首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract

Marine positioning is relevant for several aspects of tsunami research, observation, and prediction. These include accurate positioning of instruments on the ocean bottom for determining the deep‐water signature of the tsunami, seismic observational setups to measure the earthquake parameters, equipment to determine the tsunami characteristics during the propagation phase, and instruments to map the vertical uplift and subsidence that occurs during a dip‐slip earthquake.

In the accurate calculation of coastal tsunami run‐up through numerical models, accurate bathymetry is needed, not only near the coast (for tsunami run‐up) but also in the deep ocean (for tsunami generation and propagation). If the bathymetry is wrong in the source region, errors will accumulate and will render the numerical calculations inaccurate. Without correct and detailed run‐up values on the various coastlines, tsunami prediction for actual events will lead to false alarms and loss of public confidence.  相似文献   

2.
Abstract

A necessary stage in calculations for prediction purposes is the study of the tsunami recurrence function

which yields mean recurrence of tsunami with maximum wave height not greater than a specified level h. The major problem in using these functions for prediction purposes is the fact that a well‐grounded approximation of empirical data on wave heights is difficult to obtain, because the mathematical model for prediction is an extrapolation of this function for tsunami heights whose recurrence remains uncertain. We shall show that the natural relation of observable tsunamis statistics to extremum statistics leads to the discovery of at least two and possibly three temporal scale intervals with different tsunami modes. It has also been clarified that for the 10 years < T < 103 years range of time periods, which is the most important one for tsunami wave height prediction purposes, the tsunami recurrence is described by two parameters: frequency A of occurrence of large tsunamis and coefficient k of wave ampliflcation near the shore. As an example, a diagram of tsunami hazard zoning of the eastern Honshu coast has been plotted.  相似文献   

3.
海啸波对近岸岛礁影响的数值模拟研究   总被引:1,自引:0,他引:1  
基于Okada有限断层模型和非线性浅水波方程,结合高精度嵌套网格建立了越洋(中国近海)-局部-近岸岛礁的海啸生成与传播的数值模型。以三亚凤凰岛为例,首先针对2011日本地震海啸,模拟分析了海啸波沿中国沿海大陆架的传播特征及对凤凰岛的影响规律。在取得验证结果的基础上,进一步讨论了中国近海的马尼拉海沟和琉球海沟的潜在海啸源,以及环太平洋的21个潜在特大越洋海啸对凤凰岛的影响特征。依据海啸波在抵达凤凰岛的波浪特征,结合傅里叶频谱分析方法,探索了近岸岛礁对海啸波的放大效应。结果表明,中国近海一般震级的海啸和特大越洋海啸对凤凰岛存在一定影响,最大波幅接近1 m,传播时间从3 h到27 h不等。受三亚东南半岛的影响,琉球海沟激发的海啸和越洋海啸在凤凰岛的放大效应相对于马尼拉海沟较小,其频率集中在0.8×10-4~2×10-4 Hz。马尼拉海沟产生的海啸波在凤凰岛产生了较为显著的放大效应,对于凤凰岛是值得关注的高风险海啸源。  相似文献   

4.
Abstract

Tsunami occurrence and invasive tsunami at a local area in the circum‐Pacific seismic zone were studied as a Poisson process. The tsunami height at Osaka, Japan, was related to tsunami magnitude. The exceedence frequency of invaded tsunami at Osaka showed a good fitness to the Poisson process. However, an adapted process should be introduced for exceedence frequency of tsunami occurrence in the western Pacific. The exceedence probability of invasive tsunami at Osaka was shown as a function of tsunami magnitude on a diagram with a parameter of the time period. The obtained result might be useful for the planning of coastal area, warning of invasive tsunami, and designing coastal structures as protection within the scope of tsunami economics.  相似文献   

