首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Stratabound epigenetic sulphide Zn–Pb–Cu ore deposits of the Central African Copperbelt in the Democratic Republic of Congo and Zambia are mostly hosted in deformed shallow marine platform carbonates and associated sedimentary rocks of the Neoproterozoic Katanga Supergroup. Economic orebodies, that also contain variable amounts of minor Cd, Co, Ge, Ag, Re, As, Mo, Ga, and V, occur mainly as irregular pipe-like bodies associated with collapse breccias and faults as well as lenticular bodies subparallel to bedding. Kipushi and Kabwe in the Democratic Republic of the Congo and Zambia, respectively, are the major examples of carbonate-hosted Zn–Pb–Cu mined deposits with important by-products of Ge, Cd, Ag and V in the Lufilian Arc, a major metallogenic province famous for its world-class sediment-hosted stratiform Cu–Co deposits. The carbonate-hosted deposits range in age from Neoproterozoic to early Palaeozoic (680 to 450 Ma). The formation of the relatively older Neoproterozoic deposits is probably related to early collision events during the Lufilian Orogeny, whereas the younger Palaeozoic deposits may be related to post-collisional processes of ore formation. Fluid inclusion and stable isotope data indicate that hydrothermal metal-bearing fluids evolved from formation brines during basin evolution and later tectonogenesis. Ore fluid migration occurred mainly along major thrust zones and other structural discontinuities such as karsts, breccias and faults within the Katangan cover rocks, resulting in ore deposition within favourable structures and reactive carbonates of the Katangan Supergroup.  相似文献   

2.
The Hakkari nonsulfide zinc deposit is situated close to the southeastern border of Turkey. Here both sulfide and nonsulfide Zn  Pb ores are hosted in carbonate rocks of the Jurassic Cudi Group with features typical of carbonate-hosted supergene nonsulfide zinc mineralization. The regional strike extent of the mineralized district is at least 60 km. The age of the supergene deposit has not been determined, but it is probable that the main weathering happened during Upper Tertiary, possibly between Upper Miocene and Lower Pliocene. The Hakkari mineralization can be compared to other carbonate-hosted Zn–Pb deposits in Turkey, and an interpretation made of its geological setting. The zinc mineral association at Hakkari typically comprises smithsonite and hemimorphite, which apparently replace both sulfide minerals and carbonate host rock. Two generations of smithsonite are present: the first is relatively massive, the second occurs as concretions in cavities as a final filling of remnant porosity. Some zinc is also hosted within Fe–Mn-(hydr)oxides. Lead is present in cerussite, but also as partially oxidized galena. Lead can also occur in Mn-(hydr)oxides (max 30% PbO). The features of the supergene mineralization suggest that the Hakkari deposit belongs both to the “direct replacement” and the “wall-rock replacement” types of nonsulfide ores. Mineralization varies in style from tabular bodies of variable thickness (< 0.5 to 13 m) to cross-cutting breccia zones and disseminated ore minerals in pore spaces and fracture planes. At Hakkari a As–Sb–Tl(≫ Hg) geochemical association has been detected, which may point to primary sulfide mineralization, quite different from typical MVT.  相似文献   

3.
4.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

5.
《Applied Geochemistry》2001,16(11-12):1377-1386
The heavy metal contamination and seasonal variation of the metals in soils, plants and waters in the vicinity of an abandoned metalliferous mine in Korea were studied. Elevated levels of Cd, Cu, Pb and Zn were found in tailings with averages of 8.57, 481, 4,450 and 753 mg/kg, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Thus, significant levels of the elements in waters and sediments were found up to 3.3 km downstream from the mining site, especially for Cd and Zn. Enriched concentrations of heavy metals were also found in various plants grown in the vicinity of the mining area, and the metal concentrations in plants increased with those in soils. In a study of seasonal variation on the heavy metals in paddy fields, relatively high concentrations of heavy metals were found in rice leaves and stalks grown under oxidizing conditions rather than a reducing environment (P<0.05).  相似文献   

