首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Qinling Orogen separating the North China plate from the Yangtze plate is a key area for understanding the timing and process of aggregation between the two plates. Two competing and highly contrasting tectonic models currently exist to explain the timing and nature of collision; one advocates a Devonian continental collision while the other favors a Triassic collision. The Wuguan Complex, between the early Paleozoic North Qinling and the Mesozoic South Qinling terranes, can provide important constraints on the late Paleozoic evolutionary processes of the Qinling Orogen. Metamorphosed sedimentary rock of the Wuguan Complex have a detrital zircon age spectrum with two major peaks at 453 Ma and 800 Ma, several minor age populations of 350–430 Ma and 1000–2868 Ma, and a youngest weighted mean age of 358 ± 3 Ma, indicating a mixed source from the North Qinling terrane. The recrystallized zircons yield a weighted mean age of 333 ± 2 Ma, representing the metamorphic age. Geochemical analyses imply that the sedimentary rocks were originally deposited in an active continental margin dominated by an acidic-arc source with a subordinate mafic-ultramafic source. The youngest population of detrital zircons (358 Ma) suggests that the Wuguan Complex developed as forearc basin along the southern accreted margin of the North Qinling terrane during the early Carboniferous, whereas the ca. 520–460 Ma mafic rocks with E-MORB, N-MORB, OIB or island arc basalt signatures probably derived from the Danfeng Group. In combination with regional data, we suggest that the depositional age of the Wuguan Complex is ca. 389–330 Ma, but it was subsequently incorporated into tectonic mélange by the northward subduction of the Paleo-Qinling Ocean. A long-lived southward-facing subduction-accretionary system in front of the North Qinling terrane probably lasted until at least the early Carboniferous.  相似文献   

2.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

3.
Sedimentological and geochronological analyses were performed on Carboniferous strata from central Inner Mongolia (China) to determine the tectonic setting of the southeastern Central Asian Orogenic Belt (CAOB). Sedimentological analyses indicate that the widespread Late Carboniferous strata in central Inner Mongolia were dominated by shallow marine clastic-carbonate deposition with basal conglomerate above the Precambrian basement and Early Paleozoic orogenic belts. Based on lithological comparison and fossil similarity, five sedimentary stages were used to represent the Carboniferous deposition. The depositional stages include, from bottom to top, 1) basal molassic, 2) first carbonate platform, 3) terrigenous with coeval intraplate volcanism, 4) second carbonate platform, and 5) post-carbonate terrigenous. These five stages provide evidence for an extensive transgression in central Inner Mongolia during the Late Carboniferous. Detrital zircon geochronological studies from five samples yielded five main age populations: ~ 310 Ma, ~ 350 Ma, 400–450 Ma, 800–1200 Ma and some Meso-Proterozoic to Neoarchean grains. The detrital zircon geochronological studies indicate that the provenances for these Late Carboniferous strata were mainly local magmatic rocks (Early Paleozoic arc magmatic rocks and Carboniferous intrusions) with subordinate input of Precambrian basement. Combining our sedimentological and provenance analyses with previous fossil comparison and paleomagnetic reconstruction, an inland sea was perceived to be the main paleogeographic feature for central Inner Mongolia during the Late Carboniferous. The inland sea developed on a welded continent after the collision between North China Craton and its northern blocks.  相似文献   

4.
The Qinling Orogen, central China, was constructed during the Mesozoic collision between the North China and Yangtze continental plates. The orogen includes four tectonic units, from north to south, the Huaxiong Block (reactivated southern margin of the North China Craton), North Qinling Accretion Belt, South Qinling Fold Belt (or block) and Songpan Fold Belt, evolved from the northernmost Paleo-Tethys Ocean separating the Gondwana and Laurentia supercontinents. Here we employ detrital zircons from the Early Cretaceous alluvial sediments within the Qinling Orogen to trace the tectonic evolution of the orogen. The U–Pb ages of the detrital zircon grains from the Early Cretaceous Donghe Group sediments in the South Qinling Fold Belt cluster around 2600–2300 Ma, 2050–1800 Ma, 1200–700 Ma, 650–400 Ma and 350–200 Ma, corresponding to the global Kenorland, Columbia, Rodinia, Gondwana and Pangaea supercontinent events, respectively. The distributions of ages and εHf(t) values of zircon grains show that the Donghe Group sediments have a complex source comprising components mainly recycled from the North Qinling Accretion Belt and the North China Craton, suggesting that the South Qinling Fold Belt was a part of the united Qinling–North China continental plate, rather than an isolated microcontinent, during the Devonian–Triassic. The youngest age peak of 350–200 Ma reflects the magmatic event related to subduction and termination of the Mian-Lue oceanic plate, followed by the collision between the Yangtze Craton and the united Qinling–North China continent that came into existence at the Triassic–Jurassic transition. The interval of 208–145 Ma between the sedimentation of the Early Cretaceous Donghe Group and the youngest age of detrital zircons was coeval with the post-subduction collision between the Yangtze and the North China continental plates in Jurassic.  相似文献   

