首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Angiboust  P. Agard 《Lithos》2010,120(3-4):453-474
We herein investigate the extent to which extensive hydration of the oceanic lithosphere influences the preservation and exhumation of large-scale ophiolite bodies from subduction zones. The Zermatt–Saas ophiolite (ZS, W. Alps), which was subducted during the late stages of oceanic subduction, preserves a complete section of Mesozoic Tethys oceanic lithosphere and particularly fresh eclogites, and represents, so far, the largest and deepest known portion of exhumed oceanic lithosphere. Pervasive hydrothermal processes and seafloor alteration led to the incorporation of large amounts of fluid bound in the hydrated upper layers of the oceanic crust (now as lawsonite eclogites, glaucophanites, and chloritoschists) and in associated ultramafic rocks.Internally, the ZS ophiolite is made up of a series of tectonic slices of oceanic crust (150–300 m thick) which are systematically separated by a 5 to 100 m thick layer of serpentinite. This stack of slices is separated from the underlying eclogitized continental crust (e.g., Monte Rosa) by a thick (~ 500 m) serpentinite sole. Field observations, textural relationships and pseudosection modelling reveal that lawsonite was abundant and widespread in mafic eclogites when the ophiolite detached from the slab at around 550 °C and 24 kbar.Comparison between fresh eclogitic samples and pseudosection modelling shows that (i) water remained in excess from burial to eclogitic peak conditions, (ii) the lightest eclogitized metabasalts correspond to the portions of oceanic crust where metasomatism was the strongest, (iii) crystallization of widespread hydrated parageneses (such as lawsonite, glaucophane and phengite) instead of garnet and omphacite decreased by 5 to 10% the rock density and subsequently enhanced its buoyancy.We propose that this density decrease acted as a ‘float’ which prevented the slices from an irreversible sinking in the mantle. These slices were subsequently detached from the downgoing slab and stacked in the serpentinized subduction channel at pressures between 15 and 20 kbar, in the epidote blueschist facies. Exhumation of the underlying, positively buoyant continental crust dragged this “frozen” nappe-stack from the subduction channel towards the surface.  相似文献   

2.
An eclogite has been recently identified within ophiolitic mélange in the western segment of the Bangong Co–Nujiang suture zone, at Shemalagou in the Gaize area of central Tibet. The eclogite consists of garnet, omphacite, phengite, rutile, quartz, diopside, and amphibole. The omphacite, which has not been recognized in the suture zone until this study, occurs as rare relics within diopside grains in the eclogite. Phase equilibria modeling shows that the eclogite formed under PT conditions of 22–28 kbar and 600–650 °C with a low geothermal gradient of ca. 8 °C/km, suggesting that it formed during the subduction of oceanic crust. The protoliths of the eclogite and coexisting garnet amphibolites have geochemical characteristics similar to those of normal mid-ocean ridge basalt (N-MORB), confirming that the eclogites formed from oceanic crust. The presence of high-pressure (HP) eclogite indicates that the ophiolitic mélange in the Bangong Co–Nujiang suture zone underwent oceanic subduction and was subsequently exhumed. We conclude that this ophiolitic belt represents a newly identified HP metamorphic belt in the Tibetan Plateau, adding to the previously recognized Songduo and Longmucuo–Shuanghu eclogite belts. This discovery will result in an improved understanding of the tectonic evolution of the Bangong Co–Nujiang suture zone and the Tibetan Plateau as a whole.  相似文献   

