首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Software-based global positioning system (GPS) receivers perform all the baseband signal processing and the high level functions on a general purpose processor. The heavy computational loads of the signal correlation in baseband processing make it difficult for software receivers to operate in real time. In order to improve the real-time performance, an enhanced bit-wise parallel algorithm has been developed in this study. The enhanced algorithm has been implemented and tested in a 12 channels real-time GPS software receiver. The system consists of a radio frequency front end, a data acquisition board and software that runs on a laptop with a Pentium-M 1.5 GHz processor running the Window® XP operating system. The data acquisition board packs the 2-bit intermediate frequency samples with a 2-bit in/8-bit out shift register and transfers the packed samples to laptop through a USB port. The software running on the laptop performs all the baseband and navigation processing in real time. The test results show that the enhanced algorithm significantly improves the real-time performance of the software receiver by reducing the computational operations for signal correlation by 50% compared with the existing bit-wise parallel algorithm. Furthermore, the enhanced algorithm also reduces the amount of required memory for storing data for signal correlation.  相似文献   

2.
Unlike the conventional hardware approaches to GPS base band signal processing, a software GPS receiver is extremely flexible as it comes with all the associated advantages of a software solution. With a software solution, the improvements of silicon technology can be easily translated into better performance at smaller form factors and lower power consumption, without a redesign and/or change to the ASIC. A general purpose Digital Signal Processor (DSP) can be used effectively for GPS signal processing. The memory and speed resources available determine the algorithms and applications that can be effectively implemented in the receiver. The performance of software GPS receivers will soon be difficult to be surpassed by the hardware counterparts, as high-performance processors become available at low cost. ? 2000 John Wiley & Sons, Inc.  相似文献   

3.
探讨了多系统反射信号接收机GNSS—R的关键技术,介绍了基于FPGA+DSP平台的GNSS—R接收机多系统兼容方法。通过数据插值技术、存储CA码发生器技术、FFT频域搜索CA码相位和载波多普勒频移技术,利用分段积分和FFT技术得到反射信号的复相关功率值等技术,解决了多系统在采样、捕获、跟踪、处理等方面的兼容性问题。搭建了验证系统,实现了对多系统反射信号接收机的信号的兼容处理。  相似文献   

4.
We present a multi-constellation multi-band GNSS software receiver front end based on USRP2, a general purpose radio platform. When integrated with appropriate daughter boards, the USRP2 can be used to collect raw intermediate frequency (IF) data covering the entire GNSS family of signals. In this study, C++ class-based software receiver processing functions were developed to process the IF data for GPS L1, L2C, and L5 and GLONASS L1 and L2 signals collected by the USRP2 front end. The front end performance is evaluated against the outputs of a high end custom front end driven by the same local oscillator and two commercial receivers, all using the same real signal sources. The results show that for GPS signals, the USRP2 front end typically generates carrier-to-noise ratio (C/N 0) at 1–3 and 1–2 dB below that of the high end front end and a NovAtel receiver, respectively. For GLONASS signals, the USRP2 C/N 0 outputs are comparable to those of a Septentrio receiver. The carrier phase noise from the USRP2 outputs is similar to those of the benchmarking devices. These results demonstrate that the USRP2 is a suitable front end for applications, such as ionosphere scintillation studies.  相似文献   

5.
空间数据规模的快速增长对传统矢量数据分析方法提出了更高的计算效率和处理规模要求。随着计算机硬件和软件技术的进步,并行计算为提高GIS中典型几何计算算法的计算效率、扩大问题处理规模提供了有效手段。本文在Visual Studio 2010中,使用标准C++编程语言,基于GDAL(Geospatial Data Abstraction Library)库实现空间数据的读写操作,针对线简化算法的并行化问题,在高性能计算环境下对并行任务调度策略、并行计算粒度、数据分解方法等多个核心内容开展研究。在完成相关串行算法的基础上,实现了该算法的并行化和优化设计,为相关的矢量数据空间分析方法的多核并行优化提供了思路和参考。  相似文献   

6.
This paper outlines the motivation for Global Navigation Satellite System (GNSS) software receivers. Features of traditional and software-based GNSS receiver architectures are highlighted and compared, focusing on the advantages of the software design. The choice of which architecture is advantageous, particular in the case of embedded systems, is present along with design criteria—both for the current environment as well as what can be expected in the future. Electronic Publication  相似文献   

7.
Software Global Navigation Satellite Systems (GNSS) receivers are those that implement signal correlation processing not in hardware, but in their software. The main problem for the development of real-time software (SW) multichannel GNSS receivers is the tremendous amount of calculations to perform signal correlation. The article reviews recent developments of SW GNSS receivers. The emphasis is made on the computationally effective correlation processing algorithms and the optimization of processing allocation to the receiver's hardware (HW) and SW. An architecture is suggested that implements the PRN signals despreading in a special HW preprocessor while all the other correlation processing functions are still kept in SW. The combination of the most time-consuming processing in HW, and all signal structure-dependent processing in SW, enables unique flexibility of sophisticated GNSS receiver design based on inexpensive digital signal processors. ? 2000 John Wiley & Sons, Inc.  相似文献   

