首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The reaction chloritoid (ctd)=almandine (alm)+diaspore+H2O (CAD) has been reversed using Fe3+-free synthetic chloritoid and almandine, under fO2 conditions of the solid oxygen buffer Fe/FeO (CADWI), and using partially oxidized synthetic minerals under fO2 conditions of the solid oxygen buffer Ni/NiO (CADNNO). Experiments have been conducted between 550 and 700°C, 25 and 45 kbar. The equilibrium pressure and temperature conditions are strongly dependent on the fO2 conditions (CADNNO lies some-what 50°C higher than CADWI). This can be explained by a decrease in aH2O for experiments conducted on the Fe/FeO buffer, and a decrease in actd and aalm (through incorporation of ferric iron preferentially in chloritoid) for experiments conducted on the Ni/NiO buffer. The H2O activity has been calculated using the MRK equation of state, and the values obtained checked against the shift of the equilibrium diaspore=corundum+H2O bracketed on the Fe/FeO buffer and under unbuffered fO2 conditions. For fO2 buffered by the assemblage Fe/FeO, aH2O increases with pressure from about 0.85 at 600°C, 12 kbar to about 0.9 at 605°C, 25 kbar and 1 above 28 kbar. For fO2 buffered by the assemblage Ni/NiO, aH2O=1. The aH2O decrease from Ni/NiO to Fe/FeO is, however, too small to be entirely responsible for the temperature shift between CADNNO and CADWI. In consequence, the amount of ferric iron in almandine and chloritoid growing in the CADNNO experiments must be significant and change along the CADNNO, precluding calculation of the thermodynamic properties of chloritoid from this reaction. Our experimental data obtained on the Fe/FeO buffer are combined, using a thermodynamic analysis, with Ganguly's (1969) reversal of the reaction chloritoid=almandine+corundum +H2O (CAC) on the same oxygen buffer. Experimental brackets are mutually consistent and allow extraction of the thermodynamic parameters H o f,ctd and S octd. Our thermodynamic data are compared with others, generally calculated using Ganguly's bracketing of CACNNO. The agreement between the different data sets is relatively good at low pressure, but becomes rapidly very poor toward high pressure conditions. Using our thermodynamic data for chloritoid and KD=(Fe3+/Al)ctd/(Fe3+/Al)alm estimated from natural assemblages, we have calculated the composition of chloritoid and almandine growing from CADNNO and CACNNO. The Fe3+ content in chloritoid and almandine increases with pressure, from less than 0.038 per FeAl2SiO5(OH)2 formula unit at 10 kbar to at least 0.2 per formula unit above 30 kbar. This implies that chloritoid and almandine do contain Fe3+ in most natural assemblages. The reliability of our results compared to natural systems and thermodynamic data for Mg-chloritoid is tested by comparing the equilibrium conditions for the reaction chloritoid+quartz=garnet (gt)+kyanite+H2O (CQGK), calculated for intermediate Fe–Mg chloritoid and garnet compositions, from the system FASH and from the system MASH. For 0.65<(XFe)gt<0.8, CQKG calculated from FASH and MASH overlap for KD=(Mg/Fe)ctd/(Mg/Fe)gt=2. This is in good agreement with the KD values reported from chloritoid+garnet+quartz+kyanite natural assemblages.  相似文献   