5.
Zi Jun Gan  C. C. Tung 《Marine Geodesy》2013,36(3-4):293-301
Abstract

In 1980, Murty and Loomis proposed a new, objective tsunami magnitude scale based on total tsunami energy. A list of 178 tsunamigenic earthquakes during the period 1815 to 1974 was given along with estimated tsunami magnitudes. In this study, we derived the probability distribution function of tsunami magnitudes based on the assumptions that (1) the occurrences of tsunamigenic earthquakes are a Poisson process, and (2) tsunami energy is a polynomial function of tsunami recurrence time. Using the data given by Murty and Loomis, the parameters of the distribution function are estimated. Comparison with the data shows that the derived distribution is a good representation of the distribution of the Murty‐Loomis tsunami magnitude.  相似文献   

6.
Abstract

Arguments are presented to justify midocean tsunami measurements and related investigations aimed toward improvement of tsunami prediction and warning. It is postulated that midocean tsunami signatures be measured simultaneously at several locations and correlated with high‐accuracy onshore measurements.  相似文献   

7.
Abstract

In the recent seismological literature, several articles appeared which suggested that major earthquakes are likely to occur in the near future, in the various seismic gaps around the rim of the Pacific Basin. Although the direct effects of these earthquakes may be confined to local areas, the tsunamis that will generate are expected to travel Pacific Ocean wide and cause great destruction even at far off places around the Pacific Ocean. Here, the various approaches to delineating the tsunami hazard are discussed and some suggestions are made.  相似文献   

8.
Abstract

Canada has increased the number of tsunami warning stations on the Pacific Coast from two to three. The last gauge was installed at the north end of Vancouver Island, thereby filling a large gap previously existing and providing full coverage along the coast. The record of gauges at two of the three locations is accessible either by telephone or by means of meteor burst communication, alleviating the difficulties experienced during the tsunami threat of May 6, 1986, when telephone communications were disrupted by heavy use. The gauge at Langara Island will be relocated in a more accessible and also a more tsunami‐responsive location at Rennell Sound in the Queen Charlotte Islands. All tsunami gauges also serve as tide gauges, recording the water level every 15 min. In the event of a tsunami, the recording interval can be altered to every 60 s. Suggestions have been made that Canada attempt deep‐sea recording of tsunamis off its Pacific Coast. Although this would be of great scientific value, no such program is contemplated at this time.  相似文献   

9.
Abstract

Tsunami research has suffered considerably due to the lack of an objective magnitude scale. The Imamura‐Iida Grade Scale, although it has been used until now as a magnitude scale, is not objective, and it is more appropriate to call it a tsunami intensity scale. The tsunami magnitude scale proposed by Abe (1979) is also based on coastal tide gauge records, and this is not truly an objective magnitude scale. A new magnitude scale is proposed here, based on total tsunami energy, and it is demonstrated that this new scale will provide an adequate representation of the whole spectrum of tsunamis, starting from the negligible ones and including those that have devastated whole coastlines.  相似文献   

10.
Abstract

Maximum tsunami amplitudes that will result from major earthquakes in the Pacific Northwest region of North America are considered. The modeled region encompasses the coastlines of British Columbia in Canada, and Washington and Oregon in the United States. Three separate models were developed for the outer coast and one model for the system consisting of the Strait of Georgia, Juan de Fuca Strait, and Puget Sound (GFP model) (Part 2). Three different source areas were considered for the outer coast models and the resulting tsunami was propagated to the entrance of Juan de Fuca Strait. Using the output from the other models, the GFP model was run. The results showed that large tsunami amplitudes can occur on the outer coast, whereas inside the GFP system, unless the earthquake occurs in the system itself, no major tsunami will result (Part 2).  相似文献   

11.
Abstract

The tsunami travel‐time charts that are presently in use by the Tsunami Warning Center were constructed originally in 1948 based on the hydrographic data available in the mid 1940s. Even the revised charts of 1971 made use of essentially the same data. It is shown here that the travel times deduced by these charts could be in error by as much as two hours in some cases. Even worse, the compiled travel times as deduced from these charts are generally greater than the observed travel times, which is a dangerous situation from a tsunami warning point of view.  相似文献   