3.
Compared to the extensively documented ultrahigh-pressure metamorphism at North Qaidam, the pre-metamorphic history for both continental crust and oceanic crust is poorly constrained. Trace element compositions, U–Pb ages, O and Lu–Hf isotopes obtained for distinct zircon domains from eclogites metamorphosed from both continental and oceanic mafic rocks are linked to unravel the origin and multi-stage magmatic/metamorphic evolution of eclogites from the North Qaidam ultrahigh-pressure metamorphic (UHPM) belt, northern Tibet.For continental crust-derived eclogite, magmatic zircon cores from two samples with U–Pb ages of 875–856 Ma have both very high δ18O (10.6 ± 0.5‰) and mantle-like δ18O (averaging at 5.2 ± 0.7‰), high Th/U and 176Lu/177Hf ratios, and steep MREE-HREE distribution patterns (chondrite-normalized) with negative Eu anomalies. Combined with positive εHf (t) of 3.9–14.3 and TDM (1.2–0.8 Ga and 1.3–1.0 Ga, respectively), they are interpreted as being crystallized from either subduction-related mantle wedge or recycled material in the mantle. While the metamorphic rims from the eclogites have U–Pb ages of 436–431 Ma, varying (inherited, lower, and elevated) oxygen isotopes compared with cores, low Th/U and 176Lu/177Hf ratios, and flat HREE distribution patterns with no Eu anomalies. These reflect both solid-state recrystallization from the inherited zircon and precipitation from external fluids at metamorphic temperatures of 595–622 °C (TTi-in-zircon).For oceanic crust-derived eclogite, the magmatic cores (510 ± 19 Ma) and metamorphic rims (442.0 ± 3.7 Ma) also show distinction for Th/U and 176Lu/177Hf ratios, and the REE patterns and Eu anomalies. Combined with the mantle-like δ18O signature of 5.1 ± 0.3 ‰ and two groups of model age (younger TDM close to the apparent ages and older > 700 Ma), two possible pools, juvenile and inherited, were involved in mixing of mantle-derived magma with crustal components. The relatively high δ18O of 6.6 ± 0.3‰ for metamorphic zircon rims suggests either the protolith underwent hydrothermal alteration prior to the ~ 440 Ma oceanic crust subduction, or external higher δ18O fluid activities during UHP metamorphism at ~ 440 Ma.Therefore, the North Qaidam UHPM belt witnesses multiple tectonic evolution from Late Mesoproterozoic–Neoproterozoic assembly/breakup of the Rodinia supercontinent with related magmatic emplacement, then Paleozoic oceanic subduction, and finally transition of continental subduction/collision related to UHP metamorphism.  相似文献   

4.
Three distinct groups of eclogites (low-Mg–Ti eclogites, high-Ti eclogites and Mg-rich eclogites) and ultramafic rocks from the depth interval of 100–680 m of the Chinese Continental Scientific Drill Hole were studied. The low Mg#s (= 100?molar Mg/(Mg + Fe)) (81–84%) and low Ni (1150–1220 ppm) and high Fe2O3total (13–15 wt.%) contents of ultramafic rocks suggest a cumulate origin. Mg-rich eclogites show middle and heavy REE enrichments, which could not be produced by metamorphic growth of garnet. Instead, if the rocks formed from a light REE enriched magma, there may be an igneous precursor for some garnets in their protolith. Alternatively, perhaps they formed from a light REE depleted magma without garnet. The high-Ti eclogites are characterized by unusually high Fe2O3total contents (up to 24.5 wt.%) and decoupling of high TiO2 from low Nb and Ta contents. These features cannot be produced by concentration of rutile during UHP metamorphism (even for samples with TiO2 > 4 wt.%) of high-Ti basalts, but could be attributed to crystal fractionation of titanomagnetite (for those with TiO2 <  4 wt.%) or titanomagnetite + ilmenite (for those with TiO2 >  4 wt.%). Thus, we suggest that protoliths of the high-Ti eclogites were titanomagnetite/ilmenite-rich gabbroic cumulates. As a whole, the low-Mg–Ti eclogites are geochemically complementary to the high-Ti eclogites, Mg-rich eclogites and ultramafic rocks, and could be metamorphic products of gabbroic/dioritic cumulates formed by high degree crystal fractionation. All these observations suggest that parental materials of the ultramafic rock-eclogite assemblage could represent a complete sequence of fractional crystallization of tholeiitic or picritic magmas at intermediate to high pressure, which were later carried to ultrahigh-pressure conditions during a continental collision event.  相似文献   