2.
 Complete chemical analyses, including ferric and ferrous iron, H2O contents and δD values for 16 phlogopite and biotite and 2 hornblende separates are presented. Samples were obtained from volcanic rocks from four localities: (1) phlogopite phenocrysts from minette lavas from the western Mexico continental arc, (2) biotite and hornblende phenocrysts from andesite lavas from Mono Basin, California, (3) phlogopite and biotite from clinopyroxenite nodules entrained in potassic lavas from the East African Rift, Uganda, and (4) phlogopite phenocrysts from a wyomingite lava in the Leucite Hills, Wyoming. The Fe2O3 contents in the micas range from 0.8 to 10.5 wt%, corresponding to 0.09 to 1.15 Fe3+ per formula unit (pfu). Water contents vary from 1.6 to 3.0 wt%, corresponding to 1.58 to 3.04 OH pfu, significantly less than would be expected for a site fully occupied by hydroxyl. Cation- and anion-based normalization procedures provide accurate mineral formulae with respect to most cations and anions, but are unable to generate accurate estimates of Fe3+/FeT, and overestimate OH at the expense of O on the hydroxyl site. These inaccuracies are present despite acceptable adjusted totals and stoichiometric calculated site occupancies. The phlogopite and biotite phenocrysts in arc-related lavas from western Mexico and eastern California have the highest Fe3+/FeT ratios (56–87%), reflecting high magmatic oxygen fugacities (ΔNNO = +2 to +5), in contrast to those from Uganda (25–40%) and the Leucite Hills (23%). There is no correlation between the OH content and the Fe3+/FeT ratio in the micas. Values of KMg/Fe2+D (± 2σ errors) were calculated for three phlogopite-olivine pairs (0.12 ± 0.12, 0.26 ± 0.14, 0.09 ± 0.12), two biotite-hornblende pairs (0.73 ± 0.08 and 1.22 ± 0.10) and a single phlogopite-augite pair (1.15 ± 0.12). Values of KF/OHD for two biotite and hornblende pairs could not be determined without significant error because of the extremely low F contents (< 0.2 wt%) of the four phases. The δD values obtained in this study encompass a large range (−137 to −43‰). The phlogopite and biotite separates from Uganda have δD values of −70 to −49‰, which overlap those believed to represent “primary” mantle. There is a larger range in δD values (−137 to −43‰) for phlogopite phenocrysts from western Mexico minette lavas, although their range in δ18O values (5.2–6.2‰) is consistent with “normal” mantle. It is unlikely, therefore, that the variable δD values reflect heterogeneity in the mantle source region of the minette magmas. Nor can the extremely low δD values reflect degassing of H2 or H2O since almost 100% loss of dissolved water in the magma is required, an unrealistic scenario given the stability of the hydrous phenocrysts. The very low δD values of the Mascota minette phlogopites require that the hydrogen be introduced from an external source (e.g., meteoric water). Whatever the process responsible for the observed hydrogen isotope composition, it had no effect on the δ18O value, f O 2, a H 2O or bulk composition of the host magmas. Received: 5 January 1995 / Accepted: 19 March 1996  相似文献   

3.
Calcic amphiboles coexisting with epidotegroup minerals (zoisite, clinozoisite, epidote) and/or clinopyroxene±plagioclase±quartz±garnet occur in amphibolites and calc-silicate rocks that underwent amphibolite to lower granulite-facies metamorphism in the Acadian metamorphic high of central Massachusetts, USA. Across the region, peak metamorphic conditions range from about 580° C and 6.2 kbar to 730° C and 6.3 kbar. The coexistence of most Ca-amphiboles with Fe3+-rich epidote-group minerals suggests the presence of Fe3+ in most of these amphiboles. An empirical Fe3+ estimation for the microprobe analyses is based on two constraints: the Na?Ca content of the M4 sites of Ca-saturated, gravimetrically analyzed hornblendes gives the relation: Ca(M4) c =-1.479 Na(M4) c +2 (c=corrected). The second constraint is the stoichiometric equation Ca(M4)+Na(M4)+FM=15, where FM is the sum of all cations exclusive of Ca, Na, and K. Solving the two equations simultaneously gives: 20.185=0.479 Ca(M4)+1.479 ΣFM. Starting with the uncorrected values of Ca(M4) u and ΣFM(M4) u (u = uncorrected) of the all ferrous formula, the normalization factor NF for calculating the corrected cations of the ferric formulas is: 20.185/(0.478 Ca(M4) u +1.479 ΣFM u ). From the deficient oxygen the Fe3+ content which is equal to 2(23-ΣOX) can be calculated. Determinations of Fe3+ contents of four hornblende separates by Mössbauer spectroscopy are in agreement with the calculated values. The Ca-amphiboles show systematic changes in composition with increasing grade of metamorphism within the amphibolite and lower granulite-facies zones: increasing edenite and tschermakite substitution, increasing Ti content, and increasing Fe2+/(Fe2++Mg) ratio. In addition, the coexisting clinopyroxenes are also characterized by an increase in Fe2+/(Fe2++Mg) ratio. In quartz-free rocks with coexisting Ca-amphibole and plagioclase there is an increase in the ratio X Ab/X Ed, where X Ab=Na/(Na+Ca) in plagioclase and X Ed=Na in the amphibole A-site. These chemical changes in mineral composition together with the disappearance of epidote at the transition to granulite-facies metamorphic conditions are attributed to the continuous reaction: albite+epidote+Fe-Mg hornblende→Fe?Mg clinopyroxene+anorthite+(NaAlSi-1)Hbl+H2O.  相似文献   