8.
传统的基于硬件的接收机由于芯片的封装性很难用来进行通道信号的分析研究,而基于软件无线电技术的软件接收机则很容易做到。软件接收机的跟踪通道信号统计分析可用于接收机算法的测试与比对以及卫星信号性能的分析与评估。这里搭建了GPS软件接收机L1中频数字信号处理平台,对跟踪通道输出的I、Q支路信号进行了均值、标准方差以及均方根(RMS)统计。分析了各统计值与通道对应卫星的高度角、信号强度以及噪声之间的关系。基于统计结果提出了一种估计信道信噪比的方法。最后比较了不同信号采样频率对相关三角形和导航定位解算精度的影响。  相似文献   

9.
在分析传统GPS/GLONASS组合PPP数学模型中忽略GLONASS码IFB不足的基础上,提出一种基于"多参数"的组合PPP与码IFB估计算法。将"频间偏差"与"系统时差"参数进行合并,通过引入多个独立的"时频偏差"参数对组合PPP中的GLONASS码IFB进行函数模型补偿,同时可实现基于单个测站观测数据的码IFB精确估计。对配备6种GNSS品牌接收机的30个IGS站实测数据进行GLONASS码IFB估计与分析。结果表明:各品牌接收机不同频率通道的GLONASS码IFB可达数米,且表现出与频率的明显相关性,但难以通过简单函数建模为其提供精确的先验改正值;相同品牌接收机的GLONASS码IFB整体上具有相似的特性,而在个别测站会表现出异常特征;即使接收机类型、固件版本及天线类型完全相同的测站,GLONASS码IFB值也可能存在显著差异。新算法能实现对GLONASS码IFB的有效补偿,明显加快组合PPP的收敛速度。虽然引入多个附加参数会导致函数模型自由度减小,但对定位精度的影响有限,与传统"单参数"法进行组合PPP的定位精度相当。  相似文献   

10.
基于IGS的L2C信号跟踪站数据验证了具有L2C码的卫星的L2载波的信噪比高于没有L2C码的卫星的L2载波的信噪比,L2载波恢复的数据质量更好.针对不同的接收机,对比分析了C/A码和L2C码多路径效应及观测噪声水平,发现对TRIMBLE NETRS接收机,L2C码误差水平明显高于C/A码,与期望结果相反.  相似文献   

11.
The sampling frequency of a digitized intermediate frequency signal has a strong effect on the measurement accuracy of Global Navigation Satellite System (GNSS) receivers. The delay-locked loop tracking error is significant when the sampling frequency is an integer multiple of the code chipping rate, the so-called commensurate sampling frequency, and the number of distinct instantaneous residual code phases is low. This results in distortions of the correlation shape and discriminator functions that lead to a significant accuracy degradation. These effects are most pronounced when the sampling frequency is low. Notwithstanding, it is generally good for receivers to keep the sampling frequency to a minimum owing to the processing load and power consumption. It creates a challenge for existing GNSS signal processing techniques. Random, sine and sawtooth jitters have been found to mitigate these distortions considerably. A software algorithm and two hardware receiver implementations of these solutions are proposed. A register-based architecture can be directly applied to the conventional receiver architecture, while the increase in resource and power consumption is insignificant. A RAM-based design cannot only considerably minimize utilized resources but also slightly reduce the power consumption compared to the conventional architecture.  相似文献   

12.
Automated GPS processing for global total electron content data   总被引:4,自引:2,他引:4  
A software package known as MIT Automated Processing of GPS (MAPGPS) has been developed to automate the processing of GPS data into global total electron density (TEC) maps. The goal of the MAPGPS software is to produce reliable TEC data automatically, although not yet in real time. Observations are used from all available GPS receivers during all geomagnetic conditions where data has been successfully collected. In this paper, the architecture of the MAPGPS software is described. Particular attention is given to the algorithms used to estimate the individual receiver biases. One of the largest sources of error in estimating TEC from GPS data is the determination of these unknown receiver biases. The MAPGPS approach to solving the receiver bias problem uses three different methods: minimum scalloping, least squares, and zero-TEC. These methods are described in detail, along with their relative performance characteristics. A brief comparison of the JPL and MAPGPS receiver biases is presented, and a possible remaining error source in the receiver bias estimation is discussed. Finally, the Madrigal database, which allows Web access to the MAPGPS TEC data and maps, is described.  相似文献   

13.
软件接收机通道模块设计体现着软件算法的核心,接收机运行控制设计决定着整个软件系统的循环。在接收机通道状态分析的基础上设计实现了GPS单频软件接收机,并对自行开发的C/A码信号仿真器产生的数字中频信号进行了实验,分析了捕获和跟踪状态中通道重要参数的时间序列关系,验证了时域串行搜索捕获策略、超前—滞后非相干码跟踪环路以及直方图位同步算法的正确性和通道模块结构设计的合理性。  相似文献   