5.
The Shangdan suture zone (SSZ) is the main collisional boundary between the North China Craton and the South China Craton, along which discontinuous Paleozoic ophiolites and subduction–accretion related volcanic arc assemblages occur. Here we report the petrology, geochemistry, geochronology and phase equilibria modeling of garnet amphibolite from the Songshugou ophiolite which is one of the largest ophiolite outcrops in the northern side of the SSZ. From petrological studies, we identify: (1) prograde stage, defined by garnet + clinopyroxene + calcic amphibole + ilmenite + rutile + epidote + plagioclase + quartz; (2) peak stage with garnet + clinopyroxene + ilmenite + rutile + quartz; and (3) retrograde stage with amphibole + plagioclase + titanite + ilmenite. Our pseudosection analysis defines stability of the peak assemblage at 750–850 °C, 15–19 kbar and traces a clockwise P–T path in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCFMASHTO), suggesting high pressure (HP) metamorphism. Subsequently, the rocks experienced rapid decompression and cooling. LA-ICP-MS U-Pb analyses of zircons from the garnet amphibolite yield a weighted mean 206Pb/238U age of 515 ± 12 Ma. This Early Paleozoic metamorphic age represents the emplacement time of the Songshugou ophiolite, and suggests that the HP metamorphism is possibly related to the northward deep subduction of the Shangdan oceanic crust in Early Paleozoic.  相似文献   

6.
Processing of the oceanic lithosphere in subduction zones gives rise to arc magmatism, and strong compositional links exist between trench input and arc output. Here we address the question whether these compositional links are sufficiently strong to allow for ‘tracing’ the composition of the sedimentary and igneous oceanic crust through the chemistry of arcs. The tracing approach hinges critically on whether key characteristics of the subducted slab are transmitted to arcs. Results from forward and inverse modeling, verified by observations from modern arc settings, demonstrate that elements Sr, Pb, Nd and Hf that are associated with radiogenic isotopes may preserve chemical characteristics of the subducted slab in arc magmas. The data indicate that the much thicker igneous subducted crust dominates the recycled flux to arcs. The flux from the highly enriched, but thin sediment layer is buffered, and may be even concealed, by the concomitant contributions from igneous crust, and/or subarc mantle, despite the much better visibility of sediment components in trace element and isotope space. Arc Pb and Pb isotopes are the most promising tracers that may capture the isotopic diversity of subducted MORB-type and OIB-type crust with sufficient temporal and spatial resolution. While arc Sr is also strongly controlled by the flux from the subducted crust, arc data may allow for distinguishing among radiogenic Sr recycled from altered oceanic crust or from subducted sediment in moderately radiogenic arcs (87Sr/86Sr < ~ 0.7045). Co-mingling of Nd and Hf from igneous subducted crust with mantle contributions mostly hinders the isotopic identification of subducted crust through arc chemistry. However, Nd and Hf may provide complementary information about the efficiency of recycling, and recycling via subduction erosion.The tracing approach appears feasible in Cenozoic arcs where much of the original subduction context is preserved. First results from the Izu Bonin and Central American arcs show that plate tectonic events like oceanic plate formation and destruction, subduction of hotspot tracks and the closure of oceanic gateways are recorded in the chemistry of arcs. A comparative evaluation of Cenozoic global arcs may hence significantly complement the information from the modern oceanic basins, help to obtain a more complete image of the oceanic crustal composition and implicate the geochemical processes by which it formed. Possibly, the tracing approach may also be useful in ancient, inactive arcs to obtain information on the composition of oceanic crust subducted in the geological past.  相似文献   