4.
Major and trace element geochemistry of coexisting hornblendes and biotites from the Ambalavayal granite, northern Kerala, are presented. The hornblendes correspond to edenitic composition, whereas the biotites correspond to annite. The hornblendes typically show high Al2O3 contents (9·69–11·89%) comparable with those from anorogenic granites. The biotites are characteristically low Mg-type, similar to those reported from alkaline rocks. The distribution coefficients calculated for all the major and trace elements are presented and an evaluation of the nature of variation indicate near-chemical equilibrium conditions during the crystallization of the two minerals. The hornblende-biotite tie lines in the Fe3+?Fe2+?Mg compositional triangle, lie parallel to those of buffered biotites, indicating crystallization in an environment closed to oxygen and well above the Ni?NiO buffer. It is inferred that thefH2O increased towards the residual stage andfO2 values were high, in the range of 10?15 bars.  相似文献   

5.
Garnet-biotite gneisses, some of which contain sillimanite or hornblende, are widespread within the Otter Lake terrain, a portion of the Grenville Province of the Canadian Shield. The metamorphic grade is upper amphibolite to, locally, lower granulite facies. The atomic ratio Fe2+/(Fe2++ Fe3+) in biotite ranges from 0.79 to 0.89 (ferrous iron determinations in 10 highly pure separates), with a mean of 0.86. Mg and Fe2+ atoms occupy 67–78% of the octahedral sites, the remainder are occupied by Fe3+, Ti, and Al, and some are vacant. Mg/(Mg + Fe2+), denoted X, in the analysed samples ranges from 0.32 to 0.65. Garnet contains 1–24% grossular, 1–12% spessartine and X ranges from 0.07 to 0.34. Compositional variation in biotite and garnet is examined in relation to three mineral equilibria: (I) biotite + sillimanite + quartz = garnet + K-feldspar + H2O; (II) pyrope + annite = almandine + phlogopite; (III) anorthite = grossular + sillimanite + quartz. Measurements of X (biotite) and X (garnet) are used to construct an illustrative model for equilibrium (I) which relates the observed variation in X to a temperature range of 70°C or a range in H2O activity of 0.6; the latter interpretation is preferred. In sillimanite-free gneisses, the distribution of Mg and Fe2+ between garnet (low in Ca and Mn) and biotite is adequately described by a distribution coefficient (KD) of 4.1 (equilibrium II). The observed increase in the distribution coefficient with increasing Ca in garnet is ln KD= 1.3 + 2.5 × 10?2 [Ca] where [Ca] = 100 Ca/(Mg + Fe2++ Mn + Ca). The distribution coefficient is apparently unaffected by the presence of up to 12% spessartine in garnet. In several specimens of garnet-sillimanite-plagioclase gneiss, the Ca contents of garnet and of plagioclase increase in unison, as required by equilibrium (III). The mean pressure calculated from these data (n= 17) is 5.9 kbar, and the 95% confidence limits are ±0.5 kbar.  相似文献   

6.
High‐pressure granulites are generally characterized by the absence of orthopyroxene. However, orthopyroxene is reported in a few high‐pressure, felsic–metapelitic granulites, such as the Huangtuling felsic high‐pressure granulite in the North Dabie metamorphic core complex in east‐central China, which rarely preserves the high‐pressure granulite facies assemblage of garnet + orthopyroxene + biotite + plagioclase + K‐feldspar + quartz. To investigate the effects of bulk‐rock composition on the stability of orthopyroxene‐bearing, high‐pressure granulite facies assemblages in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system, a series of PTX pseudosections based on the melt‐reintegrated composition of the Huangtuling felsic high‐pressure granulite were constructed. Calculations demonstrate that the orthopyroxene‐bearing, high‐pressure granulite facies assemblages are restricted to low XAl [Al2O3/(Na2O + CaO + K2O + FeO + MgO + Al2O3) < 0.35, mole proportion] or high XMg [MgO/(MgO + FeO) > 0.85] felsic–metapelitic rock types. This study also reveals that the XAl values in the residual felsic–metapelitic, high‐pressure granulites could be significantly reduced by a high proportion of melt loss. We suggest that orthopyroxene‐bearing, high‐pressure granulites occur in residual overthickened crustal basement under continental subduction–collision zones and arc–continent collision belts.  相似文献   