12.
2015年9月16日22时54分(当地时间)智利中部近岸发生Mw8.3级地震,震源深度25 km。同时,强震的破裂区长200 km,宽100 km,随之产生了中等强度的越洋海啸。海啸影响了智利沿岸近700 km的区域,局部地区监测到近5 m的海啸波幅和超过13 m的海啸爬坡高度。太平洋区域的40多个海啸浮标及200多个近岸潮位观测站详细记录了此次海啸的越洋传播过程,为详细研究此次海啸近场及远场传播及演化规律提供了珍贵的数据。本文选择有限断层模型和自适应网格海啸数值模型建立了既可以兼顾越洋海啸的计算效率又可以实现近场海啸精细化模拟的高分辨率海啸模型。模拟对比分析了海啸的越洋传播特征,结果表明采用所建立的模型可以较好地再现远场及近场海啸特征,特别是对近场海啸的模拟结果非常理想。表明有限断层可以较好地约束近场、特别是局部区域的破裂特征,可为海啸预警提供更加精确的震源信息,结合高分辨率的海啸数值预报模式实现海啸传播特征的精细化预报。本文结合观测数据与数值模拟结果初步分析了海啸波的频散特征及其对模型结果的影响。同时对观测中典型的海啸波特征进行的简要的总结。谱分析结果表明海啸波的能量主要分布在10~50 min周期域内。这些波特征提取是现行海啸预警信息中未涉及,但又十分重要的预警参数。进一步对这些波动特征的详细研究将为海啸预警信息及预警产品的完善提供技术支撑。  相似文献   

13.
Stefano Tinti 《Marine Geodesy》2013,36(3-4):243-254
Abstract

In the Mediterranean Sea, tsunamigenic sources may be found in several areas in the belt running from Gibraltar up to the Black Sea, but they are concentrated mainly around Italy and Greece. Most of the sources are located close to the coasts and excite tsunamis reaching the coasts soon after the generation time. Tsunami research and tsunami mitigation programs are only in a very initial stage in the Mediterranean area. The present activities are focused chiefly to tsunami potential evaluation and on tsunami propagation modeling. The establishment of efficient observational networks, centers for data management and services, and systems for issuing tsunami warnings are some of the most urgent needs. In this context, the envisaged contribution of marine geodesy is twofold. First, monitoring of submarine active faults and submarine volcanic areas by means of systems capable of detecting seafloor deformation may contribute in identifying periods in which the probability of tsunami generation increases beyond a threshold value, especially in those tsunamigenic zones where geodetic observations on land are insufficient (for example, eastern Sicily in Italy and the Hellenic Arc in southern Greece). Second, since most of the active sources are close to the coastline, computations of tsunami propagation and run‐up may be significantly enhanced by a better knowledge of the bathymetry of the seabelt facing the coasts.  相似文献   

14.
2016年全球地震海啸监测预警与数值模拟研究   总被引:2,自引:0,他引:2  
回顾了国家海洋环境预报中心(国家海洋局海啸预警中心)2016年全球地震海啸监测预警的总体状况, 并基于震源生成模型和海啸传播数值模型的计算结果详细介绍了几次主要海啸事件及其影响特性。2016年全年国家海洋环境预报中心总共对全球6.5级(中国近海5.5级)以上海底地震响应了45次,发布海啸信息81期, 没有发生对我国有明显影响的海啸。结合精细化的数值模拟结果和浮标监测数据,重点介绍了苏门达腊7.8级地震海啸、厄瓜多尔7.8级地震海啸、新西兰7.1级和7.8级地震海啸, 以及所罗门7.8级地震海啸的波动特征和传播规律, 模拟结果与实测海啸波符合较好。针对厄瓜多尔7.8级地震海啸事件, 本文比较分析了均匀断层模型和多源有限断层模型对模拟结果的影响; 针对新西兰7.1级地震海啸, 探讨了色散效应对海啸波在大水深、远距离传播过程的影响规律。  相似文献   