7.
P. Agard  P. Yamato  L. Jolivet  E. Burov 《Earth》2009,92(1-2):53-79
High-pressure low-temperature (HP–LT) metamorphic rocks provide invaluable constraints on the evolution of convergent zones. Based on a worldwide compilation of key information pertaining to fossil subduction zones (shape of exhumation PTt paths, exhumation velocities, timing of exhumation with respect to the convergence process, convergence velocities, volume of exhumed rocks,…), this contribution reappraises the burial and exhumation of oceanic blueschists and eclogites, which have received much less attention than continental ones during the last two decades.Whereas the buoyancy-driven exhumation of continental rocks proceeds at relatively fast rates at mantle depths (≥ cm/yr), oceanic exhumation velocities for HP–LT oceanic rocks, whether sedimentary or crustal, are usually on the order of the mm/yr. For the sediments, characterized by the continuity of the PT conditions and the importance of accretionary processes, the driving exhumation mechanisms are underthrusting, detachment faulting and erosion. In contrast, blueschist and eclogite mafic bodies are systematically associated with serpentinites and/or a mechanically weak matrix and crop out in an internal position in the orogen.Oceanic crust rarely records P conditions > 2.0–2.3 GPa, which suggests the existence of maximum depths for the sampling of slab-derived oceanic crust. On the basis of natural observations and calculations of the net buoyancy of the oceanic crust, we conclude that beyond depths around 70 km there are either not enough serpentinites and/or they are not light enough to compensate the negative buoyancy of the crust.Most importantly, this survey demonstrates that short-lived (<  15 My), discontinuous exhumation is the rule for the oceanic crust and associated mantle rocks: exhumation takes place either early (group 1: Franciscan, Chile), late (group 2: New Caledonia, W. Alps) or incidentally (group 3: SE Zagros, Himalayas, Andes, N. Cuba) during the subduction history. This discontinuous exhumation is likely permitted by the specific thermal regime following the onset of a young, warm subduction (group 1), by continental subduction (group 2) or by a major, geodynamic modification of convergence across the subduction zone (group 3; change of kinematics, subduction of asperities, etc).Understanding what controls this short-lived exhumation and the detachment and migration of oceanic crustal slices along the subduction channel will provide useful insights into the interplate mechanical coupling in subduction zones.  相似文献   

8.
The chemistry of garnet can provide clues to the formation of skarn deposits. The chemical analyses of garnets from the Astamal Fe-LREE distal skarn deposit were completed using an electron probe micro-analyzer. The three types of garnet were identified in the Astamal skarn are: (I) euhedral coarse-grained isotropic garnets (10–30 mm across), which are strongly altered to epidote, calcite and quartz in their rim and core, with intense pervasive retrograde alteration and little variation in the overall composition (Adr94.3–84.4 Grs8.5–2.7 Alm1.9–0.2) (garnet I); (II) anhedral to subhedral brecciated isotropic garnets (5–10 mm across) with minor alteration, a narrow compositional range along the growth lines (Adr82–65.4 Grs21.9–11.7 Alm11.1–2.4) and relatively high Cu (up to 1997 ppm) and Ni (up to 1283 ppm) (garnet II); and (III) subhedral coarser grained garnets (> 30 mm across) with moderate alteration, weak diffusion and irregular zoning of discrete grossular-almandine-rich domains (Adr84.2–48.8 Grs32.4–7.6 Alm19.9–3.5) (garnet III). In the third type, the almandine content increases with increasing grossular/andradite ratio and increasing substitutions of Al for Fe3 +.Almost all three garnet types have been replaced by fine-grained, dark-brown allanite that is typically disseminated and has the same relief as andradite. The Cu content increases while Ni content decreases slightly towards the rim of garnet II and garnet III. Copper in garnet II is positively correlated with increasing almandine content and decreasing andradite content, indicating that the almandine structure, containing relatively more Fe2 +, is more suitable than andradite and grossular to host divalent cations such as Cu2 +. Nickel in garnet II is positively correlated with increasing andradite content, total Fe, and decreasing almandine content. This is because Ni2 + substitutes for Fe3 + in the Y (octahedral) position. There are unusual discrete grossular-almandine rich domains within andraditic garnet III, indicating the low diffusivity of Ca compared to Fe at high temperatures.  相似文献   