6.
SHRIMP U–Pb zircon ages are reported from a paragneiss, a pegmatite, a metasomatised metasediment and an amphibolite taken from the upper amphibolite facies host sequence of the Cannington Ag–Pb–Zn deposit at the southeastern margin of the Proterozoic Mt Isa Block. Also reported are ages from a middle amphibolite‐facies metasediment from the Soldiers Cap Group approximately 90 km north of Cannington. The predominantly metasedimentary host rocks of the Cannington deposit were eroded from a terrane containing latest Archaean to earliest Palaeoproterozoic (ca 2600–2300 Ma) and Palaeoproterozoic (ca 1750–1700 Ma) zircon. The ca 1750–1700 Ma group of zircons are consistent with sedimentary provenance from rocks of Cover Sequence 2 age that are now exposed to the north and west of the Cannington deposit. The metasedimentary samples also include a group of zircon grains at ca 1675 Ma, which we interpret as the maximum depositional age of the sedimentary protolith. This is comparable to the maximum depositional age of the metasediment from the Maronan area (ca 1665 Ma) and to previously published data from the Soldiers Cap Group. Metamorphic zircon rims and new zircon grains grew at 1600–1580 Ma during upper amphibolite‐facies metamorphism in metasedimentary and mafic magmatic rocks. Zircon inheritance patterns suggest that sheet‐like pegmatitic intrusions were most likely derived from partial melting of the surrounding metasediments during this period of metamorphism. Some zircon grains from the amphibolite have a morphology consistent with partially recrystallised igneous grains and have apparent ages close to the metamorphic age, although it is not clear whether these represent metamorphic resetting or crystallisation of the magmatic protolith. Pb‐loss during syn‐ to post‐metamorphic metasomatism resulted in partial resetting of zircons from the metasomatised metasediment.  相似文献   

7.
The strata-bound Pb–Zn deposits in western China share many similarities and are controversial in genesis. The large Uragen Pb–Zn deposit is located in the northwestern part of the Kashgar sag, southwest of Tarim Basin, Xinjiang, NW China. With the 980.9 Mt tons of Pb–Zn ores at 0.45%Pb and 2.61%Zn, it is the third largest known Pb–Zn deposits in China. The orebodies are stratiform and stratabound and are predominantly controlled by the Uragen syncline that has an E–W axial trend. Mineralization mostly occurs in sandstones and conglomerates of the Lower Cretaceous Kezilesu Group (K1kz), with a small amount in the Palaeocene limestone. The main ore types consist predominantly of disseminated ore with minor massive ore, veined ore, and breccia ore. The primary metal minerals are composed of sphalerite, galena, pyrite, and minor arsenopyrite and chalcopyrite, and the supergene metal minerals include smithsonite, cegamite, beudantite, jarosite, limonite, and minor hemimorphite. The gangue minerals are composed of dolomite, calcite, quartz, celestite, and gypsium. Our new Rb–Sr isotopic analyses on the separated sphalerite, galena yielded an isochron age of 55.1 ± 1.6 Ma, coeval to an isochron age of 55.4 ± 2.2 Ma by Sm–Nd isotopic data. This age is much younger than the youngest ore-bearing strata (E11, 65.5–61.7 Ma), arguing for an epigenetic origin. The calculated initial 87Sr/86Sr ratio of sulphides is 0.710322, which is much lower than those of basement formation, regional bituminous sandstone, and even the ore-bearing strata, but higher than the regional mantle-derived, alkaline volcanic rocks and marine carbonate. The calculated initial 143Nd/144Nd ratio of calcite and galena is 0.512081. These data suggest that the metals may be chiefly derived from crust, possibly from the minor contribution of mantle materials. Our new-age data, in combination with the previous data, suggest that there probably is a huge medium-low-temperature epigenetic stratabound Pb–Zn belt, which is possibly correlated to the India–Asia collision event.  相似文献   