7.
Amphibole is the hydrous metasomatic phase in spinel-bearing mantle xenoliths from Baker Rocks, Northern Victoria Land, Antarctica. It occurs in veins or in disseminated form in spinel lherzolites. Both types derive from reaction between metasomatic melts and the pristine paragenesis of the continental lithospheric mantle beneath Northern Victoria Land. To determine the effective role of water circulation during the metasomatic process and amphibole formation, six amphibole samples were fully characterized. Accurate determination of the site population and the state of dehydrogenation in each of these amphiboles was carried out using single-crystal X-ray diffraction, electron microprobe and secondary ion mass spectroscopy on the same single crystal. The Fe3+/ΣFe ratio was determined by X-ray absorption near edge spectroscopy on amphibole powder. The degree of dehydrogenation determined by SIMS is 0.870–0.994 O3(O2?) a.p.f.u., primary and ascribed to the Ti-oxy component of the amphibole, as indicated by atom site populations; post-crystallization H loss is negligible. Estimates of aH2O (0.014–0.054) were determined from the dehydration equilibrium among end-member components assuming that amphiboles are in equilibrium with the anhydrous peridotitic phases. A difference up to 58 % in determination of aH2O can be introduced if the chemical formula of the amphiboles is calculated based on 23 O a.p.f.u. without knowing the effective amount of dehydrogenation. The oxygen fugacity of the Baker Rocks amphibole-bearing mantle xenoliths calculated based upon the dissociation constant of water (by oxy-amphibole equilibrium) is between ?2.52 and ?1.32 log units below the fayalite–magnetite–quartz (FMQ) buffer. These results are systematically lower and in a narrow range of values relative to those obtained from anhydrous olivine–orthopyroxene–spinel equilibria (fO2 between ?1.98 and ?0.30 log units). A comparative evaluation of the two methods suggests that when amphibole is present in mantle peridotites, the application of oxy-amphibole equilibrium is preferred, because ol–opx–sp oxy-calibrations are not “sensitive” enough in recording the effects (if any) of amphibole in the peridotite matrix. Amphibole acts as the main H acceptor among the peridotite minerals and may prevent fluid circulation and buffer oxygen fugacity. The important conclusion of this study is that amphibole within the lithospheric mantle does not always means high water activity and oxidizing conditions.  相似文献   

8.
Orogenic gold mineralization at the Damang deposit, Ghana, is associated with hydrothermal alteration haloes around gold‐bearing quartz veins, produced by the infiltration of a H2O–CO2–K2O–H2S fluid following regional metamorphism. Alteration assemblages are controlled by the protoliths with sedimentary rocks developing a typical assemblage of muscovite, ankerite and pyrite, while intrusive dolerite bodies contain biotite, ankerite and pyrrhotite, accompanied by the destruction of hornblende. Mineral equilibria modelling was undertaken with the computer program thermocalc , in subsets of the model system MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–CO2–H2O–TiO2–Fe2O3, to constrain conditions of regional metamorphism and the subsequent gold mineralization event. Metapelites with well‐developed amphibolite facies assemblages reliably constrain peak regional metamorphism at ~595 °C and 5.5 kbar. Observed hydrothermal alteration assemblages associated with gold mineralization in a wide compositional range of lithologies are typically calculated to be stable within P–T–X(CO2) arrays that trend towards lower temperatures and pressures with increasing equilibrium fluid X(CO2). These independent P–T–X(CO2) arrays converge and the region of overlap at ~375–425 °C and 1–2 kbar is taken to represent the conditions of alteration approaching equilibrium with a common infiltrating fluid with an X(CO2) of ~0.7. Fluid‐rock interaction calculations with M–X(CO2) diagrams indicate that the observed alteration assemblages are consistent with the addition of a single fluid phase requiring minimum fluid/rock ratios on the order of 1.  相似文献   

9.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

10.
The equilibrium coexistence of sapphirine + quartz is inferred to record temperatures in excess of 980 °C, based on the stability of this assemblage in the simplified chemical system FeO–MgO–Al2O3–SiO2 (FMAS) system. However, the potential for sapphirine to contain significant Fe3+ suggests that the stability of sapphirine + quartz could extend to lower temperatures than those constrained in this ideal system. The Wilson Lake terrane in the Grenville Province of central Labrador preserves sapphirine + quartz‐bearing assemblages in highly oxidized bulk compositions, and provides an opportunity to explore the stability of sapphirine + quartz in such rock compositions within the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) chemical system. Starting with the phase equilibria in FeO–MgO–Al2O3–SiO2–TiO2–O (FMASTO), expansion into K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (KFMASHTO) allows the effect of the stability of the additional phases, biotite, K‐feldspar and melt, on the stability of sapphirine + quartz to be assessed. These phase relations are evaluated generally using P–T projections, and the ultimate extension into NCKFMASHTO is done with pseudosections. Conditions of peak metamorphism in the Wilson Lake terrane are constrained using P–T pseudosections, and the appropriate H2O and O contents to use in the modelled compositions are investigated using T–MH2O and T–MO pseudosections. The peak P–T estimates from a sapphirine + quartz‐bearing sample are ~960 to 935 °C at ~10 to 8.6 kbar, similar to estimates from orthopyroxene + sillimanite + quartz ± garnet‐bearing samples. Whereas the sapphirine + quartz‐bearing sample is more Fe‐rich than the orthopyroxene + sillimanite‐bearing sample on an all‐Fe‐as‐FeO basis, once the oxidation state is taken into account, the former is effectively more magnesian than the latter, accounting for the sapphirine occurrence.  相似文献   

