首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New sandstone petrology and petrostratigraphy provide insights on Palaeogene (Middle Eocene to Oligocene) clastics of the Thrace Basin in Greece, which developed synchronously with post‐Cretaceous collision and subsequent Tertiary extension. Sandstone petrofacies are used as a tool to unravel complex geodynamic changes that occurred at the southern continental margin of the European plate, identifying detrital signals of the accretionary processes of the Rhodope orogen, as well as subsequent partitioning related to extension of the Rhodope area, followed by Oligocene to present Aegean extension and wide magmatic activity starting during the Early Oligocene. Sandstone detrital modes include three distinctive petrofacies: quartzolithic, quartzofeldspathic and feldspatholithic. Major contributions are from metamorphic basement units, represented mostly by low to medium‐grade lithic fragments for the quartzolithic petrofacies and high‐grade metamorphic rock fragments for the quartzofeldspathic petrofacies. Volcaniclastic sandstones were derived from different volcanic areas, with a composition varying from dominantly silicic to subordinate intermediate products (mainly rhyolitic glass, spherulites and felsitic lithics). Evolution of detrital modes documents contributions from three key source areas corresponding to the two main crystalline tectonic units: (i) the Variegated Complex (ultramafic complex), in the initial stage of accretion (quartzolithic petrofacies); (ii) the Gneiss–Migmatite Complex (quartzofeldspathic petrofacies); and (iii) the Circum‐Rhodope Belt. The volcaniclastic petrofacies is interbedded with quartzofeldspathic petrofacies, reflecting superposition of active volcanic activity on regional erosion. The three key petrofacies reflect complex provenance from different tectonic settings, from collisional orogenic terranes to local basement uplift and volcanic activity. The composition and stratigraphic relations of sandstones derived from erosion of the Rhodope orogenic belt and superposed magmatism after the extensional phase in northern Greece provide constraints for palaeogeographic and palaeotectonic models of the Eocene to Oligocene western portions of the Thrace Basin. Clastic detritus in the following sedimentary assemblages was derived mainly from provenance terranes of the Palaeozoic section within the strongly deformed Rhodope Massif of northern Greece and south‐east Bulgaria, from the epimetamorphic units of the Circum‐Rhodope Belt and from superposed Late Eocene to Early Oligocene magmatism related to orogenic collapse of the Rhodope orogen. The sedimentary provenance of the Rhodope Palaeogene sandstones documents the changing nature of this orogenic belt through time, and may contribute to a general understanding of similar geodynamic settings.  相似文献   

2.
The Crocker Fan of Sabah was deposited during subduction of the Proto-South China Sea between the Eocene and Early Miocene. Collision of South China microcontinental blocks with Borneo in the Early Miocene terminated deep water sedimentation and resulted in the major regional Top Crocker Unconformity (TCU). Sedimentation of fluvio-deltaic and shallow marine character resumed in the late Early Miocene. The Crocker Fan sandstones were derived from nearby sources in Borneo and nearby SE Asia, rather than distant Asian and Himalayan sources. The Crocker Fan sandstones have a mature composition, but their textures and heavy mineralogy indicate they are first-cycle sandstones, mostly derived from nearby granitic source rocks, with some input of metamorphic, sedimentary and ophiolitic material. The discrepancy between compositional maturity and textural immaturity is attributed to the effects of tropical weathering. U–Pb ages of detrital zircons are predominantly Mesozoic. In the Eocene sandstones Cretaceous zircons dominate and suggest derivation from granites of the Schwaner Mountains of southern Borneo. In Oligocene sandstones Permian–Triassic and Palaeoproterozoic zircons become more important, and are interpreted to be derived from Permian–Triassic granites and Proterozoic basement of the Malay Tin Belt. Miocene fluvio-deltaic and shallow marine sandstones above the TCU were mostly recycled from the deformed Crocker Fan in the rising central mountain range of Borneo. The provenance of the Tajau Sandstone Member of the Lower Miocene Kudat Formation in north Sabah is strikingly different from other Miocene and older sandstones. Sediment was derived mainly from granitic and high-grade metamorphic source rocks. No such rocks existed in Borneo during the Early Miocene, but potential sources are present on Palawan, to the north of Borneo. They represent continental crust from South China and subduction-related metamorphic rocks which formed an elevated region in the Early Miocene which briefly supplied sediment to north Sabah.  相似文献   