5.
The North China Craton (NCC) has been considered to be part of the supercontinent Columbia. The nature of the NCC western boundary, however, remains strongly disputed. A key question in this regard is whether or not the Alxa Block is a part of the NCC. It is located in the vicinity of the inferred boundary, and therefore could potentially resolve the issue of the NCC's relationship to the Columbia supercontinent. Some previous studies based on the Alxa Block's geological evolution and detrital zircon ages suggested that it is likely not a part of the NCC. The lack of evidence from key igneous rock units, however, requires further constraints on the tectonic affinity of the western NCC and Alxa Block and on the timing of their amalgamation.In this study, new zircon U–Pb age and Hf–O isotopes and whole-rock geochemical and Sr–Nd–Pb isotopic data for the Paleozoic granitoids in or near the eastern Alxa Block were used to constrain the petrogenesis of these rocks and the relationship between the Alxa Block and NCC. Secondary ion mass spectrometry (SIMS) U–Pb zircon dating indicates that the Bayanbulage, Hetun, Diebusige and South Diebusige granitoids were formed at ca. 423 Ma, 345 Ma, 345 Ma and 337 Ma, respectively. The Late Silurian (Bayanbulage) quartz diorites have variable SiO2 (58.0–67.9 wt.%), and low Sr/Y (20–24) values, while the Early Carboniferous (Hetun, Diebusige and South Diebusige) monzogranites have high SiO2 (71.5–76.7 wt.%) and Sr/Y (40–94) values. The Late Silurian quartz diorites display relatively homogeneous and high zircon δ18O (8.5–9.1‰) and εHf(t) (− 8.6 to − 5.3) values, high whole-rock εNd(t) values (− 9.2 to − 7.6) and highly radiogenic Pb isotopes (206Pb/204Pb = 18.13–18.25), whereas the Early Carboniferous monzogranites exhibit relatively low and variable zircon δ18O (5.7–7.2‰) and εHf(t) (− 23.1 to − 7.4) values, low whole-rock initial 87Sr/86Sr (0.7043–0.7070) and εNd(t) (− 19.1 to − 13.5) values and variable Pb isotopes (206Pb/204Pb = 16.06–18.22). The differences in whole rock Nd model ages and Pb isotope compositions of the Paleoproterozoic–Permian rocks in either side of the west fault of the Bayanwulashan–Diebusige complexes suggest that the Alxa Block is not a part of the NCC, and that the western boundary of the NCC is probably located on this fault. Furthermore, the linear distribution of the Early Paleozoic–Early Carboniferous granitoids, the high zircon δ18O values of the Late Silurian quartz diorites, the Early Devonian metamorphism and the foreland basin system formed during the collision between the Alxa Block and the NCC indicate that a Paleozoic cryptic suture zone likely existed in this area and records the amalgamation of the Alxa Block and North China Craton. Together with detrital zircon data, the initial collision was considered to have possibly occurred in Late Ordovician.  相似文献   

6.
U–Pb dating of detrital zircons was performed on mélange-hosted lithic and basaltic sandstones from the Inthanon Zone in northern Thailand to determine the timing of accretion and arc activity associated with Paleo-Tethys subduction. The detrital zircons have peak ages at 3400–3200, 2600–2400, 1000–700, 600–400, and 300–250 Ma, similar to the peaks ages of detrital zircons associated with other circum-Paleo-Tethys subduction zones. We identified two types of sandstone in the study area based on the youngest detrital zircon ages: Type 1 sandstones have Late Carboniferous youngest zircon U–Pb ages of 308 ± 14 and 300 ± 16 Ma, older than associated radiolarian chert blocks within the same outcrop. In contrast, Type 2 sandstones have youngest zircon U–Pb ages of 238 ± 10 and 236 ± 15 Ma, suggesting a Middle Triassic maximum depositional age. The youngest detrital zircons in Type 1 sandstones were derived from a Late Carboniferous–Early Permian ‘missing’ arc, suggesting that the Sukhothai Arc was active during sedimentation. The data presented within this study provide information on the development of the Sukhothai Arc, and further suggest that subduction of the Paleo-Tethyan oceanic plate beneath the Indochina Block had already commenced by the Late Carboniferous. Significant Middle Triassic arc magmatism, following the Late Carboniferous–Early Permian arc activity, is inferred from the presence of conspicuous detrital zircon U–Pb age peaks in Type 2 sandstones and the igneous rock record of the Sukhothai Arc. In contrast, only minimal arc activity occurred during the Middle Permian–earliest Triassic. Type 1 sandstones were deposited between the Late Permian and the earliest Triassic, after the deposition of associated Middle–Late Permian cherts that occur in the same mélanges and during a hiatus in Sukhothai Arc magmatism. In contrast, Type 2 sandstones were deposited during the Middle Triassic, coincident with the timing of maximum magmatism in the Sukhothai Arc, as evidenced by the presence of abundant Middle Triassic detrital zircons. These two types of sandstone were probably derived from discrete accretionary units in an original accretionary prism that was located along the western margin of the Sukhothai Arc.  相似文献   