8.
Base metal–Ag mineralisation at Dikulushi and in other deposits on the Kundelungu Plateau (Democratic Republic of Congo) developed during two episodes. Subeconomic Cu–Pb–Zn–Fe polysulphide ores were generated during the Lufilian Orogeny (c. 520 Ma ago) in a set of E–W- and NE–SW-oriented faults. Their lead has a relatively unradiogenic and internally inhomogeneous isotopic composition (206Pb/204Pb = 18.07–18.49), most likely generated by mixing of Pb from isotopically heterogeneous clastic sources. These sulphides were remobilised and enriched after the Lufilian Orogeny, along reactivated and newly formed NE–SW-oriented faults into a chalcocite-dominated Cu–Ag mineralisation of high economic interest. The chalcocite samples contain only trace amounts of lead and show mostly radiogenic Pb isotope signatures that fall along a linear trend in the 207Pb/204Pb vs. 206Pb/204Pb diagram (206Pb/204Pb = 18.66–23.65; 207Pb/204Pb = 15.72–16.02). These anomalous characteristics reflect a two-stage evolution involving admixture of both radiogenic lead and uranium during a young fluid event possibly c. 100 Ma ago. The Pb isotope systematics of local host rocks to mineralisation also indicate some comparable young disturbance of their U–Th–Pb systems, related to the same event. They could have provided Pb with sufficiently radiogenic compositions that was added to less radiogenic Pb remobilised from precursor Cu–Pb–Zn–Fe polysulphides, whereas the U most likely originated from external sources. Local metal sources are also suggested by the 208Pb/204Pb–206Pb/204Pb systematics of combined ore and rock lead, which indicate a pronounced and diversified lithological control of the immediate host rocks on the chalcocite-dominated Cu–Ag ores. The Pb isotope systematics of polysulphide mineralisation on the Kundelungu Plateau clearly record a diachronous evolution.  相似文献   

9.
The Qin–Hang ore belt in South China, which serves as the boundary between the Yangtze and Cathaysia blocks, is marked by extensive Jurassic porphyry-skarn-metasomatic Cu–Pb–Zn polymetallic mineralization. In this contribution, S and Pb isotopic compositions of the Baoshan Cu–Pb–Zn deposit in the western portion of the Qin–Hang ore belt were analyzed to determine the ore-forming material sources in the area. This is coupled by the first systematic collection, compilation and interpretation of previously published S and Pb isotopic data of multiple sulfide minerals to reveal the metal origin and accumulation mechanism of the Cu–Pb–Zn mineralization from the significant deposits in the region (i.e., Dexing, Qibaoshan, Shuikoushan, Baoshan, Huangshaping, Tongshanling and Dabaoshan). The results show that Cu mineralization is characterized by low and narrow δ34S (‰) range of values (–5 to 6) and Pb isotopic ratios (208Pb/204Pb = 38.0–39.0, 207Pb/204Pb = 15.4–15.8, and 206Pb/204Pb = 17.7–18.7), which are consistent with those of local porphyries. In contrast, the Pb–Zn mineralization reveals higher and more variable δ34S (‰) values (–4 to 18) and Pb isotopic ratios (208Pb/204Pb = 38.0–39.5, 207Pb/204Pb = 15.3–16.0, and 206Pb/204Pb = 18.0–19.0) that correspond to wall-rock and basement rock compositions in the region. This indicates that the sulfur and lead that formed the Cu mineralization in the Qin–Hang ore belt was mainly sourced from regional magmatism with mantle contributions, whereas the sulfur and lead for the Pb–Zn mineralization was likely derived from the host sedimentary rocks and Proterozoic metamorphic basement rocks, respectively. The S and Pb isotopic data, combined with the geochemical signatures of mineralization-related porphyries, suggest that the Cu was sourced from the deeper levels along with mantle-derived magmas. In contrast, the Pb–Zn probably originated from the crust, with partial melting of the crystalline basement in the Cathaysia Block. Consequently, a three-stage genetic model is proposed to explain the ore-forming processes of the Qin–Hang Cu-polymetallic belt in South China.  相似文献   