15.
Abstract

Joint probabilities of runup height due to astronomical tides and tsunamis are calculated for five bays on the Pacific Ocean coast of Mexico. Runup heights equaled or exceeded on the average of once per 100 years, and once per 200 years, for those bays, are evaluated. Calculations are based on wave height probabilities obtained from sets of harmonic constituents and tsunami heights recorded during the last 28 years at tidal stations on each location.

Extension of potential tsunami terrestrial flooding for populated coastal zones around those bays can be determined from the previous results. One case is illustrated showing endangered features in the hazardous zones, and recommendations to prevent casualties and property damages are given.  相似文献   

16.
The source mechanism of the tsunami generated by the earthquake of 17 October, 1966 off the coast of central Peru was inferred by studying the seismic and oceanic phenomena associated with this event. The seismic mechanism was deduced from geologic structure, seismic intensities, energy releases, spatial distribution of aftershocks, and fault-plane solutions. Using this information and empirical relationships of seismic parameters, the fault length, azimuthal orientation of the tsunamigenic area, and initial tsunami height, were obtained. From the tsunami arrival times at selected stations and from a reverse wave-refraction technique, the limits of the tsunami-generating area were estimated. Using these source dimensions, an estimate of the tsunami energy was obtained. The spatial distribution of aftershocks associated with the main earthquake and the earthquake strain-release pattern correlated well with known seismotectonic trends and the seismic-velocity structure anomalies which are characteristic of thrust fault systems at continent-ocean boundaries. The investigation revealed that the tsunamigenic area was on the continental shelf off Peru, northwest of Lima, in the western part of an active seismic belt between the Andean Mountain block and the Peru-Chile trench. This area is considered to be one of three distinct seismic zones in the Peruvian upper mantle and has been responsible for a number of tsunamigenic earthquakes within recorded history. The aftershock distribution and strain-release patterns suggest that the earthquake fault was a seaward extension of a fault system which has a pronounced surface expression in the Tertiary formations of the area near Ancon, Peru. The limits of the tectonic displacements and the tsunami-generating area were determined by a reverse wave-refraction method, refracting waves from Chimbote, Callao-Lima, San Juan, and Honolulu. The investigation revealed that the tsunami was generated by displacements of crustal blocks with a total area of 13,000 sq. km. Seismic and water motion data indicated that the uplifted portion of the crustal block was on the continental side of the rift. The energy of the main earthquake was estimated to be 1.122·1023 ergs. The energy of the aftershocks was estimated to be 2.357·1020 ergs. The tsunami energy was calculated to be 6.8·1019 ergs, or 11,650 of the earthquake energy.  相似文献   

17.
We installed a real-time operating regional observation network of Ocean-Bottom-Seismometers, connected to an electro-optical fiber communication cable, at the Sagami trough subduction zone, just south of the Tokyo metropolitan area, central Japan. The network, called ETMC, has six seismic observation sites at approximately 20 km spacing. In addition, there are three tsunami observation sites along the ETMC network to monitor the propagation process of tsunamis around the Sagami trough region.The on-line data from the ETMC has been improving the detection capability of smaller-magnitude earthquakes even at areas close to the margin of the trough. The ETMC data analyzing system, which has a function of real-time digital filtering for each seismic channel, can read the arrival times of P- and S-waves precisely, constraining well the automatic on-line hypocenter locations. The network has been providing useful information regarding the bending and downgoing process of the Philippine sea plate at the Sagami trough subduction zone.The pressure sensors of the installed network have a detection capability of tsunami wave trains with an amplitude of less than 1 cm. For example, the sensors recorded the full time history of tsunami wave trains, with mm order resolution, originating from a tsunami earthquake with 5.7 MW and the tsunami magnitude of 7.5 occurred near Tori Shima (Tori Is.) of the Izu-Bonin Is. arc on September 4, 1996. The maximum amplitude of the tsunami signals on the trough-floor was approximately 1 cm (P-P), in contrast with approximately 20 cm (0-P) at a coastal site on Izu-Oshima, near the trough. Also, the pressure sensors observed tsunamis due to a large tsunami earthquake (7.1 MW) at the northern New Guinea, on July 17, 1998.  相似文献   