7.
《Precambrian Research》2006,144(3-4):199-212
LA-ICP-MS U–Pb zircon dating and cathodoluminescene (CL) image analysis were carried out to determine the protolith and metamorphic ages of high-grade Al-rich gneisses, named as “khondalites”, from the Jining Complex of the North China Craton (NCC). The analytical results of more than 200 detrital zircon grains from the khondalites show three main age populations: 2060 Ma, 1940 Ma and 1890 Ma. These data indicate that the provenance of the Jining khondalites is Paleoproterozoic in age, but not Archean as previously suggested, and the sediments were derived from a provenance different from the Eastern Block and the Yinshan Terrane of the NCC. The nearly concordant youngest age of 1842 ± 16 Ma (207Pb/206Pb age) for the detrital zircons is interpreted as the maximum depositional age of the khondalites. Overgrowth rims of detrital zircons yield an age of 1811 ± 23 Ma, which we interpret as the metamorphic age. The new age data are consistent with the recent three-fold tectonic subdivision of the NCC and support that the Eastern and Western Blocks collided at ∼1.8 Ga to form the coherent NCC.  相似文献   

8.
U–Pb detrital zircon studies in the Rio Fuerte Group, NW Mexico, establish its depositional tectonic setting and its exotic nature in relation to the North American craton. Two metasedimentary samples of the Rio Fuerte Formation yield major age clusters at 453–508 Ma, 547–579 Ma, 726–606 Ma, and sparse quantities of older zircons. The cumulative age plots are quite different from those arising from lower Paleozoic miogeoclinal rocks of southwestern North America and of Cordilleran Paleozoic exotic terranes such as Golconda and Robert Mountains. The relative age-probability plots are similar to some reported from the Mixteco terrane in southern Mexico and from some lower Paleozoic Gondwanan sequences, but they differ from those in the Gondwanan-affinity Oaxaca terrane. Major zircon age clusters indicate deposition in an intraoceanic basin located between a Late Ordovician magmatic arc and either a peri-Gondwanan terrane or northern Gondwanaland. The U–Pb magmatic ages of 151 ± 3 Ma from a granitic pluton and 155 ± 4 Ma from a granitic sill permit a revision of the stratigraphic and tectonic evolution of the Rio Fuerte Group. A regional metamorphism event predating the Late Jurassic magmatism is preliminarily ascribed to the Late Permian amalgamation of Laurentia and Gondwana. The Late Jurassic magmatism, deformation, and regional metamorphism are related to the Nevadan Orogeny.  相似文献   

9.
The Danubian domain basement of the South Carpathians, Romania, comprises two Neoproterozoic continental crustal fragments, the Dr?g?an and Lainici-P?iu? terranes, which were sutured by the closure of an intervening oceanic domain, the Ti?ovi?a terrane. Magmatic and detrital zircons extracted from an orthogneiss, four granitoid plutons, two metasedimentary units, and a Liassic sandstone were dated by zircon U/Pb LA-ICP-MS. The F?ge?el augen gneiss from the Dr?g?an terrane basement yielded an age of 803.2 ± 4.4 Ma, the oldest well-constrained crystallization age reported from the Romanian Carpathians basement. The Tismana, ?u?i?a, Novaci and Olte? granitoid plutons, which intrude the Lainici-P?iu? terrane basement, yielded ages of 600.5 ± 4.4, 591.0 ± 3.5, 592.7 ± 4.9, and 588 ± 2.9 Ma, respectively. The Tismana granitoid age of 600 Ma and the youngest detrital zircon ages of 637–622 Ma from a metaquartzite within the Lainici-Paiu? terrane, constrain the deposition of the metaquartzite protolith to ca. 620–600 Ma. The 803 Ma age represents an old Pan-African age, whereas the younger Neoproterozoic ages suggest Pan-African/Cadomian thermotectonic events. Detrital and inherited zircon ages within the Dr?g?an and Lainici-Paiu? terranes attest to a peri-Amazonian, Avalonian-type provenance for the Dr?g?an terrane and possibly a Ganderian-type provenance for the Lainici-P?iu? terrane. The Lainici-P?iu? terrane rifted off Gondwana before the Dr?g?an terrane. Both terranes were attached to Moesia during the Early Paleozoic.  相似文献   