10.
The Linghou deposit, located near Hangzhou City of Zhejiang Province, eastern China, is a medium-sized polymetallic sulfide deposit associated with granitic intrusion. This deposit is structurally and lithologically controlled and commonly characterized by ore veins or irregular ore lenses. In this deposit, two mineralization events were identified, of which the former produced the Cu–Au–Ag orebodies, while the latter formed Pb–Zn–Cu orebodies. Silicification and calc-silicate (skarn type), phyllic, and carbonate alternation are four principal types of hydrothermal alteration. The early Cu–Au–Ag and late Pb–Zn–Cu mineralizations are characterized by quartz ± sericite + pyrite + chalcopyrite + bornite ± Au–Ag minerals ± magnetite ± molybdenite and calcite + dolomite + sphalerite + pyrite + chalcopyrite + galena, respectively. Calcite clusters and calcite ± quartz vein are formed during the late hydrothermal stage.The NaCl–H2O–CO2 system fluid, coexisting with NaCl–H2O system fluid and showing the similar homogenization temperatures (385 °C and 356 °C, respectively) and different salinities (16.89–21.68 wt.% NaCl eqv. and 7.70–15.53 wt.% NaCl eqv.), suggests that fluid immiscibility occurred during the Cu–Au–Ag mineralization stage and might have given rise to the ore-metal precipitation. The ore-forming fluid of the Pb–Zn–Cu mineralization mainly belongs to the NaCl–H2O–CO2 system of high temperature (~ 401 °C) and mid-high salinity (10.79 wt.% NaCl eqv.).Fluids trapped in the quartz-chalcopyrite vein, Cu–Au–Ag ores, Pb–Zn–Cu ores and calcite clusters yielded δ18OH2O and δD values varying from 5.54‰ to 13.11‰ and from − 71.8‰ to − 105.1‰, respectively, indicating that magmatic fluids may have played an important role in two mineralization events. The δ13CPDB values of the calcite change from − 2.78‰ to − 4.63‰, indicating that the CO32  or CO2 in the ore-forming fluid of the Pb–Zn–Cu mineralization was mainly sourced from the magmatic system, although dissolution of minor marine carbonate may have also occurred during the ore-forming processes. The sulfide minerals have homogeneous lead isotopic compositions with 206Pb/204Pb ranging from 17.958 to 18.587, 207Pb/204Pb ranging from 15.549 to 15.701, and 208Pb/204Pb ranging from 37.976 to 39.052, indicating that metallic elements of the Linghou deposit came from a mixed source involving mantle and crustal components.Based on geological evidence, fluid inclusions, and H–O–C–S–Pb isotopic data, the Linghou polymetallic deposit is interpreted as a high-temperature, skarn-carbonate replacement type. Two types of mineralization are both related to the magmatic–hydrothermal system, with the Cu–Au–Ag mineralization having a close relationship with granodiorite.  相似文献   

11.
The Tianqiao Pb–Zn deposit in the western Yangtze Block, southwest China, is part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province. Ore bodies are hosted in Devonian and Carboniferous carbonate rocks, structurally controlled by a thrust fault and anticline, and carried about 0.38 million tons Pb and Zn metals grading > 15% Pb + Zn. Both massive and disseminated Pb–Zn ores occur either as veinlets or disseminations in dolomitic rocks. They are composed of ore minerals, pyrite, sphalerite and galena, and gangue minerals, calcite and dolomite. δ34S values of sulfide minerals range from + 8.4 to + 14.4‰ and display a decreasing trend from pyrite, sphalerite to galena (δ34Spyrite > δ34Ssphalerite > δ34Sgalena). We interpret that reduced sulfur derived from sedimentary sulfate (gypsum and barite) of the host Devonian to Carboniferous carbonate rocks by thermal–chemical sulfate reduction (TSR). δ13CPDB and δ18OSMOW values of hydrothermal calcite range from –5.3 to –3.4‰ and + 14.9 to + 19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid was a mixture origin of mantle, marine carbonate rocks and sedimentary organic matter. Sulfide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.378 to 18.601, 207Pb/204Pb = 15.519 to 15.811 and 208Pb/204Pb = 38.666 to 39.571) that are plotted in the upper crust Pb evolution curve and overlap with that of Devonian to Carboniferous carbonate rocks and Proterozoic basement rocks in the SYG province. Pb isotope compositions suggest derivation of Pb metal from mixed sources. Sulfide minerals have 87Sr/86Sr ratios ranging from 0.7125 to 0.7167, higher than Sinian to Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than basement rocks. Again, Sr isotope compositions are supportive of a mixture origin of Sr. They have an Rb–Sr isotopic age of 191.9 ± 6.9Ma, possibly reflecting the timing of Pb–Zn mineralization. C–O–S–Pb–Sr isotope compositions of the Tianqiao Pb–Zn deposit indicate a mixed origin of ore-forming fluids, which have Pb–Sr isotope homogenized before the mineralization. The Permian flood basalts acted as an impermeable layer for the Pb–Zn mineralization hosted in the Devonian–Carboniferous carbonate rocks.  相似文献   