11.
Sapphirine, coexisting with quartz, is an indicator mineral for ultrahigh‐temperature metamorphism in aluminous rock compositions. Here a new activity‐composition model for sapphirine is combined with the internally consistent thermodynamic dataset used by THERMOCALC, for calculations primarily in K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O (KFMASH). A discrepancy between published experimentally derived FMAS grids and our calculations is understood with reference to H2O. Published FMAS grids effectively represent constant aH2O sections, thereby limiting their detailed use for the interpretation of mineral reaction textures in compositions with differing H2O. For the calculated KFMASH univariant reaction grid, sapphirine + quartz assemblages occur at P–T in excess of 6–7 kbar and 1005 °C. Sapphirine compositions and composition ranges are consistent with natural examples. However, as many univariant equilibria are typically not ‘seen’ by a specific bulk composition, the univariant reaction grid may reveal little about the detailed topology of multi‐variant equilibria, and therefore is of limited use for interpreting the P–T evolution of mineral assemblages and reaction sequences. Calculated pseudosections, which quantify bulk composition and multi‐variant equilibria, predict experimentally determined KFMASH mineral assemblages with consistent topology, and also indicate that sapphirine stabilizes at increasingly higher pressure and temperature as XMg increases. Although coexisting sapphirine and quartz can occur in relatively iron‐rich rocks if the bulk chemistry is sufficiently aluminous, the P–T window of stability shrinks with decreasing XMg. An array of mineral assemblages and mineral reaction sequences from natural sapphirine + quartz and other rocks from Enderby Land, Antarctica, are reproducible with calculated pseudosections. That consistent phase diagram calculations involving sapphirine can be performed allows for a more thorough assessment of the metamorphic evolution of high‐temperature granulite facies terranes than was previously possible. The establishment of a a‐x model for sapphirine provides the basis for expansion to larger, more geologically realistic chemical systems (e.g. involving Fe3+).  相似文献   

12.
The dielectric constants and dissipation factors of synthetic tephroite (Mn2SiO4), fayalite (Fe3SiO4) and a forsteritic olivine (Mg1.80Fe0.22SiO4) were measured at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: tephroite, κ′a= 8.79 tan δa = 0.0006 κ′b = 10.20 tan δb = 0.0006 κ′c= 8.94 tan δc= 0.0008 fayalite, gk′a = 8.80 tan δa = 0.0004 gk′b= 8.92 tan δb = 0.0018 gk′c = 8.58 tan δc = 0.0010 olivine, gk′a = 7.16 tan δa = 0.0006 gk′b = 7.61 tan δb = 0.0008 gk′c = 7.03 tan δc = 0.0006 The low dielectric constant and loss of the fayalite indicate an exceptionally low Fe3+ content. An FeO polarizability of 4.18 Å3, determined from αD(FeO) = [αD (Fe2SiO4)-αD(SiO2)]/2, is probably a more reliable value for stoichiometric FeO than could be obtained from FexO where x = 0.90–0.95. The agreement between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of oxide polarizabilities according to αD(M2M′X2) = 2αD(MX) + αD(M′X2) is ~+2.8% for tephroite and +0.2% for olivine. The deviation from additivity in tephroite is discussed.  相似文献   

13.
The compositions of coexisting hornblendes and biotites from amphibolite and granulite facies gneisses from the south coast of Western Australia were controlled by host rock composition, paragenesis, metamophic grade, pressure, and oxygen fugacity. The Mg/(Mg + Fe2+) and Mn/Fe2+ ratios in both minerals and possibly the Alvi contents of the hornblendes are related to host rock compositions. Metamorphic grade appears to influence, perhaps only indirectly, the Ti, Mn, and Fe3+ contents of both minerals and possibly the hornblende Ca content. The higher Ti and lower Mn contents of the granulite facies hornblendes and biotites are attributed to their coexistence with pyroxenes, whereas their lower Fe3+/(Fe2+ + Fe3+) ratios are probably due to lower oxygen fugacity in the granulite facies environment. Grade-related colour variations in both minerals were controlled by their Ti/Fe2+ and Fe3+/(Fe2+ + Fe3+ ratios. The relatively low Alvi contents of the hornblendes suggest low- to moderate-pressure metamorphism.Variations in element distribution coefficients are related to variations in mineral compositions rather than metamorphic grade. Thus KD(Aliv ?Si) is related to the Aliv andedenite alkali contents of the hornblendes, KD(Fe2+ ?Mg) to the distributions of Aliv ?Si and Alvi + Ti + Fe3+, KD(Mn) to the Mn contents of both minerals, and KD(Alvi) to the Alvi contents of the biotites.  相似文献   

