha‐Borneo faulted block, (4) the Taiwan‐Luzon faulted block, and (5) the central ocean basin faulted block. Apart from oil and gas, the most intensively exploited mineral deposits in the South China Sea are near‐shore placer minerals of titaniferous magnetite, zircon, monazite, tin, gold, and chromite. Based on analyses of submarine morphology and sea level change during the past 15,000 years, the South China Sea continental shelves are considered to be highly prospective for additional placer occurrence associated with such submarine features as: submerged platforms and terraces, drowned rivers and sand bars, ancient beaches, and seafloors covered by relict sediments. Additionally, based on available data, polymetallic sulfides and manganese nodules and crusts are considered as speculative resources of the future in the South China Sea.  相似文献   

20.
通王断裂带沙河街组油气成藏主控因素研究   总被引:1,自引:0,他引:1  
通王断裂带地区位于济阳坳陷东营凹陷南斜坡东部,沙河街组是本区的主要含油层系。通过烃源岩分析、储集层类型划分、孔隙流体动力场的描述、优质输导体系类型及断裂构造特征的研究,认为牛庄洼陷烃源岩主要为沙四上和沙三段深湖相一半深湖相暗色泥岩、油页岩,油气以生油洼陷为中心,呈环状或半环状分布;沙三段大型三角洲相储集砂体、沙四段中上部的滨浅湖近岸砂坝、远岸砂坝和席状砂岩储层是主要储集层类型;砂体一断层类输导体系是本区优质输导体系,牛庄洼陷北部发育的高压型复式温压系统,使油气顺着断层、砂体向南部通王断裂带常压常温和常压高温区运移。通王断裂带的油气藏主要是受断裂控制的构造油气藏,王家岗油田往西的中浅层是断层类油藏的有利地区,王家岗地区北部和陈官庄地区的西北部,是沙三段隐蔽油气藏以及断层-岩性复合型油气藏勘探的有利勘探地区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号