18.
基于数值模拟的渤海海域地震海啸危险性定量化研究   总被引:1,自引:1,他引:0  
根据地震海啸产生的条件,结合渤海海域的地形特征、地质构造、地震学特征和历史地震及海啸记录对渤海海域潜在的地震海啸进行了数值模拟研究。分析了渤海可能引发地震海啸的震源区域,讨论了渤海发生海啸灾害的可能性。文中通过数值模拟再现了渤海历史上几次规模较大的地震事件可能引发的海啸情景,研究分析了可能的地震海啸在渤海及周边海域的传播过程及波动特征.地震海啸传播模型采用基于四叉树原理的自适应网格加密技术,有效解决了局部分辨率与计算效率之间的矛盾。数值计算包括地震海啸产生及传播过程。利用该模型对渤海潜在的地震海啸进行了数值计算,基于数值计算结果定量阐述了渤海海域潜在地震海啸对渤海局部岸段及北黄海沿岸的影响,给出了渤海可能地震海啸危险性划分;研究结果将为我国海啸危险性分析和海啸预警技术研究工作提供技术支持。  相似文献   

19.
On February 6th, 1783, a landslide of about 5 × 10m3 triggered by a 5.8 M earthquake occurred near the village of Scilla (Southern Calabria, Italy). The rock mass fell into the sea as a rock avalanche, producing a tsunami with a run-up as high as 16 m. The tsunami killed about 1,500 people, making it one of the most catastrophic tsunamis in Italian history. A combined landslide-tsunami simulation is proposed in this paper. It is based on an already performed reconstruction of the landslide, derived from subaerial and submarine investigation by means of geomorphological, geological and geomechanical surveys. The DAN3D model is used to simulate the landslide propagation both in the subaerial and in the submerged parts of the slope, while a simple linear shallow water model is applied for both tsunami generation and propagation. A satisfying back-analysis of the landslide propagation has been achieved in terms of run-out, areal distribution and thickness of the final deposit. Moreover, landslide velocities comparable to similar events reported in the literature are achieved. Output data from numerical simulation of the landslide are used as input parameters for tsunami modelling. It is worth noting that locations affected by recordable waves according to the simulation correspond to those ones recorded by historical documents. With regard to run-up heights a good agreement is achieved at some locations (Messina, Catona, Punta del Faro) between computed and real values, while in other places modelled heights are overestimated. The discrepancies, which were most significant at locations characterized by a very low slope gradient in the vicinity of the landslide, were probably caused by effects such as wave breaking, for which the adopted tsunami model does not account, as well as by uncertainties in the historical data.  相似文献   

20.
Abstract

In this article three main stages of tsunami wave evolution are investigated. At first, the development of disturbances from a given patched elevation of the bottom surface in an incompressible nonviscous fluid of the uniform depth is considered. Then, a tsunami wave diffraction by underwater bottom elevation or cavity is investigated. In this case the shallow water equations are already used, and it is supposed that a cylindrical wave is spread from patched water elevation over the epicentrum. Last, the tsunami propagation and transformation in a shallow water region and its run‐up on a beach are investigated on the basis of the improved shallow water theory, taking into consideration the nonlinear and dispersive terms of higher order. The proposed theory is tested in a problem of collisions of two solutions. Solutions of the first and the second problems are obtained by the method of integral Laplace's transformation with following numerical inversion of transformations. A finite difference method for a solution of the last problem is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号