14.
Cordierite–orthoamphibole gneisses and rocks of similar composition commonly contain low‐variance mineral assemblages that can provide useful information about the metamorphic evolution of a terrane. New calculated petrogenetic grids and pseudosections are presented in the FeO–MgO–Al2O3–SiO2–H2O (FMASH), Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) and Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) chemical systems to investigate quantitatively the phase relations in these rocks. Although the bulk compositions of cordierite–orthoamphibole gneisses are close to FMASH, calculations in this system do not adequately account for the observed range of mineral assemblages. Calculations in NCKFMASH and NCKFMASHTO highlight the role of minor constituents such as Ca, Na and Fe3+ in the mineral assemblage evolution of such rocks and these systems are more appropriate for interpreting the evolution of natural examples.  相似文献   

15.
A mid‐ocean ridge basalt (MORB)‐type eclogite from the Moldanubian domain in the Bohemian Massif retains evidence of its prograde path in the form of inclusions of hornblende, plagioclase, clinopyroxene, titanite, ilmenite and rutile preserved in zoned garnet. Prograde zoning involves a flat grossular core followed by a grossular spike and decrease at the rim, whereas Fe/(Fe + Mg) is also flat in the core and then decreases at the rim. In a pseudosection for H2O‐saturated conditions, garnet with such a zoning grows along an isothermal burial path at c. 750 °C from 10 kbar in the assemblage plagioclase‐hornblende‐diopsidic clinopyroxene‐quartz, then in hornblende‐diopsidic clinopyroxene‐quartz, and ends its growth at 17–18 kbar. From this point, there is no pseudosection‐based information on further increase in pressure or temperature. Then, with garnet‐clinopyroxene thermometry, the focus is on the dependence on, and the uncertainties stemming from the unknown Fe3+ content in clinopyroxene. Assuming no Fe3+ in the clinopyroxene gives a serious and unwarranted upward bias to calculated temperatures. A Fe3+‐contributed uncertainty of ±40 °C combined with a calibration and other uncertainties gives a peak temperature of 760 ± 90 °C at 18 kbar, consistent with no further heating following burial to eclogite facies conditions. Further pseudosection modelling suggests that decompression to c. 12 kbar occurred essentially isothermally from the metamorphic peak under H2O‐undersaturated conditions (c. 1.3 mol.% H2O) that allowed the preservation of the majority of garnet with symplectitic as well as relict clinopyroxene. The modelling also shows that a MORB‐type eclogite decompressed to c. 8 kbar ends as an amphibolite if it is H2O saturated, but if it is H2O‐undersaturated it contains assemblages with orthopyroxene. Increasing H2O undersaturation causes an earlier transition to SiO2 undersaturation on decompression, leading to the appearance of spinel‐bearing assemblages. Granulite facies‐looking overprints of eclogites may develop at amphibolite facies conditions.  相似文献   