10.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle.  相似文献   

11.
《Gondwana Research》2014,26(4):1627-1643
The Tianshan Orogenic Belt, which is located in the southwestern part of the Central Asian Orogenic Belt (CAOB), is an important component in the reconstruction of the tectonic evolution of the CAOB. In order to examine the evolution of the Tianshan Orogenic Belt, we performed detrital zircon U–Pb dating analyses of sediments from the accretionary mélange from Chinese southwestern Tianshan in this study. A total of 542 analyzed spots on 541 zircon grains from five samples yield Paleoarchean to Devonian ages. The major age groups are 2520–2400 Ma, 1890–1600 Ma, 1168–651 Ma, and 490–390 Ma. Provenance analysis indicates that, the Precambrian detrital zircons were probably mainly derived from the paleo-Kazakhstan continent formed before the Early Silurian by amalgamation of the Kazakhstan–Yili microplate, the Chinese central Tianshan terrane and the Kyrgyz North and Middle Tianshan blocks, while detrital zircons with Paleozoic ages mainly from igneous rocks of the continental arc generated by the northward subduction of the south Tianshan paleocean. The age data correspond to four tectono-thermal events that took place in these small blocks, i.e., the continental nucleus growth during the Late Neoarchean–early Paleoproterozoic (~ 2.5 Ga), the evolution of the supercontinents Columbia (2.1–1.6 Ga) and Rodinia (1.3–0.57 Ga), and the arc magmatism related with the Phanerozoic orogeny. The Precambrian zircons show a similar age pattern as the Tarim and the Cathaysia cratons and the Eastern India–Eastern Antarctica block but differ from those of Siberia distinctly. Therefore, the Tianshan region blocks and the Kazakhstan–Yili microplate have a close affinity to the eastern paleo-Gondwana fragments, but were not derived from the Siberia craton as proposed by some previous researchers. These blocks were likely generated by rifting accompanying Rodinia break-up in late Precambrian times.The youngest ages of the detrital zircons from the subduction mélange show a maximum depositional age of ca. 390 Ma. It is coeval with the end of an earlier arc magmatic pulse (440–390 Ma) but a bit older than a younger one at 360–320 Ma and nearly 70–80 Ma older than the HP–UHP metamorphism in the subduction zone (320–310 Ma).  相似文献   

12.
《Gondwana Research》2014,25(1):383-400
U–Pb geochronologic and Hf isotopic results of seven sandstones collected from Late Carboniferous through Early Triassic strata of the south-central part of the North China Craton record a dramatic provenance shift near the end of the Late Carboniferous. Detrital zircons from the Late Carboniferous sandstones are dominated by the Early Paleozoic components with positive εHf(t) values, implying the existence of a significant volume of juvenile crust at this age in the source regions. Moreover, there are also three minor peaks at ca. 2.5 Ga, 1.87 Ga and 1.1–0.9 Ga. Based on our new data, in conjunction with existing zircon ages and Hf isotopic data in the North China Craton (NCC), Central China Orogenic Belt (CCOB) and Central Asian Orogenic Belt (CAOB), it can be concluded that Early Paleozoic and Neoproterozoic detritus in the south-central NCC were derived from the CCOB. Zircons with ages of 1.9–1.7 Ga were derived from the NCC. However, the oldest components can't be distinguished, possibly from either the NCC or the CCOB, or both. In contrast, detrital zircons from the Permian and Triassic sandstones are characterized by three major groups of U–Pb ages (2.6–2.4 Ga, 1.9–1.7 Ga and Late Paleozoic ages). Specially, most of the Late Paleozoic zircons show negative εHf(t) values, similar to the igneous zircons from intrusive rocks of the Inner Mongolia Paleo-Uplift (IMPU), indicating that the Late Paleozoic detritus were derived from the northern part of the NCC. This provenance shift could be approximately constrained at the end of the Late Carboniferous and probably hints that tectonic uplift firstly occurred between the CCOB and the NCC as a result of the collision between the South and North Qinling microcontinental terranes, and then switched to the domain between the CAOB and the NCC. Additionally, on the basis of Lu–Hf isotopic data, we reveal the pre-Triassic crustal growth history for the NCC. In comparison among the three crustal growth curves obtained from modern river sands, our samples, and the Proterozoic sedimentary rocks, we realize that old components are apparently underestimated by zircons from the younger sedimentary rocks and modern river sands. Hence, cautions should be taken when using this method to investigate growth history of continental crust.  相似文献   