9.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

10.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

11.
Mafic xenoliths of garnet pyroxenite and eclogite from the Wajrakarur, Narayanpet and Raichur kimberlite fields in the Archaean Eastern Dharwar Craton (EDC) of southern India have been studied. The composition of clinopyroxene shows transition from omphacite (3–6 wt% Na2O) in eclogites to Ca pyroxene (<3 wt% Na2O) in garnet pyroxenites. Some of the xenoliths have additional phases such as kyanite, enstatite, chromian spinel or rutile as discrete grains. Clinopyroxene in a rutile eclogite has an XMg value of 0.70, which is unusually low compared to the XMg range of 0.91–0.97 for all other samples. Garnet in the rutile eclogite is also highly iron-rich with an end member composition of Prp26.5Alm52.5Grs14.7Adr5.1TiAdr0.3Sps1.0Uv0.1. Garnets in several xenoliths are Cr-rich with up to 8 mol% knorringite component. Geothermobarometric calculations in Cr-rich xenoliths yield different PT ranges for eclogites and garnet pyroxenites with average PT conditions of 36 kbar and 1080 °C, and 27 kbar and 830 °C, respectively. The calculated PT ranges approximate to a 45 mW m?2 model geotherm, which is on the higher side of the typical range of xenolith/xenocryst geotherms (35–45 mW m?2) for several Archaean cratons in the world. This indicates that the EDC was hotter than many other shield regions of the world in the mid-Proterozoic period when kimberlites intruded the craton. Textural and mineral chemical characteristics of the mafic xenoliths favour a magmatic cumulate process for their origin as opposed to subducted and metamorphosed oceanic crust.  相似文献   

12.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

13.
《Gondwana Research》2015,28(4):1560-1573
We used Os isotopic systematics to assess the geochemical relationship between the lithospheric mantle beneath the Balkans (Mediterranean), ophiolitic peridotites and lavas derived from the lithospheric mantle. In our holistic approach we studied samples of Tertiary post-collisional ultrapotassic lavas sourced within the lithospheric mantle, placer Pt alloys from Vardar ophiolites, peridotites from nearby Othris ophiolites, as well as four mantle xenoliths representative for the composition of the local mantle lithosphere. Our ultimate aim was to monitor lithospheric mantle evolution under the Balkan part of the Alpine-Himalayan belt. The observations made on Os isotope and highly siderophile element (HSE) distributions were complemented with major and trace element data from whole rocks as well as minerals of representative samples. Our starting hypothesis was that the parts of the lithospheric mantle under the Balkans originated by accretion and transformation of oceanic lithosphere similar to ophiolites that crop out at the surface.Both ophiolitic peridotites and lithospheric mantle of the Balkan sector of Alpine-Himalayan belt indicate a presence of a highly depleted mantle component. In the ophiolites and the mantle xenoliths, this component is fingerprinted by the low clinopyroxene (Cpx) contents, low Al2O3 in major mantle minerals, together with a high Cr content in cogenetic Cr-spinel. Lithospheric mantle-derived ultrapotassic melts have high-Fo olivine and Cr-rich spinel that also indicate an ultra-depleted component in their mantle source. Further resemblance is seen in the Os isotopic variation observed in ophiolites and in the Serbian lithospheric mantle. In both mantle types we observed an unusual increase of Os abundances with increase in radiogenic Os that we interpreted as fluid-induced enrichment of a depleted Proterozoic/Archaean precursor. The enriched component had suprachondritic Os isotopic composition and its ultimate source is attributed to the subducting oceanic slab. On the other hand, a source–melt kinship is established between heterogeneously metasomatised lithospheric mantle and lamproitic lavas through a complex vein + wall rock melting relationship, in which the phlogopite-bearing pyroxenitic metasomes with high 187Re/188Os and extremely radiogenic 187Os/188Os > 0.3 are produced by recycling of a component ultimately derived from the continental crust.We tentatively propose a two-stage process connecting lithospheric mantle with ophiolites and lamproites in a geologically reasonable scenario: i) ancient depleted mantle “rafts” representing fragments of lithospheric mantle “recycled” within the convecting mantle during the early stages of the opening of the Tethys ocean and further refertilized, were enriched by a component with suprachondritic Os isotopic compositions in a supra-subduction oceanic environment, probably during subduction initiation that induced ophiolite emplacement in Jurassic times. Fluid-induced partial melts or fluids derived from oceanic crust enriched these peridotites in radiogenic Os; ii) the second stage represents recycling of the melange material that hosts above mantle blocks, but also a continental crust-derived terrigenous component accreted to the mantle wedge, that will later react with each other, producing heterogeneously distributed metasomes; final activation of these metasomes in Tertiary connects the veined lithospheric mantle and lamproites by vein + wall rock partial melting to generate lamproitic melts. Our data are permissive of the view that the part of the lithospheric mantle under the Balkans was formed in an oceanic environment.  相似文献   