16.
The stability of pumpellyite + actinolite or riebeckite + epidote + hematite (with chlorite, albite, titanite, quartz and H2O in excess) mineral assemblages in LTMP metabasite rocks is strongly dependent on bulk composition. By using a thermodynamic approach (THERMOCALC), the importance of CaO and Fe2O3 bulk contents on the stability of these phases is illustrated using P–T and P–X phase diagrams. This approach allowed P–T conditions of ~4.0 kbar and ~260 °C to be calculated for the growth of pumpellyite + actinolite or riebeckite + epidote + hematite assemblages in rocks containing variable bulk CaO and Fe2O3 contents. These rocks form part of an accretionary wedge that developed along the east Australian margin during the Carboniferous–Triassic New England Orogen. P–T and P–X diagrams show that sodic amphibole, epidote and hematite will grow at these conditions in Fe2O3‐saturated (6.16 wt%) metabasic rocks, whereas actinolite and pumpellyite will be stable in CaO‐rich (10.30 wt%) rocks. With intermediate Fe2O3 (~3.50 wt%) and CaO (~8.30 wt%) contents, sodic amphibole, actinolite and epidote can coexist at these P–T conditions. For Fe2O3‐saturated rocks, compositional isopleths for sodic amphibole (Al3+ and Fe3+ on the M2 site), epidote (Fe3+/Fe3+ + Al3+) and chlorite (Fe2+/Fe2+ + Mg) were calculated to evaluate the efficiency of these cation exchanges as thermobarometers in LTMP metabasic rocks. Based on these calculations, it is shown that Al3+ in sodic amphibole and epidote is an excellent barometer in chlorite, albite, hematite, quartz and titanite buffered assemblages. The effectiveness of these barometers decreases with the breakdown of albite. In higher‐P stability fields where albite is absent, Fe2+‐Mg ratios in chlorite may be dependent on pressure. The Fe3+/Al and Fe2+/Mg ratios in epidote and chlorite are reliable thermometers in actinolite, epidote, chlorite, albite, quartz, hematite and titanite buffered assemblages.  相似文献   

17.
The Burro Mountain ultramafic complex, Monterey County, California, consists of dunites and peridotites which are partially or wholly serpentinized. Primary minerals in both rock types are olivine, enstatite, diopside, and picotite which upon alteration yield chrysotile, lizardite, brucite, magnetite, talc, tremolite, and carbonate. Electron microprobe analyses show that enstatite, En85.8 to En90.8, alters to “bastite” composed only of lizardite (5.0–12.0 weight percent FeO), whereas olivine, Fo90.8 to Fo91.6, forms lizardite+chrysotile+brucite with or without magnetite. The chrysotile ranges from 3.0 to 5.0 weight percent FeO, the brucite from 16.0 to 43.0 weight percent FeO. As Serpentinization proceeds, the alteration products are enriched in FeO relative to MgO. Serpentinization probably originates in a changing \(P_{O_2 }\)-T environment by two different reactions:
  1. (a)
    Olivine+enstatite+H2O+O2?Mg, Fe+2 chrysotile+Mg, Fe+3, Fe+2 lizardite with or without magnetite.  相似文献   

18.
Experimental investigations have been performed at T = 1200°C, P = 200 MPa and fH2 corresponding to H2O-MnO-Mn3O4 and H2O-QFM redox buffers to study the effect of H2O activity on the oxidation and structural state of Fe in an iron-rich basaltic melt. The analysis of Mössbauer and Fe K-edge X-ray absorption nearedge structure (XANES) spectra of the quenched hydrous ferrobasaltic glasses shows that the Fe3+/ΣFe ratio of the glass is directly related to aH2O in a H2-buffered system and, consequently, to the prevailing oxygen fugacity (through the reaction of water dissociation H2O ↔ H2 + 1/2 O2). However, water as a chemical component of the silicate melt has an indistinguishable effect on the redox state of iron at studied conditions. The experimentally obtained relationship between fO2 and Fe3+/Fe2+ in the hydrous ferrobasaltic melt can be adequately predicted in the investigated range by the existing empiric and thermodynamic models. The ratio of ferric and ferrous Fe is proportional to the oxygen fugacity to the power of ∼0.25 which agrees with the theoretical value from the stoichiometry of the Fe redox reaction (FeO + ¼ O2 = FeO1.5). The mean centre shifts for Fe2+ and Fe3+ absorption doublets in Mössbauer spectra show little change with increasing Fe3+/ΣFe, suggesting no significant change in the type of iron coordination. Similarly, XANES preedge spectra indicate a mixed (C3h, Td, and Oh, i.e., 5-, 4-, and sixfold) coordination of Fe in hydrous basaltic glasses.  相似文献   