13.
《Gondwana Research》2015,27(3-4):888-906
The Ongole Domain in the southern Eastern Ghats Belt of India formed during the final stages of Columbia amalgamation at ca. 1600 Ma. Yet very little is known about the protolith ages, tectonic evolution or geographic affinity of the region. We present new detrital and igneous U–Pb–Hf zircon data and in-situ monazite data to further understand the tectonic evolution of this Columbia-forming orogen.Detrital zircon patterns from the metasedimentary rocks are dominated by major populations of Palaeoproterozoic grains (ca. 2460, 2320, 2260, 2200–2100, 2080–2010, 1980–1920, 1850 and 1750 Ma), and minor Archaean grains (ca. 2850, 2740, 2600 and 2550 Ma). Combined U–Pb ages and Lu–Hf zircon isotopic data suggest that the sedimentary protoliths were not sourced from the adjacent Dharwar Craton. Instead they were likely derived from East Antarctica, possibly the same source as parts of Proterozoic Australia. Magmatism occurred episodically between 1.64 and 1.57 Ga in the Ongole Domain, forming felsic orthopyroxene-bearing granitoids. Isotopically, the granitoids are evolved, producing εHf values between − 2 and − 12. The magmatism is interpreted to have been derived from the reworking of Archaean crust with only a minor juvenile input. Metamorphism between 1.68 and 1.60 Ga resulted in the partial to complete resetting of detrital zircon grains, as well as the growth of new metamorphic zircon at 1.67 and 1.63 Ga. In-situ monazite geochronology indicates metamorphism occurred between 1.68 and 1.59 Ga.The Ongole Domain is interpreted to represent part of an exotic terrane, which was transferred to proto-India in the late Palaeoproterozoic as part of a linear accretionary orogenic belt that may also have included south-west Baltica and south-eastern Laurentia. Given the isotopic, geological and geochemical similarities, the proposed exotic terrane is interpreted to be an extension of the Napier Complex, Antarctica, and may also have been connected to Proterozoic Australia (North Australian Craton and Gawler Craton).  相似文献   

14.
The Jiangnan Orogen, the eastern part of which comprises the oceanic Huaiyu terrane to the northeast and the continental Jiuling terrane to the southwest, marks the collision zone of the Yangtze and the Cathaysia Blocks in South China. Here, zircon U–Pb geochronological and Lu–Hf isotopic results from typical basement and cover meta-sedimentary/sedimentary rock units in the eastern Jiangnan Orogen are presented. The basement sequences in southwestern Huaiyu terrane are mainly composed of marine volcaniclastic turbidite, ophiolite suite and tuffaceous phyllite, whereas those in the northeastern Huaiyu consist of littoral face pebbly feldspathic sandstones and greywacke interbedded with intermediate-basic volcanic rocks. Combined with previous studies, the present data show that the basement sequences exhibit arc affinities. Zircons from the basement phyllite in the southwestern margin of the Huaiyu terrane, representing a Neoproterozoic back-arc basin, yield a single age population of 800–900 Ma. The basement greywacke from northeastern Huaiyu terrane, representing fore-arc basin, is also characterized by zircons that preserve a single tectono-thermal event during 800–940 Ma. However, the late Neoproterozoic cover sequence preserves zircons from multiple sources with age populations of 750–890 Ma, 1670–2070 Ma and 2385–2550 Ma. Moreover, Hf isotopic data further reveal that most detrital zircons from the basement sequences yield positive εHf(t) values and late Mesoproterozoic model ages, while those of the cover sequence mostly show negative εHf(t) values. The Hf isotopic data therefore suggest that the basement sequences are soured from a Neoproterozoic arc produced by reworking of subducted late Mesoproterozoic materials. The geochronological and Hf isotopic data presented in this study suggest ca. 800 Ma for the assembly of the Huaiyu and Jiuling terranes, implying that the amalgamation of the Yangtze and Cathaysia Blocks in the eastern part occurred at ca. 800 Ma.  相似文献   