12.
The northeastern Gangdese Pb–Zn–Ag–Fe–Mo–W polymetallic belt (NGPB), characterized by skarn and porphyry deposits, is one of the most important metallogenic belts in the Himalaya–Tibetan continental orogenic system. This belt extends for nearly four hundred kilometers along the Luobadui–Milashan Fault in the central Lhasa subterrane, and contains more than 10 large ore deposits with high potential for development. Three major types of mineralization system have been identified: skarn Fe systems, skarn/breccia Pb–Zn–Ag systems, and porphyry/skarn Mo–Cu–W systems. In this study, we conducted a whole-rock geochemical, U–Pb zircon geochronological, and in situ zircon Hf isotopic study of ore-forming rocks in the NGPB, specifically the Jiangga, Jiaduopule, and Rema skarn Fe deposits, and the Yaguila Pb–Zn–Ag deposit. Although some of these deposits (porphyry Mo systems) formed during the post-collisional stage (21–14 Ma), the majority (these three systems) developed during the main (‘soft collision’) stage of the India–Asia continental collision (65–50 Ma). The skarn Fe deposits are commonly associated with granodiorites, monzogranites, and granites, and formed between 65 and 50 Ma. The ore-forming intrusions of the Pb–Zn–Ag deposits are characterized by granite, quartz porphyry, and granite porphyry, which developed in the interval of 65–55 Ma. The ore-forming porphyries in the Sharang Mo deposit, formed at 53 Ma. The rocks from Fe deposits are metaluminous, and have relatively lower SiO2, and higher CaO, MgO, FeO contents than the intrusions associated with Mo and Pb–Zn–Ag mineralization, while the Pb–Zn–Ag deposits are peraluminous, and have high SiO2 and high total alkali concentrations. They all exhibit moderately fractionated REE patterns characterized by lower contents of heavy REE relative to light REE, and they are enriched in large-ion lithophile elements and relatively depleted in high-field-strength elements. Ore-forming granites from Fe deposits display 87Sr/86Sr(i) = 0.7054–0.7074 and εNd(t) =  4.7 to + 1.3, whereas rocks from the Yaguila Pb–Zn–Ag deposit have 87Sr/86Sr(i) = 0.7266–0.7281 and εNd(t) =  13.5 to − 13.3. In situ Lu–Hf isotopic analyses of zircons from Fe deposits show that εHf(t) values range from − 7.3 to + 6.6, with TDM(Hf)C model ages of 712 to 1589 Ma, and Yaguila Pb–Zn–Ag deposit has εHf(t) values from − 13.9 to − 1.3 with TDM(Hf)C model ages of 1216 to 2016 Ma. Combined with existing data from the Sharang Mo deposit, we conclude that the ore-forming intrusions associated with the skarn Fe and porphyry Mo deposits were derived from partial melting of metasomatized lithospheric mantle and rejuvenated lower crust beneath the central Lhasa subterrane, respectively. Melting of the ancient continental material was critical for the development of the Pb–Zn–Ag system. Therefore, it is likely that the source rocks play an important role in determining the metal endowment of intrusions formed during the initial stage of the India–Asia continental collision.  相似文献   

13.
Sulfur-isotope (34S) values and weight (%) of acid-volatile sulfur (AVS), chrome-reducible sulfide (CRS), elemental sulfur (ES), and acid-soluble sulfates were determined in Balya Mine ore rock, mine wastes, and Kocacay River and Lake Manyas sediments. Estimation of isotopic fractionation (34S) between product sulfate and initial CRS (pyrite) was used to evaluate the progress of sulfide oxidation in the mine-waste area. Water- and acid-soluble sulfate produced from different mine-waste samples, such as metallurgical waste (MW) and waste rock (WR), in laboratory experiments also shows distinct 34S values and allows identification of the acid-mine-drainage sources in the mine-waste area. Average 34SSO4values are –1.43 for MW (n=4) and +2.06 for WR (n=8). Short (24 hr) and long (60 days) term leach experiments were considered using alternating wet/dry conditions to simulate sulfate-production capacity and metal-discharge characteristics for MW and WR piles. Release of heavy metals follows the order of Pb2+ >Mn2+ >Zn2+ >Cu2+ for these pile samples. Values of 34SSO4 for river water that was collected after 3–4 h of heavy rainfall are close to values of 34SSO4 for water-soluble sulfates from mine-waste piles used in laboratory leach experiments.This revised version was published in February 2005 with corrections to the placement of the figures.  相似文献   