19.
Monticellite is a common magmatic mineral in the groundmass of kimberlites. A new oxygen barometer for kimberlite magmas is calibrated based on the Fe content of monticellite, CaMgSiO4, in equilibrium with kimberlite liquids in experiments at 100 kPa from 1,230 to 1,350°C and at logfO2 from NNO-4.1 to NNO+5.3 (where NNO is the nickel–nickel oxide buffer). The XFeMtc/XFeliq was found to decrease with increasing fO2, consistent with only Fe2+ entering the monticellite structure. Although the XFe-in-monticellite varies with temperature and composition, these dependencies are small compared to that with fO2. The experimental data were fitted by weighted least square regression to the following relationship: \Updelta \textNNO = \frac{ log[ 0.858( ±0.021)\fracX\textFe\textLiq X\textFe\textMtc ] - 0.139( ±0.022) }0.193( ±0.004) \Updelta {\text{NNO}} = \frac{{\left\{ {\log \left[ {0.858( \pm 0.021)\frac{{X_{\text{Fe}}^{\text{Liq}} }}{{X_{\text{Fe}}^{\text{Mtc}} }}} \right] - 0.139( \pm 0.022)} \right\}}}{0.193( \pm 0.004)} where ΔNNO is the fO2 relative to that of the Nickel-bunsenite (NNO) buffer and XFeliq/XFeMtc is the ratio of mole fraction of Fe in liquid and Fe-in-monticellite (uncertainties at 2σ). The application of this oxygen barometer to natural kimberlites from both the literature and our own investigations, assuming the bulk rock FeO is that of their liquid FeO, revealed a range in fO2 from NNO-3.5 to NNO+1.7. A range of Mg/(Mg + Fe2+) (Mg#) for kimberlite melts of 0.46–0.88 was derived from the application of the experimentally determined monticellite-liquid Kd Fe2+–Mg to natural monticellites. The range in Mg# is broader and less ultramafic than previous estimates of kimberlites, suggesting an evolution under a wide range of petrologic conditions.  相似文献   

20.
A new mineral fivegite has been identified in a high-potassium hyperalkaline pegmatite at Mt. Rasvumchorr in the Khibiny alkaline complex of the Kola Peninsula in Russia. This mineral is a product of the hydrothermal alteration of delhayelite (homoaxial pseudomorphs after its crystals up to 2 × 3 × 10 cm in size). Hydrodelhayelite, pectolite, and kalborsite are products of fivegite alteration. The associated minerals are aegirine, potassic feldspar, nepheline, sodalite, magnesiumastrophyllite, lamprophyllite, lomonosovite, shcherbakovite, natisite, lovozerite, tisinalite, ershovite, megacyclite, shlykovite, cryptophyllite, etc. Areas of pure unaltered fivegite are up to 2 mm in width. The mineral is transparent and colorless; its luster is vitreous to pearly. Its Cleavage is perfect (100) and distinct (010). Its Mohs hardness is 4, D(meas) = 2.42(2), and D(calc) = 2.449 g/cm3. Fivegite is optically biaxial positive: α 1.540(1), β 1.542(2), γ 1.544(2), and 2V(meas) 60(10)°. Its orientation is X = a, y = c, and Z = b. Its IR spectrum is given. Its chemical composition (wt %; electron microprobe, H2O determined by selective sorption) is as follows: 1.44 Na2O, 19.56 K2O, 14.01 CaO, 0.13 SrO, 0.03 MnO, 0.14 Fe2O3, 6.12 Al2O3, 50.68 SiO2, 0.15 SO3, 0.14 F, 3.52 Cl, 4.59 H2O; −O = −0.85(Cl,F)2; total 99.66. The empirical formula based on (Si + Al + Fe) = 8 is H4.22K3.44Na0.39Ca2.07Sr0.01Fe0.01Al1.00Si6.99O21.15F0.06Cl0.82(SO4)0.02. The simplified formula is K4Ca2[AlSi7O17(O2 − x OH x ][(H2O)2 − x OH x ]Cl (X = 0−2). Fivegite is orthorhombic: Pm21 n, a = 24.335(2), b = 7.0375(5), c = 6.5400(6) ?, V = 1120.0(2) ?3, and Z = 2. The strongest reflections of the X-ray powder pattern are as follows (d, ?, (I, %), [hkl]): 3.517(38) [020], 3.239(28) [102], 3.072(100) [121, 701], 3.040(46) [420, 800, 302], 2.943 (47) [112], 2.983(53) [121], 2.880 (24) [212, 402], 1.759(30) [040, 12.2.0]. The crystal structure was studied using a single crystal: R hkl = 0.0585. The base of fivegite structure is delhayelite-like two-layer terahedral blocks [(Al,Si)4Si12O34(O4 − x OH x )] linked by Ca octahedral chains. K+ and Cl are localized in zeolite-like channels within the terahedral blocks, whereas H2O and OH occur between the blocks. The mineral is named in memory of the Russian geological and mining engineer Mikhail Pavlovich Fiveg (1899–1986), the pioneering explorer of the Khibiny apatite deposits. The type specimen is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow. The series of transformations is discussed: delhayelite K4Na2Ca2[AlSi7O19]F2Cl—fivegite K4Ca2[AlSi7O17(O2 − x OH x ]Cl—hydrodelhayelite KCa2[AlSi7O17(OH)2](H2O)6 − x .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号