3.
Despite abundant data on volcaniclastic sand(stone), the compositional, spatial and temporal distribution of volcanic detritus within the sedimentary record is poorly documented. One of the most intricate tasks in optical analysis of sand(stone) containing volcanic particles is to distinguish grains derived by erosion of ancient volcanic rocks (i.e. palaeovolcanic, noncoeval grains) from grains generated by active volcanism (subaqueous and/or subaerial) during sedimentation (neovolcanic, coeval grains). Deep-marine volcaniclastic sandstones of the Middle Topanga Group of southern California are interstratified with 3000-m-thick volcanic deposits (both subaqueous and subaerial lava and pyroclastic rocks, ranging from basalt, andesite to dacite). These rocks overlie quartzofeldspathic sandstones (petrofacies 1) of the Lower Topanga Group, derived from deep erosion of a Mesozoic magmatic arc. Changes in sandstone composition in the Middle Topanga Group provide an example of the influence of coeval volcanism on deep-marine sedimentation. Volcaniclastic strata were deposited in deep-marine portions of a turbidite complex (volcaniclastic apron) built onto a succession of intrabasinal lava flows and on the steep flanks of subaerially emplaced lava flows and pyroclastic rocks. The Middle Topanga Group sandstones are vertically organized into four distinctive petrofacies (2–5). Directly overlying basalt and basaltic-andesite lava flows, petrofacies 2 is a pure volcanolithic sandstone, including vitric, microlitic and lathwork volcanic grains, and neovolcanic crystals (plagioclase, pyroxene and olivine). The abundance of quenched glass (palagonite) fragments suggests a subaqueous neovolcanic provenance, whereas sandstones including andesite and minor basalt grains suggest subaerial neovolcanic provenance. This petrofacies probably was deposited during syneruptive Periods, testifying to provenance from both intrabasinal and extrabasinal volcanic events. Deposited during intereruptive periods, impure volcanolithic petrofacies 3 includes both neovolcanic (85%) and older detritus derived from plutonic, metamorphic and palaeovolcanic rocks. During post-eruptive periods, the overlying quartzofeldspathic petrofacies 4 and 5 testify to progressive decrease of neovolcanic detritus (48–14%) and increase of plutonic-metamorphic and palaeovolcanic detritus. The Upper Topanga Group (Calabasas Formation), conformably overlying the Middle unit, has dominantly plutoniclastic sandstone (petrofacies 6). Neovolcanic detritus is drastically reduced (4%) whereas palaeovolcanic detritus is similar to percentages of the Lower Topanga Group (petrofacies 1). In general, the volcaniclastic contribution represents a well-defined marker in the sedimentary record. Detailed compositional study of volcaniclastic strata and volcanic particles (including both compositional and textural attributes) provides important constraints on deciphering spatial (extrabasinal vs. intrabasinal) and temporal relationships between neovolcanic events (pre-, syn-, inter- and post-eruptive periods) and older detritus.  相似文献   

4.
Studies on the metamorphic and related magmatic rocks within the Jiangnan Orogen, southern China, are important to understand the formation and evolution of this Neoproterozoic orogen because they can provide evidence for revealing the tectonic evolution of the South China Block. Following on from earlier attempts at stratigraphic correlation and creating a framework for the low-grade metamorphosed basement, new first-hand information on the composition and deformation of the East Jiangnan Orogen basement indicates that the sedimentary rocks in the north are composed of the sequential Shangxi Group (Gp) and the overlying Likou Gp, with a clear regional unconformity in between. The Likou Gp includes the Zhentou Formation (Fm.) and the Dengjia Fm., with the previously named Puling Fm. only basalt interbeds within the Dengjia Fm. The Xucun granodiorite pluton of ~830 Ma intrudes the Shangxi Gp, thereby resulting in a 100 m-wide hornfels zone within the wall rocks, indicating that the formation of the group occurred earlier than that of the pluton. By contrast, the southern metamorphic rocks of the Xikou Gp and the overlying Jingtan Fm. are flaky, disordered, and strongly deformed. The Jingtan Fm. is roughly equivalent to the Heshangzhen Gp and includes the Zhoujiacun conglomerates in the lower part and a rhyolite in the upper part with interbedded basalt. This assessment of Neoproterozoic stratigraphic sequences and magmatic rocks in the east of the Jiangnan Orogen differs from and rectifies previous studies, emphasizing that explanation of analytical results, particularly geochronology, should be consistent with facts gathered in the field.  相似文献   