14.
15.
16.
Zhaxikang is one large Sb–Pb–Zn–Ag deposit located in the North Himalaya of southern Tibet. To date, the genesis of this deposit still remains controversial. Here, we present new pyrite Fe and sphalerite Zn isotopic data for the first three stages of mineralization, Fe–Zn isotopic data for Mn–Fe carbonate that formed during the first two stages of mineralization, and Zn isotopic data for the slate wall rocks of the Jurassic Ridang Formation to discuss the genesis of the Zhaxikang deposit. The overall δ56Fe and δ66Zn values range from −0.80‰ to 0.43‰ and from −0.03‰ to 0.38‰, respectively. The δ56Fe values of Mn–Fe carbonates are lighter than those of associated pyrite in six mineral pairs, indicating that the iron carbonates are preferentially enriched in light Fe isotopes relative to pyrite. The sphalerite has lighter δ66Zn values than associated Mn–Fe carbonates in three mineral pairs.The δ56Fe values of pyrite that formed during the first three stages of mineralization gradually increase from stage 1 (−0.33‰ to −0.09‰) through stage 2 (−0.30‰ to 0.19‰) to stage 3 (0.16‰–0.43‰). In comparison, the sphalerite that formed during these stages has δ66Zn values that gradually decrease from stage 1 (0.16‰–0.35‰) through stage 2 (0.09‰–0.23‰) to stage 3 (−0.03‰ to 0.22‰). These data, in conjunction with the observations of hand specimens and thin sections, suggest that the deposit was overprinted by a second pulse of mineralization. This overprint would account for these Fe–Zn isotopic variations as well as the kinetic Rayleigh fractionation that occurred during mineralization. The temporally increasing δ56Fe and decreasing δ66Zn values recorded in the deposit are also coincident with an increase in alteration, again supporting the existence of two pulses of mineralization. The δ56Fe values of the first pulse of ore-forming fluid were calculated using theoretical equations, yielding values of −0.54‰ to −0.34‰ that overlap with those of submarine hydrothermal solutions (−1‰ to 0‰). However, the δ56Fe values of the stage 3 pyrite are heavier than those of typical submarine hydrothermal solutions, which suggests that the second pulse of mineralization was probably derived from a magmatic hydrothermal fluid. In addition, the second pulse of ore-forming fluid has brought some Fe and taken away parts of Zn, which results the lighter δ66Zn values of sphalerite and heavier δ56Fe values of pyrite from the second pulse of mineralization. Overall, the Zhaxikang deposit records two pulses of mineralization, and the overprint by the second pulse of mineralization causes the lighter δ66Zn values and heavier δ56Fe values of modified samples.  相似文献   

17.
《International Geology Review》2012,54(10):1300-1310
The Tianbaoshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province, is located in the western Yangtze Block and contains 2.6 million tonnes of 10–15 wt.% Pb + Zn metals. Ore bodies occur as vein or tubular types and are hosted in Sinian (late Proterozoic) carbonate rocks and are structurally controlled by the SN-trending Anninghe tectonic belt and NW-trending concealed fractures. The deposits are simple in mineralogy, with sphalerite, galena, pyrite, chalcopyrite, arsenopyrite, freibergite, and pyrargyrite as ore minerals and dolomite, calcite, and quartz as gangue minerals. These phases occur as massive, brecciated, veinlet, and dissemination in dolostone of the upper Sinian Dengying Formation. Hydrogen and oxygen isotope compositions of hydrothermal fluids range from –47.6 to –51.2‰ and –1.7 to +3.7‰, respectively. These data suggest that H2O in hydrothermal fluids had a mixed origin of metamorphic and meteoric waters. Carbon and oxygen isotope compositions range from –6.5 to –4.9‰ and +19.3 to +20.2‰, respectively. These compositions plot in the field between mantle and marine carbonate rocks with a negative correlation, suggesting that CO2 in the ore-forming fluids had multiple sources, including the Permian Emeishan flood basalts, Sinian-to-Permian marine carbonate rocks, and organic matters in Cambrian-to-Permian sedimentary rocks. Sulphur isotope compositions range from –0.4 to +9.6‰, significantly lower than Cambrian-to-Permian seawater sulphate (+15 to +35‰) and sulphate (+15 to +28‰) from evaporates in Cambrian-to-Permian strata, implicating that the S was derived from host-strata evaporates by thermal–chemical sulphate reduction. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios range from 18.110 to 18.596, 15.514 to 15.878, and 38.032 to 39.221, respectively, which plot in field of the upper crust Pb evolution curve, unlike those of Proterozoic basement rocks, Sinian dolostone, Devonian-to-Permian carbonate rocks, and the Permian Emeishan flood basalts, implying complex derivation of Pb metal in the ore-forming fluids. Geological and isotopic studies of the Tianbaoshan Pb–Zn deposit reveal that constituents in the hydrothermal fluids were derived from multiple sources and that fluid mixing was a possible metallogenic mechanism. The studied deposit is not distal magmatic–hydrothermal, sedimentary exhalative (SEDEX), or Mississippi Valley (MVT) types, rather, it represents a unique ore deposit type, named in this article the SYG type.  相似文献   