14.
The Dabie ultrahigh-pressure (UHP) metamorphic belt, central China, contains two contrasting types of ultramafic–mafic complex. The Bixiling peridotite in the southern Dabie terrane contains abundant garnet (21–32 vol.%) and thus has high CaO +Al2O3 (9.94–15.3 wt.%). The peridotite also has high REE contents with flat REE patterns, high contents of S and other incompatible trace elements, together with low-Mg# olivine and pyroxene and low Ni and PGE contents. Zircons from this peridotite mostly have low Th/U ratios, interpreted to reflect a metamorphic origin, and give dominantly Triassic ages (ca. 210 Ma). Other zircons with high Th/U ratios give upper intercept ages of 745 Ma. Most zircons have positive ?Hf (+- 3.6 ~ +- 8.1) values with depleted-mantle model ages (TDM) of 0.6–1.0 Ga (mean 0.8 Ga) and crustal model ages (Tcrust) of 0.8–1.4 Ga (mean 1.1 Ga). We interpret that the Bixiling complex was formed as cumulates in a Neoproterozoic asthenosphere-derived magma chamber in the continental crust, and was later carried to garnet-stable depths (ca. ~ 4.4 GPa) during the subduction of the Yangtze Craton in the Triassic. In contrast, the Raobazhai peridotite in the northern Dabie terrane was metamorphosed at lower P/T conditions (i.e. 15 Kb and 1000 °C). All zircon grains from the peridotite yield Triassic ages (ca. 212 Ma) and have negative ?Hf values (? 16.6 ~ ? 3.2), Mesoproterozoic model ages (TDM = 1.0–1.5 Ga) and Paleoproterozoic crustal model ages (Tcrust = 1.5–2.3 Ga). The peridotite is enriched in LREE ((La/Yb)n ≈ 3.5), has high-Mg# olivine and pyroxene, high Ni and PGEs but low Pd/Ir (mean 3.0). It represents a highly refractory residue of partial melting (up to 18%) of primitive mantle, and is similar to the cratonic mantle xenoliths in Phanerozoic igneous rocks from the eastern North China Craton (e.g. Mengyin and Hebi areas). Negative Ce, Eu and HFSE anomalies in the peridotites suggest that their protolith was derived from the shallow part of the mantle wedge (e.g. plagioclase-stable field) of the North China Craton, and was pulled to a deeper level (e.g. spinel-stable field) during the subduction of the Yangtze Craton. The mantle wedge, like peridotitic xenoliths in the Jurassic Xinyang diatremes at the southern edge of the North China Craton, was metasomatised by fluids/melts released from the subducted continental crust. The fragments of this modified mantle wedge were incorporated into the Yangtze crust during its subduction.  相似文献   