5.
漠河盆地上侏罗统物源分析及其地质意义   总被引:4,自引:0,他引:4  
为了探讨晚侏罗世漠河盆地的构造类型,笔者等对其物源特征进行了系统分析。通过古水流分析、母岩成分分析和源区构造背景分析认为:①晚侏罗世漠河盆地的物源来自南北两个方向;②北部物源区位于西伯利亚板块南缘,为蒙古—鄂霍茨克造山带,母岩成分主要为花岗岩、变质岩、中酸性火山岩、中基性火山岩和沉积岩;③南部物源区位于大兴安岭北部,为下伏板块基底,母岩成分主要为花岗岩、变质岩和沉积岩;④北部造山带物源区的构造背景为早中生代的活动大陆边缘。晚侏罗世漠河盆地具有典型前陆盆地的双向物源特征,一方面来自北部造山带,一方面来自盆地下伏板块基底。根据物源特征、区域大地构造背景和俄罗斯上阿穆尔盆地(黑龙江在俄罗斯称为阿穆尔河)有关资料认为晚侏罗世漠河盆地可能为漠河—上阿穆尔周缘前陆盆地的南半部分,其形成和演化受蒙古—鄂霍茨克造山带制约。  相似文献   

6.
The Yunkai low uplift with low exploration degree is close to the Baiyun sag,and has hydrocarbon exploration potential in the deepwater area of the Pearl River Mouth Basin.Based on seismic and drilling data,balanced profiles and growth strata,this paper mainly discusses geological structures and formation processes of the Yunkai low uplift,and also analyzes the characteristics of fault system and their influence on hydrocarbon migration and accumulation.The EWtrending basement faults divide the Yunkai low uplift into two parts,i.e.the southern sector and the northern sector.The northern sector is a relatively wide and gentle uplift,while the southern sector is composed of two secondary half-grabens with faulting in the south and overlapping in the north.The Yunkai low uplift experienced three major formation stages,including the rapid uplifting stage during the deposition period of the Eocene Wenchang Formation,the slow uplifting stage during the deposition period of the Late Eocene-Middle Miocene Enping-Hanjiang formations,and the whole burial stage from the Middle Miocene to present.The extensional faults in the Yunkai low uplift and its adjacent areas strike mainly along the NW,NWW and near-EW directions.Also,the strikes of faults present a clockwise rotation from the deep to the shallow strata.According to effects of faults on hydrocarbon accumulation the faults in the Yunkai low uplift and its adjacent areas can be divided into trap-controlled faults and source-controlled faults.The trap-controlled faults control trap development and can effectively seal oil and gas.The source-controlled faults connect directly source rocks and reservoirs,which are highly active during the rifting stage and weakly active since the Miocene.This activity features of the source-controlled faults is beneficial to migration of the early crude oil from the Baiyun sag to the high part of the Yunkai low uplift,but is not good for migration of the late natural gas.In the Yunkai low uplift and its adjacent areas,the traps in the deep Zhuhai and Enping formations that are close to source rocks in the Baiyun sag should be the favorable exploration objectives.  相似文献   