15.
The geodynamic evolution of the early Paleozoic ultrahigh-pressure metamorphic belt in North Qaidam, western China, is controversial due to ambiguous interpretations concerning the nature and ages of the eclogitic protoliths. Within this framework, we present new LA-ICP-MS U–Pb zircon ages from eclogites and their country rock gneisses from the Xitieshan terrane, located in the central part of the North Qaidam UHP metamorphic belt. Xitieshan terrane contains clearly different protolith characteristics of eclogites and as such provides a natural laboratory to investigate the geodynamic evolution of the North Qaidam UHP metamorphic terrane. LA-ICP-MS U–Pb zircon dating of three phengite-bearing eclogites and two country rock gneiss samples from the Xitieshan terrane yielded 424–427 Ma and 917–920 Ma ages, respectively. The age of 424–427 Ma from eclogite probably reflects continental lithosphere subduction post-dating oceanic lithosphere subduction at ~ 440–460 Ma. The 0.91–0.92 Ga metamorphic ages from gneiss and associated metamorphic mineral assemblages are interpreted as evidence for the occurrence of a Grenville-age orogeny in the North Qaidam UHPM belt. Using internal microstructure, geochemistry and U–Pb ages of zircon in this study, combined with the petrological and geochemical investigations on the eclogites of previous literature’s data, three types of eclogitic protoliths are identified in the Xitieshan terrane i.e. 1) Subducted early Paleozoic oceanic crust (440–460 Ma), 2) Neoproterozoic oceanic crust material emplaced onto micro-continental fragments ahead of the main, early Paleozoic, collision event (440–420 Ma) and 3) Neoproterozoic mafic dikes intruded in continental fragments (rifted away from the former supercontinent Rodinia). These results demonstrate that the basement rocks of the North Qaidam terrane formed part of the former supercontinent Rodinia, attached to the Yangtze Craton and/or the Qinling microcontinent, and recorded a complex tectono-metamorphic evolution that involved Neoproterozoic and Early Paleozoic orogenies.  相似文献   

16.
Rocks with ages of ca. 1 Ga occur in central and southern Mexico as inliers surrounded by ubiquitous Mesozoic and Cenozoic rocks. They appear to share a common history consisting of: (i) ca. 1300–1200 Ma arc magmatism and deposition of sediments including evaporites; (ii) ca.1160–1100 Ma intrusion of syenite, granite and anorthosite, the later part of which is synchronous with migmatization; (iii) intrusion of a ca. 1035–1010 Ma anorthosite–gabbro–charnockite–granite (AMCG) suite; (iv) a 1000–980 Ma granulite facies tectonothermal event with a stretching axis parallel to the long axis of Oaxaquia; (v) gradual exhumation at 750 and/or 545 Ma; and (vi) 517 Ma intrusion of an isolated calcalkaline granitoid pluton. The common Precambrian geological record of these outcrops suggests that they belonged to a single terrane (Oaxaquia) and formed a juvenile arc/backarc bordering a continent that underwent collision with, and overthrusting of, the Avalonian arc at 1000–980 Ma. This buried Oaxaquia to 25–30 km and was followed by further supra-subduction zone magmatism at ca. 917 Ma. These Precambrian rocks are unconformably overlain by uppermost Cambrian and Silurian platform rocks containing Gondwanan fauna and ca. 1 detrital zircons of Oaxacan provenance. The neighbouring Mixteca terrane includes lower Paleozoic, rift-passive margin sedimentary rocks that also contain 900–750 Ma detrital zircons probably derived from the Goiás arc in eastern Amazonia. The arc-backarc tectonic setting inferred for the 1300–900 Ma rocks also suggests that Oaxaquia lay on an active periphery of Amazonia until ca. 900 Ma, well after the amalgamation of Rodinia. This precludes a location for Oaxaquia off southern and western Amazonia that are inferred to have been juxtaposed against eastern Laurentia; contiguity with eastern Amazonia is also unlikely given the absence of the 900–750 Ma convergent tectonics in the Goiás arc. This leaves northern Amazonia as the most likely position, a location that requires the least relative displacement between Oaxaquia and Amazonia. The inferred 750 and 545 Ma exhumation episodes of Oaxaquia correspond to two proposed breakup stages of Rodinia.  相似文献   