15.
Subduction of heterogeneous lithologies (sediments and altered basalts) carries a mixture of volatile components (H2O ± CO2) into the mantle, which are later mobilized during episodes of devolatilization and flux melting. Several petrologic and thermodynamic studies investigated CO2 decarbonation to better understand carbon cycling at convergent margins. A paradox arose when investigations showed little to no decarbonation along present day subduction geotherms at subarc depths despite field based observations. Sediment diapirism is invoked as one of several methods for carbon transfer from the subducting slab. We employ high-resolution 2D petrological–thermomechanical modeling to elucidate the role subduction dynamics has with respect to slab decarbonation and the sediment diapirism hypothesis. Our thermodynamic database is modified to account for H2O–CO2 binary fluids via the following lithologies: GLOSS average sediments (H2O: 7.29 wt.% & CO2: 3.01 wt.%), carbonated altered basalts (H2O: 2.63 wt.% & CO2: 2.90 wt.%), and carbonated peridotites (H2O: 1.98 wt.% & CO2: 1.50 wt.%). We include a CO2 solubility P–x[H2O wt.%] parameterization for sediment melts. We parameterize our model by varying two components: slab age (20, 40, 60, 80 Ma) and convergence velocity (1, 2, 3, 4, 5, 6 cm year 1). 59 numerical models were run and show excellent agreement with the original code base. Three geodynamic regimes showed significant decarbonation. 1) Sedimentary diapirism acts as an efficient physical mechanism for CO2 removal from the slab as it advects into the hotter mantle wedge. 2) If subduction rates are slow, frictional coupling between the subducting and overriding plate occurs. Mafic crust is mechanically incorporated into a section of the lower crust and undergoes decarbonation. 3) During extension and slab rollback, interaction between hot asthenosphere and sediments at shallow depths result in a small window (~ 12.5 Ma) of high integrated CO2 fluxes (205 kg m 3 Ma 1).  相似文献   

16.
The juvenile component of accretionary orogenic belts has been declining since the Archean. As a result, there is often controversy regarding the contribution of oceanic basalts to Phanerozoic crustal growth, as in the case of the Central Asian Orogenic Belt (CAOB). Here we report on three groups of Late Carboniferous (316–305 Ma) granitoids in the western Junggar region of northern Xinjiang, NW China, which is part of the southwestern CAOB. They consist of adakites and I and A-type granites, and as a whole have the most depleted isotopic compositions (εNd(t) = + 6–+9, (87Sr/86Sr)i = 0.7030–0.7045, and εHf(t) = + 12–+16) among the granitoids of the CAOB. These features are nearly identical to those of pre-Permian ophiolites in northern Xinjiang, and are clearly different from those of Carboniferous basalts in the western Junggar region. These relationships indicate that the granitoids were mainly derived from recycled oceanic crust by melting of subducted oceanic crust (e.g., adakites), and of the middle–lower crust of intra-oceanic arc that mainly consisted of oceanic crust (e.g., I and A-type granites). Based on evidence from the CAOB, we suggest that recycling of oceanic crust has made a significant contribution to continental crustal growth and evolution during the Phanerozoic.  相似文献   

17.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

18.
《Precambrian Research》2006,144(1-2):140-165
Rocks exposed in the MacQuoid-Gibson Lakes region, northwest Hearne subdomain, western Churchill Province, Canada comprise three major lithotectonic assemblages: the Principal volcanic belt; the metasedimentary MacQuoid homocline and; the Cross Bay plutonic complex. Neoarchaean supracrustal rocks of the belt range in age from <2745 to <2672 Ma and were intruded during the interval <2689 to 2655 Ma by diverse plutonic units ranging from gabbro through syenogranite, but greatly dominated by tonalite. Volcanic rocks occur only in the Principal volcanic belt and the MacQuoid homocline, are metamorphosed to amphibolite facies and vary from rare pillowed to common massive basalt and andesite, intercalated with less abundant, thin, dacitic to rhyolitic tuffs, lavas and volcaniclastic rocks. Basalt and andesite are dominated by subalkaline, FeOT-rich tholeiites with less common calc-alkaline rocks with higher SiO2 contents and variable trace element contents. Felsic volcanic rocks exhibit calc-alkaline affinities and similarly diverse trace element abundances. The diverse trace element chemistry of the basalt and andesite supports their derivation from a heterogeneous mantle source(s) capable of generating MORB-, Arc-, BABB- and boninite-like rocks. Two geochemically distinct, arc-like suites were generated through contamination of the primary mantle-derived magmas either via assimilation of lower or middle tonalitic crust, or through contamination of their mantle source through subduction. Geochemical features of the felsic volcanic rocks indicate that these formed via both anatexis of crust in the amphibolite ± garnet stability field and via fractionation of more primitive progenitors in mid-upper crustal magma chambers. ɛNdt = 2680 Ma isotopic compositions cluster near depleted mantle, indicating that significant incorporation of older, >2700 Ma crust likely did not occur. ɛNdt = 2680 Ma values for three specimens, one from each of the Arc-like suites and one BABB-like basalt are slightly lower than the remainder, suggesting very minor incorporation of slightly older crust.These features imply that the processes that generated the MacQuoid supracrustal belt required simultaneous tapping of geochemically distinct mantle reservoirs with concomitant anatexis of sialic crust (garnet stability field) and fractionation of felsic magmas in upper crustal magma chambers. Shallow water deposition of abundant volcaniclastic rocks and semipelite along with minor conglomerate and quartzite was broadly contemporaneous with this magmatism. We envisage a geodynamic setting characterized by tectonomagmatic processes similar to those of modern supra-subduction zone back-arc marginal basins such as the Sea of Japan. Therein, an extensional, back-arc setting, likely proximal to continental crust, provides an explanation for a broad swath of diverse mantle-derived rocks intercalated with less common felsic rocks as well as an abundance of immature clastic metasedimentary rocks.  相似文献   