7.
The Warchha Sandstone of the Salt Range of Pakistan is a continental succession that accumulated as part of a meandering, fluvial system during Early Permian times. Several fining-upward depositional cycles are developed, each of which is composed of conglomerate, cross-bedded sandstone and, in their upper parts, bioturbated siltstone and claystone units with distinctive desiccation cracks and carbonate concretions. Clast lithologies are mainly of plutonic and low-grade metamorphic origin, with an additional minor sedimentary component. Textural properties of the sandstone are fine- to coarse-grained, poorly to moderately sorted, sub-angular to sub-rounded, and with generally loose packing. Based on modal analyses, the sandstone is dominantly a feldspathoquartzose (arkose to sub-arkose). Detrital constituents are mainly composed of monocrystalline quartz, feldspars (more K-feldspar than plagioclase) and various types of lithic clasts. XRD and SEM studies indicate that kaolinite is the dominant clay mineral and that it occurs as both allogenic and authigenic forms. However, illite, illite-smectite mixed layer, smectite and chlorite are also recognised in both pores and fractures. Much of the kaolinite was likely derived by the severe chemical weathering of previously deposited basement rocks under the influence of a hot and humid climate. Transported residual clays deposited as part of the matrix of the Warchha Sandstone show coherent links with the sandstone petrofacies, thereby indicating the same likely origin. Illite, smectite and chlorite mainly occur as detrital minerals and as alteration products of weathered acidic igneous and metamorphic rocks. Based primarily on fabric relationship, the sequence of cement formation in the Warchha Sandstone is clay (generally kaolinite), iron oxide, calcareous and siliceous material, before iron-rich illite and occasional mixed layer smectite–illite and rare chlorite. Both petrographic analysis and field characteristics of the sandstone indicate that the source areas were characterised by uplift of a moderate to high relief continental block that was weathered under the influence of hot and humid climatic conditions. The rocks weathered from the source areas included primary granites and gneisses, together with metamorphic basement rocks and minor amounts of sedimentary rocks. Regional palaeogeographic reconstructions indicate that much of the Warchha Sandstone detritus was derived from the Aravalli and Malani ranges and surrounding areas of the Indian Craton to the south and southeast, before being transported to and deposited within the Salt Range region under the influence of a semi-arid to arid climatic regime.  相似文献   

8.
粤东北基底变质岩的组成和形成时代   总被引:23,自引:0,他引:23  
基底变质岩的成分和形成时代对揭示地壳演化至关重要.利用锆石U-Pb-Hf研究和全岩成分分析, 发现粤东北及邻区的许多基底变质岩是晚新元古代形成的沉积岩, 它们具有高的SiO2、Rb、Zr、Y和过渡金属元素含量以及相对低的Al2O3、CaO、Na2O、Sr、Nb含量.它们沉积于活动大陆边缘环境.盆地的形成与Rodinia超大陆裂解时的张性背景相关.粤东北龙川地区新元古代沉积岩主要由新太古代和中元古代碎屑物质组成, 并含少量中太古代和新元古代物质, 明显不同于闽西南和粤北地区新元占代沉积岩.粤东北这些变质岩没有受到加里东运动的强烈影响, 而是在印支期发生变质-重熔作用.   相似文献   

9.
We present detrital zircon UPb SHRIMP age patterns for the central segment (34–42°S) of an extensive accretionary complex along coastal Chile together with ages for some relevant igneous rocks. The complex consists of a basally accreted high pressure/low temperature Western Series outboard of a frontally accreted Eastern Series that was overprinted by high temperature/low pressure metamorphism. Eleven new SHRIMP detrital zircon age patterns have been obtained for meta-turbidites from the central (34–42°S) segment of the accretionary complex, four from previously undated metamorphic complexes and associated intrusive rocks from the main Andean cordillera, and three from igneous rocks in Argentina that were considered as possible sediment source areas. There are no Mesozoic detrital zircons in the accretionary rocks. Early Paleozoic zircons are an essential component of the provenance, and Grenville-age zircons and isolated grains as old as 3 Ga occur in most rocks, although much less commonly in the Western Series of the southern sector. In the northernmost sector (34–38°30′S) Proterozoic zircon grains constitute more than 50% of the detrital spectra, in contrast with less than 10% in the southern sector (39–42°S). The youngest igneous detrital zircons in both the northern Western (307 Ma) and Eastern Series (345 Ma) are considered to closely date sedimentation of the protoliths. Both oxygen and LuHf isotopic analyses of a selection of Permian to Neoproterozoic detrital zircon grains indicate that the respective igneous source rocks had significant crustal contributions. The results suggest that Early Paleozoic orogenic belts (Pampean and Famatinian) containing material recycled from cratonic areas of South America supplied detritus to this part of the paleo-Pacific coast. In contrast, in the southern exposures of the Western Series studied here, Permian detrital zircons (253–295 Ma) dominate, indicating much younger deposition. The northern sector has scarce Early to Middle Devonian detrital zircons, prominent south of 39°S. The sedimentary protolith of the northern sector was probably deposited in a passive margin setting starved of Devonian (Achalian) detritus by a topographic barrier formed by the Precordillera, and possibly Chilenia, terranes. Devonian subduction-related metamorphic and plutonic rocks developed south of 39°S, beyond the possible southern limit of Chilenia, where sedimentation of accretionary rocks continued until Permian times.  相似文献   