17.
《Gondwana Research》2014,25(3-4):1038-1050
The New England Orogen of easternmost Australia is dominated by suites of Palaeozoic to earliest Mesozoic rocks that formed in supra-subduction zone settings at Gondwana's eastern margin. On the northern New South Wales coast at Rocky Beach, Port Macquarie, a serpentinite mélange carries rare tectonic blocks of low-grade, high-pressure, metamorphic rocks derived from sedimentary and igneous protoliths. Dominant assemblages are glaucophane + phengite ± garnet ± lawsonite ± calcite ± albite blueschists and lawsonite-bearing retrogressed garnet + omphacite eclogites. In some blocks with sedimentary protoliths, eclogite forms folded layers within the blueschists, which is interpreted as Mn/(Mn + Fe) compositional control on the development of blueschist versus eclogite assemblages. Review of previous studies indicates pressure–temperature conditions of 0.7–0.5 GPa and ≤ 450 °C. Three samples of high-pressure metasedimentary rocks contain Archaean to 251 ± 6 Ma (Permo-Triassic) zircons, with the majority of the grains being Middle Devonian to Middle Carboniferous in age (380–340 Ma). Regardless of age, all grains show pitting and variable rounding of their exteriors. This morphology is attributed to abrasion in sedimentary systems, suggesting that they are all detrital grains. New in situ metamorphic zircon growth did not develop because of the low temperature (≤ 450 °C) of metamorphism. The Permo-Triassic, Devonian and Carboniferous zircons show strong heavy rare earth element enrichment and negative europium anomalies, indicating that they grew in low pressure igneous systems, not in a garnet-rich plagioclase-absent high pressure metamorphic environment. Therefore the youngest of these detrital zircons provides the maximum age of the metamorphism. A titanite + rutile porphyroblast within an eclogite has a U–Pb age of 332 ± 140 Ma (poor precision due to very low U abundances of mostly < 1 p.p.m.) and provides an imprecise direct age for metamorphism. In the south of the Port Macquarie area, the Lorne Basin ≥ 220 Ma Triassic sedimentary and volcanic rocks unconformably overlie serpentinite mélange, and provide the minimum age of the high-pressure metamorphism. Our preferred interpretation is that the 251 Ma zircons are detrital and thus the Port Macquarie high-pressure metamorphism is constrained to the end of the Permian–Early Triassic. Emplacement of the serpentinite mélange carrying the Rocky Beach high-pressure rocks might have been due to docking of a Permian oceanic island arc (represented by the Gympie terrane in southern Queensland?) and an Andean-style arc at the eastern Australian margin (expressed in the New England Orogen by 260–230 Ma north-south orientated magmatic belts). Alternatively, if the 251 Ma grains are regarded as having grown in thin pegmatites, then the dominant Devonian–Carboniferous detrital population still indicates a maximum age for the high pressure metamorphism of ca. 340 Ma. A ≤ 340 Ma age of metamorphism would still be much younger than the previously suggested ca. 470 Ma (Ordovician) age, which was based on Ar–Ar dating of phengites.  相似文献   

18.
The Charysh–Terekta–Ulagan–Sayan suture zone was regarded as a tectonic boundary separating two distinct subduction–accretion systems in the Central Asian Orogenic Belt (CAOB). In the north, magmatic arcs, such as the Gorny Altai terrane, formed in the southwestern periphery of the Siberian continent, whereas in the south, arc-prism systems, such as the Altai–Mongolian terrane, formed around the so-called Kazakhstan–Baikal composite continent with Gondwana affinity. When did these two systems amalgamate and whether the metamorphic complexes in the suture zone represent Precambrian micro-continental slivers are critical for our understanding of the accretionary orogenesis and crustal growth rate in the CAOB. A combined geochemical and detrital zircon U–Pb–Hf isotopic study was conducted on the meta-sedimentary rocks from the Ulagan (also referred to Bashkaus) and Teletsk Complexes in the suture zone. The results indicate that the protoliths of these rocks were dominated by immature sediments deposited in a time period between 500 and 420 Ma. Thus, Precambrian micro-continental slivers may not exist in the suture zone and even in the whole Altai Orogen.The meta-sedimentary rocks from the Ulagan Complex yield geochemical compositions between those of common intermediate and felsic igneous rocks, implying that these kinds of rocks possibly served as dominant sources. Detrital zircons from this complex consist of a major population of ca. 620–500 Ma, a subordinate one of ca. 931–671 Ma and rare grains of ca. 2899–1428 Ma. This age spectrum is compatible with the magmatic records of the western Mongolia. We propose that the Ulagan Complex possibly represents part of a subduction–accretion complex built upon an active continental margin of the western Mongolia in the early Paleozoic. The remarkable similarities in source nature, provenance, and depositional setting to the early Paleozoic meta-sedimentary rocks from the northern Altai–Mongolian terrane imply that the Ulagan Complex was possibly fragmented from this terrane.The meta-sedimentary rocks from the Teletsk Complex show similar detrital zircon populations but contain higher proportions of mafic sediments and have more depleted whole-rock Nd isotopic compositions. Our data suggest that the detritus mostly came from the same source as that for the Ulagan Complex but those from the Gorny Altai terrane also contributed. This implies that the Gorny Altai and Altai-Mongolian terranes possibly amalgamated prior to the early Devonian rather than in the middle Devonian to early Carboniferous as previously thought. Thus, the widespread Devonian to early Carboniferous magmatism within these two terranes was possibly generated in a similar tectonic setting. Moreover, the dominant Neoproterozoic to early Paleozoic detrital zircons from the Teletsk Complex yield largely varied ɛHf(t) values of − 23.8 to 12.4, indicating that crustal growth and reworking are both important in the accretionary orogenesis.  相似文献   