19.
Comparing the early Earth to the present day, geological–geochemical evidence points towards higher mantle potential temperature and a different type of tectonics. In order to investigate possible changes in Precambrian tectonic styles, we conduct 3D high-resolution petrological–thermomechanical numerical modelling experiments for oceanic plate subduction under an active continental margin at a wide range of mantle potential temperature TP (∆ TP = 0  250 K, compared to present day conditions). At present day mantle temperatures (∆ TP = 0 K), results of numerical experiments correspond to modern-style subduction, whereas at higher temperature conditions important systematic changes in the styles of both lithospheric deformation and mantle convection occur. For ∆ TP = 50  100 K a regime of dripping subduction emerges which is still very similar to present day subduction but is characterised by frequent dripping from the slab tip and a loss of coherence of the slab, which suggests a close relationship between dripping subduction and episodic subduction. At further increasing ∆ TP = 150  200 K dripping subduction is observed together with unstable dripping lithosphere, which corresponds to a transitional regime. For ∆ TP = 250 K, presumably equivalent to early Archean, the dominating tectonic style is characterised by small-scale mantle convection, unstable dripping lithosphere, thick basaltic crust and small plates. Even though the initial setup is still defined by present day subduction, this final regime shows many characteristics of plume-lid tectonics. Transition between the two end-members, plume-lid tectonics and plate tectonics, happens gradually and at intermediate temperatures elements of both tectonic regimes are present. We conclude, therefore, that most likely no abrupt geodynamic regime transition point can be specified in the Earth's history and its global geodynamic regime gradually evolved over time from plume-lid tectonics into modern style plate tectonics.  相似文献   

20.
A newly discovered eclogite belt in the eastern part of the Lhasa Block, Tibet, is about 500–1000 m wide and at least 60 km long in an E–W direction. The eclogites occur as tectonic slices in garnet-bearing, mica–quartz schist. They are generally fresh and form thick, massive layers that consist chiefly of garnet (Grt) + omphacite (Omp) + phengite (Phe) + rutile (Rut) + quartz (Qtz). P–T calculations based on the Grt–Omp–Phe mineral assemblage yielded peak metamorphic conditions of 2.7 GPa and 730 °C, close to the phase boundary between coesite and quartz and thus the eclogites can be regarded as part of a very high-pressure metamorphic belt. Petrochemical data suggest that the eclogite protoliths were typical MORB basalts, derived from depleted mantle. SHRIMP U–Pb dating of zircons from the eclogite yielded metamorphic ages ranging from 242 ± 15 to 292 ± 13 Ma, with an average value of 262 ± 5 Ma. The MORB eclogites are interpreted to be remnants of Paleo-Tethyan oceanic lithosphere. The eclogites, along with Permian island arc volcanic rocks to the north, are believed to mark a Carboniferous–Permian suture zone dividing the Lhasa Block into a northern and southern segment. This newly identified suture zone suggests that the border of the Paleo-Tethyan Ocean jumped southward from north of the Bangong-Nujiang suture to within what is now the Lhasa Block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号