10.
The aim of this paper is to study the provenance of Late Cretaceous sandstones deposited along the south flank of the Golfo San Jorge Basin. For this purpose, detrital modes of three hundred thirty-seven sandstone samples collected in the Mina del Carmen, Bajo Barreal, and Cañadón Seco Formations were studied in ten oil fields. According to the modal composition of the sandstones, six petrofacies were defined allowing the identification of not only principal, but also secondary provenance areas. The QVM and VQM petrofacies are more than 20% metamorphic, sedimentary, and polycrystalline quartz clasts (Lm + Ls + Qpg > 20%), evidencing a secondary signal of basement supply masked by a predominant volcanic provenance. The petrofacies VP and VF are characterized by Lm + Ls + Qpg <20% and more than 20% total feldspar (Pm + Om >20%.), which indicate a supply of sediment from volcanic terrains and scarce derivation of materials from basement rocks. Based on the plagioclase/k-feldspar ratio, the VF petrofacies is interpreted to be dominated by the supply of sand grains from the Andean volcanic-arc, while VP is supposed have originated through the erosion of intermediate volcanic rock outcroppings in the Macizo del Deseado. Finally, both the VQ and QV petrofacies show Lm + Ls + Qpg <20% and Pm + Om<20%, indicating a provenance of volcanic areas coupled with minor contributions from basement rocks. During the Late Cretaceous, the Golfo San Jorge Basin underwent a sag phase that was characterized by very scarce volcanism and tectonic activity. Although these conditions did not favor defined patterns in the vertical stacking of petrofacies, the sandstones exhibit remarkable changes in their regional distribution, which were determined by the paleogeography of the basin and differences in basement composition within the source areas. Finally, a paleogeographic model for sediment circulation in the basin is proposed. This model recognizes the main fluvial dispersal trends that flowed northwest to southeast and transported large amounts of volcanic clasts (associated with petrofacies VF-VQ). To the extent that rivers flowed eastward, a secondary supply from the Precambrian basement, which were composed of low-to high-grade metamorphic rocks, was also important (petrofacies association VQM and QVM). The southwestern area of the basin is dominated by VP petrofacies that record the supply of plagioclase-rich volcanic clasts. This petrofacies likely corresponds to the erosion of Jurassic volcanic units that crop out in the Macizo del Deseado.  相似文献   

11.
Thomson 《地学学报》1998,10(1):32-36
Fission-track thermochronology applied to the nappe pile of the Calabrian Arc of southern Italy, particularly within the continental basement rocks, has provided important new constraints on the nature of some of the tectonic contacts. In southern Calabria an important phase of lower Miocene crustal extension is indicated. In northern Calabria no Oligocene or younger extension is seen. Here, the emplacement of continental basement rocks with Alpine metamorphism over ophiolitic rocks with little or no metamorphism is constrained as a thrust of lower to middle Miocene age related to collision of the Calabrian Arc with the Adria plate margin. It is proposed that reduction in the plate convergence velocity during collision of a retreating subduction zone with a continental margin is, at least partly, an explanation for the onset of extension in southern Calabria during the Miocene.  相似文献   

12.
A synthesis of the geologic evolution of Taiwan   总被引:2,自引:0,他引:2  
The island arc of Taiwan is composed of Cenozoic geosynclinal sediments more than 10,000 m thick, lying on a pre-Tertiary metamorphic basement. Pleistocene to Miocene andesitic islands surround the main island and are related mostly to arc magmatism. The Penghu Island Group in the Taiwan Strait is covered with Pleistocene flood basalt. Neogene shallow marine clastic sediments are exposed mainly in the western foothills with Pleistocene andesitic extrusives at the northern tip and the northeastern offshore islands. A thick sequence of Paleogene to Miocene argillitic to slaty metaclastic rocks underlies the western Central Range and forms the immediate sedimentary cover on the pre-Tertiary metamorphic complex to the east, which represents an older Mesozoic arc-trench system. The Coastal Range in eastern Taiwan is a Neogene andesitic magmatic arc, including also a large variety of volcaniclastic and turbiditic sediments. Cenozoic Taiwan is the site of arc-continent collision where the Luzon arc on the Philippine Sea plate overrides the Chinese continental margin on the Eurasian plate. East and northeast of Taiwan, the polarity of subduction changes whereby the oceanic Philippine Sea plate is subducting beneath the Ryukyu arc system on the Eurasian plate. Continent-arc collision in Taiwan island is anomalous and may occur in a broad belt of deformation rather than along a well-defined plate boundary or subduction zone.  相似文献   