19.
The Mesoproterozoic successions in the North China Craton (NCC) and the Qinling–Qilian–Kunlun Orogens have been revised using the new and highly reliable age data. Many Proterozoic strata in the Qinling–Qilian–Kunlun Orogens, such as the Qinling, Jinshuikou and Beidahe groups that have been ascribed to be Paleoproterozoic are actually of Mesoproterozoic Era. The most significant advances are recent geochronological studies on the Mesoproterozoic stratigraphy and magmatic events in the NCC. The boundary age between the Dahongyu Formation and the overlying Gaoyuzhuang Formation is well constrained to be ∼1600 Ma, corresponding to the boundary age between Statherian and Calymmian. The boundary between the Tieling Formation and the overlying Xiamaling Formation is best positioned at ∼1400 Ma, which is coeval with the boundary between Calymmian and Ectasian, and is about 400 Myrs older than the conventional value of 1000 Ma originally defined by the All China Commission of Stratigraphy. Hence the Jixianian System, including the Gaoyuzhuang, Yangzhuang, Wumishan, Hongshuizhuang and Tieling formations in ascending order, is comparable with the Calymmian System in the International Stratigraphic Chart. The lower boundary of the Changchengian System, the first system of the Mesoproterozoic in China Regional Stratigraphic Chart, also needs revision from the conventional 1800 Ma to ∼1650 Ma well constrained by the zircon U–Pb ages 1673 ± 10 Ma (LA-MC-ICP-MS) and 1669 ± 20 Ma (SHRIMP) of a granite-porphyry dike that was overlain unconformably by the basal conglomerate of the Changzhougou Formation, the first formation of the Changchengian System. Therefore, the earliest Mesoproterozoic sequence in the NCC represented by the Changchengian and Jixianian Systems in the Yanliao Aulacogen is identical to that of the Vindhyan Supergroup in Central Indian and the Riphean Series in Russia. On the other hand, a series of 1.8–1.6 Ga anorogenic magmatic records were well-preserved around the NCC, which marked the initial rifting of the Columbia Supercontinent in the NCC. The magmatic events can thus be subdivided into three phases with peaks at ca 1.77 Ga, ca 1.70 Ga and ca 1.63 Ga, respectively. In addition to 1.8–1.6 Ga magmatic events, some minor volcanic eruptions at ca 1.56 Ga and 1.44 Ga, and wide-spread bi-modal magmatic intrusions at 1.35–1.32 Ga have been recognized in the northern NCC, marking the continued rifting of the Columbia Supercontinent since ∼1.8 Ga.  相似文献   

20.
The southwestern margin of the North China Craton (NCC) is located between the Alxa Terrane to the northwest, the North Qilian Orogen to the west and the North Qinling Orogen to the south. However, the paleogeographic and tectonic evolution for the southwestern part of the NCC in the Late Paleozoic is still poorly constrained. In order to constrain the Late Paleozoic tectonic evolution of the southwestern NCC, we carried out detailed field work and detrital zircon U-Pb geochronological research on Middle–Late Permian sedimentary rocks at the southwestern margin of the NCC. The U-Pb age spectra of detrital zircons from six samples are similar, showing four populations of 2.6–2.4 Ga, 2.0–1.7 Ga, 500–360 Ma and 350–250 Ma. Moreover, on the basis of the weighted-mean age of the youngest detrital zircons (257 ± 4 Ma), combined with the published results and volcanic interlayers, we propose that the Shangshihezi Formation formed during the Middle–Late Permian. Our results and published data indicate that the detrital zircons with age groups of 2.6–2.4 Ga and 2.0–1.7 Ga were likely derived from the Khondalite Belt and Yinshan Block in the northwestern NCC. The junction part between the North Qinling and North Qilian Orogen may provide the 500–360 Ma detrital zircons for the study area. The 350–250 Ma detrital zircons were probably derived from the northwestern part of the NCC. The majority of materials from Shangshihezi Formation within the study area were derived from the northwestern part of the NCC, indicating that the northwestern part of the NCC was strongly uplifted possibly resulting from the progressive subduction and closure of the Paleo-Asian Ocean. A small amount of materials were sourced from southwestern part of the NCC, indicating that the North Qinling Orogen experienced a minor uplift resulting from the northward subduction of the South Qinling terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号