18.
The Jabali Zn–Pb–Ag deposit is located about 110 km east of Sana'a, the capital of Yemen, along the western border of the Marib-Al-Jawf/Sab'atayn basin. The economic mineralization at Jabali is a nonsulfide deposit, consisting of 8.7 million tons at an average grade of 9.2% zinc, derived from the oxidation of primary sulfides. The rock hosting both primary and secondary ores is a strongly dolomitized carbonate platform limestone of the Jurassic Shuqra Formation (Amran Group). The primary sulfides consist of sphalerite, galena and pyrite/marcasite. Smithsonite is the most abundant economic mineral in the secondary deposit, and is associated with minor hydrozincite, hemimorphite, acanthite and greenockite. Smithsonite occurs as two main generations: smithsonite 1, which replaces both host dolomite and sphalerite, and smithsonite 2, occurring as concretions and vein fillings in the host rock. At the boundary between smithsonite 1 and host dolomite, the latter is widely replaced by broad, irregular bands of Zn-bearing dolomite, where Zn has substituted for Mg. The secondary mineralization evolved through different stages: 1) alteration of original sulfides (sphalerite, pyrite and galena), and release of metals in acid solutions; 2) alteration of dolomite host rock and formation of Zn-bearing dolomite; 3) partial dissolution of dolomite by metal-carrying acid fluids and replacement of dolomite and Zn-bearing dolomite by a first smithsonite phase (smithsonite 1). To this stage also belong the direct replacement of sphalerite and galena by secondary minerals (smithsonite and cerussite); 4) precipitation of a later smithsonite phase (smithsonite 2) in veins and cavities, together with Ag- and Cd-sulfides.The δ18O composition of Jabali smithsonite is generally lower than in other known supergene smithsonites, whereas the carbon isotope composition is in the same range of the negative δ13C values recorded in most supergene nonsulfide ores. Considering that the groundwaters and paleo-groundwaters in this area of Yemen have negative δ18O values, it can be assumed that the Jabali smithsonite precipitated in different stages from a combination of fluids, possibly consisting of local groundwaters variably mixed with low-temperature hydrothermal waters. The carbon isotope composition is interpreted as a result of mixing between carbon from host rock carbonates and soil/atmospheric CO2.The most favorable setting for the development of the Jabali secondary deposit could be placed in the early Miocene (~ 17 Ma), when supergene weathering was favored by major uplift and exhumation resulting from the main phase of Red Sea extension. Low-temperature hydrothermal fluids may have also circulated at the same time, through the magmatically-induced geothermal activity in the area.  相似文献   

19.
The Red Dog ore deposit district in the Brooks Range of northern Alaska is host to several high-grade, shale-hosted Zn + Pb deposits. Due to the complex history and deformation of these ore deposits, the geological and hydrological conditions at the time of formation are poorly understood. Using geological observations and fluid inclusion data as constraints, numerical heat and fluid flow simulations of the Anarraaq ore deposit environment and coupled reactive flow simulations of a section of the ore body were conducted to gain more insight into the conditions of ore body formation. Results suggest that the ore body and associated base metal zonation may have formed by the mixing of oxidized, saline, metal-bearing hydrothermal fluids (<200°C) with reducing, HS-rich pore fluids within radiolarite-rich host rocks. Sphalerite and galena concentrations and base metal sulfide distribution are primarily controlled by the nature of the pore fluids, i.e., the extent and duration of the HS source. Forward modeling results also predict the distribution of pyrite and quartz in agreement with field observations and indicate a reaction front moving from the initial mixing interface into the radiolarite rocks. Heuristic mass calculations suggest that ore grades and base metal accumulation comparable to those found in the field (18% Zn, 5% Pb) are predicted to be reached after about 0.3 My for initial conditions (30 ppm Zn, 3 ppm Pb; 20% deposition efficiency).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号