13.
The Satpura Gondwana basin hosts a ~5 km thick siliciclastic succession that unconformably overlies the Precambrian basement. The Gondwana sequence in this basin starts from Early Permian (Talchir Formation) to Lower Cretaceous (Jabalpur Formation). The aim of this study is to (1) identify the source rock (provenance) for Early Triassic Pachmarhi sediments in the Satpura Gondwana succession and (2) to understand the relative role of tectonics and climate in determining the sandstone composition. These sandstones are medium to coarse-grained, moderately to moderately well sorted, subangular to subrounded, of moderate sphericity, and composed of several varieties of quartz, feldspar, rock fragments, and micas. Petrographically, the Pachmarhi sandstones are mostly quartzarenite and subarkose. The petrofacies in Qt–F–L and Qm–F–Lt triangular diagrams show that the bulk of the Pachmarhi was derived from continental (cratonic) source, especially from craton interior. Petrofacies, together with paleocurrent data, suggest that Pachmarhi Formation was deposited by a network of braided river system, which flowed dominantly from southeast to northwest. The study suggests that the sediments were mostly derived from Precambrian granites, gneiss, and metasedimentary basement rocks straddling the southern margin of the basin. Paleocurrent data also corroborates this contention.  相似文献   

14.
鄂尔多斯地块基底岩芯岩石组合、花岗片麻岩的锆石U-Pb年龄、Hf同位素和全岩Nd同位素组成以及航磁异常和地壳速度结构特征表明,该地块中部沿大同-华池基底断裂带存在一航磁异常梯度带,沿该带南缘发育一条2.2~2.0Ga古元古代弧岩浆活动带,并经历了1.96~1.85Ga的变质作用改造,与东缘中部带古元古代中晚期构造演化过程一样,可能代表该地块内部古元古代中晚期形成的一条构造活动带。该活动带以北为东西向展布的正航磁异常带,基底由混合岩化的变泥质和杂砂质片麻岩、片岩及大理岩和石英岩等变质表壳岩和一些花岗片麻岩类构成,记录了新太古代末~2.50Ga和古元古代中期2.2~2.0Ga两期岩浆活动及古元古代末期1.95~1.85Ga变质作用等地质事件,为一主要由新太古代陆壳物质构成的陆块。活动带南部为北东向不规则正、负相间航磁异常带,基底除少量副变质岩外,多为花岗片麻岩类,记录了古元古代中期2.2~2.0Ga岩浆热事件以及1.95~1.85Ga的变质作用改造,除新太古代物质外,还存在古、中太古代陆壳物质,是由一定规模中太古代和部分古太古代陆壳物质以及新太古代新生陆壳添加构成的古老地块。因此,鄂尔多斯地块中部沿大同-华池断裂带成为分割该地块一条重要分界带,其北部地块与其北缘孔兹岩带构成同一构造带,可能代表新太古代陆壳基底之上于古元古代晚期发育的一条大陆边缘活动带。南部则为古、中太古代陆壳与新太古新生陆壳增生而成的古老地块,代表鄂尔多斯地块古老基底陆壳的主体。  相似文献   

15.
PROVENANCE OF LOWER TERTIARY REDBEDS IN HOH XIL BASIN AND UPLIFT OF NORTHERN TIBET PLATEAU  相似文献   

16.
上二叠统哲斯组广泛出露于东北地区南部,主要由砂岩、泥岩、灰岩、页岩组成,含腕足、苔藓虫和腹足化石. 对内蒙古索伦地区的哲斯组中粗粒长石岩屑砂岩和中细粒长石砂岩样品进行了LA-ICP-MS锆石U-Pb测年,数据记录了4个年龄区间:(265±2)~(348±8)Ma,峰值年龄为(272±2)Ma;(358±3)~(453±4)Ma,峰值年龄(403±3)Ma;(470±6)~(555±4)Ma,峰值年龄为(511±3)Ma;剩余的前寒武纪锆石(693±7)Ma,(834±9)Ma,(854±6)Ma,(886±5)Ma,(1 175±7)Ma,(1 440±8)Ma,(1 748±17)Ma和(2 150±13)Ma. 其中峰值年龄为272 Ma的锆石年龄占绝对优势(达到51%),并与大石寨组火山岩和北侧的岛弧岩浆岩一致,403 Ma和511 Ma峰值年龄为东北地区泛非期变质杂岩的年龄范围,其余古老年龄也均为大兴安岭变质基底的年龄范围. 上述年龄特征显示,哲斯组物源主要来自相邻地区分布的早古生代岛弧火山岩,少量来自东北相邻地块的变质基底. 鉴于东北地区哲斯组分布范围广,岩性多为碳酸岩和碎屑岩,古生物化石保存完整,沉积环境稳定,证明哲斯组应为大陆边缘沉积.  相似文献   

17.
On the basis of differing areal extent, age, petrographic modes, and bulk chemical composition, the sandstones of the northern quarter of the Torlesse terrane are subdivided into four new petrofacies. A comparison of these petrofacies with existing South Island Torlesse classifications indicates continuation of the Triassic Rakaia subterrane and Late Jurassic–to–early Cretaceous Pahau subterrane into the central part of the North Island (as Axial-A and Axial-B petrofacies, respectively). The Waioeka petrofacies defines a new and provisional Late Jurassic-to–early Cretaceous Waioeka subterrane that is not present in the South Island. The Omaio petrofacies is common to deformed Albian basement sequences in the Torlesse of both islands, and in the Houhora Complex of Northland.

The composite Torlesse terrane evolved by Early Jurassic accretion of allochthonous Rakaia rocks followed by parautochthonous deposition of Pahau and Waioeka sandstones. Waioeka sandstones are compositionally similar to sandstones in the coeval eastern Waipapa terrane, but may have been dextrally displaced from their original depositional site by up to 300 km since the middle Cretaceous.  相似文献   

18.
安徽的地壳演化:Sr,Nd同位素证据   总被引:13,自引:0,他引:13  
陈江峰  谢智  张巽  周泰禧 《安徽地质》2001,11(2):123-130
在地壳(幔)演化和板块构遣的框架内,评述了有关安徽南部(扬子地块东部,包括大别遣山带和江南遣山带)的同位素地质年代学和Nd,Sr同位素地球化学示踪研究的成果。该地区出露地表的中元古界溪口群浅变质岩代表皖南的基底,沿江地区和大别山区的基底包舍太古宇或/和古元古界古老岩石。此格局还影响到从震旦纪到古生代沉积岩的物源区,江南深断裂以北的沉积岩中有古老岩石的贡献,而以南的物源主要来自出露的中元古界岩石。扬子陆块南北缘(大别和江南遣山带)的晋宁期演化可能与罗迪尼亚超大陆演化有密切关系,但有关研究开展很少。三叠纪大陆深俯冲和超高压变质作用研究已成为国际地球科学的热点。晚中生代(120-140Ma)本区发生强烈的岩浆活动,并伴有重要矿床的形成。中酸性岩的形成是一种壳幔物质混合的过程。沿江地区陆下地幔具有富集特征,为扬子型岩石圈地幔与软流圈地幔混合的产物。从晚中生代到第四纪,基性岩指示其源区的地球化学性质有随时间变得越来越亏损的趋势。  相似文献   

19.
大别山南部的低级变质岩:宿松群和张八岭群   总被引:3,自引:0,他引:3  
大别山南部的浅变质岩指宿松群和张八岭群。前者为扬子大陆被动边缘沉积,不整合在扬子大陆晚元古代的结晶基底之上,后者为古大别洋的洋壳,它和北部浅变质岩佛子岭群和梅山群一起,与洋壳俯冲造山带主要构造单元有良好的对应关系。  相似文献   

20.
粤北澜河变质岩的地球化学特征及其地质意义   总被引:1,自引:0,他引:1  
粤北澜河变质岩主要由黑云母变粒岩和白云母绿泥片岩组成。根据主要元素、微量元素与稀土元素组成以及在各种相关判别图解上的投影,黑云母变粒岩的原岩为砂质岩,白云母绿泥片岩的原岩为泥质岩,它们主要是在被动大陆边缘的沉积环境中形成。根据黑云母变粒岩中单颗粒碎屑锆石最小U—Pb年龄为725Ma以及加里东期或早于加里东期变质的事实,原岩的沉积时间为早古生代。澜河变质岩的Sm—Nd同位素组成表明,它们的物源区为古元古代地壳,形成过程中没有年轻地壳物质加入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号