14.
BOC(binary offset carrier)信号自相关函数存在多值性,BOC信号的捕获不能简单地移植GPS信号捕获算法。在分析经典并行码相位算法和BOC信号互相关特性基础上,仿真分析了并行码相位搜索算法对BOC信号进行捕获的有效性,并针对经典算法在低信噪比条件下捕获信号存在的不足,对经典算法进行了改进设计,并利用改进算法对多种BOC信号进行了仿真分析。结果表明,本文提出的改进捕获算法适用于BOC(pn,n)信号(p为整数),扩展了经典算法的适用范围,且与经典算法相比,改进捕获算法对所给定BOC信号能够改善捕获信噪比10dB,可显著提高接收机捕获灵敏度,对接收机BOC信号捕获算法设计具有重要意义。  相似文献   

15.
An acquisition method is proposed which saves processing time and rapidly finds the Global Positioning System (GPS) satellite with high receiving power. The idea is to combine two or more Coarse/Acquisition (C/A) codes to process acquisition, thus called “multi-C/A code acquisition method.” The proposed method will change the procedure of conventional Fast Fourier Transform acquisition slightly, and it has the capabilities to combine with other acquisition methods to perform signal acquisition simultaneously. In order to show how this multi-C/A code acquisition method may improve the Time To First Fix at the cold start, the real raw Intermediate Frequency data from a GPS software receiver are used to validate this multi-C/A code acquisition method. The results show that this method can save at least 23% processing time and it is able to detect the satellite more rapidly.  相似文献   

16.
卫星导航信号的非理想性会导致不同接收机之间出现测距偏差,是影响卫星导航系统服务精度和完好性的重要因素。首先,针对北斗系统B1C、B2a新体制信号的非理想性进行分析,利用大口径天线采集了全部北斗三号在轨卫星播发的B1C、B2a信号(共27颗卫星),评估了不同接收带宽、码鉴相间距下测距偏差的大小与变化特点;然后,以双频多星座星基增强服务应用为例,分析了两个信号在相应接收机中的设计约束条件。研究结果发现,在接收机常用的参数范围内,B1C、B2a信号非理想性引入的测距偏差分别不超过0.68 m、0.44 m;在测距偏差小于0.1 m的性能约束下,B1C、B2a信号可用的约束条件参数范围优于国际民航标准草案中的相关要求。  相似文献   

17.
Multipath interference mitigation in GNSS via WRELAX   总被引:1,自引:0,他引:1  
In order to suppress the multipath interference in global navigation satellite system, two algorithms based on NLS (nonlinear least square) parameter estimation are proposed. Instead of the classic delay lock loop, the first proposed algorithm estimates the parameters of the line of sight signal and the multipath interference in the correlation domain. The NLS cost function is solved by WRELAX (weighted Fourier transform and RELAXation), which decouples the multidimensional optimization problem into a sequence of one-dimensional optimization problems in a conceptually and computationally simple way. In order to further reduce the complexity, the second NLS algorithm utilizing the characteristic of the C/A code is proposed, which estimate the parameters in the data domain. Finally, the two proposed algorithms are compared with the existing multipath interference methods and show excellent performance and less computational burden.  相似文献   

18.
Recent studies have shown the capabilities of Global Positioning System (GPS) carrier phases for frequency transfer based on the observations from geodetic GPS receivers driven by stable atomic clocks. This kind of receiver configuration is the kind primarily used within the framework of the International GPS Service (IGS). The International GPS Service/Bureau International des Poids et Mesures (IGS/BIPM) pilot project aims at taking advantage of these GPS receivers to enlarge the network of Time Laboratories contributing to the realization of the International Atomic Time (TAI). In this article, we outline the theory necessary to describe the abilities and limitations of time and frequency transfer using the GPS code and carrier phase observations. We report on several onsite tests and evaluate the present setup of our 12-channel IGS receiver (BRUS), which uses a hydrogen maser as an external frequency reference, to contribute to the IGS/BIPM pilot project. In the initial experimental setup, the receivers had a common external frequency reference; in the second setup, separate external frequency references were used. Independent external clock monitoring provided the necessary information to validate the results. Using two receivers with a common frequency reference and connected to the same antenna, a zero baseline, we were able to use the carrier phase data to derive a frequency stability of 6 × 10−16 for averaging times of one day. The main limitation in the technique originates from small ambient temperature variations of a few degrees Celsius. While these temperature variations have no effect on the functioning of the GPS receiver within the IGS network, they reduce the capacities of the frequency transfer results based on the carrier phase data. We demonstrate that the synchronization offset at the initial measurement epoch can be estimated from a combined use of the code and carrier phase observations. In our test, the discontinuity between two consecutive days was about 140 ps. ? 1999 John Wiley & Sons, Inc.  相似文献   

19.
Carrier phase ambiguity resolution on the fly is investigated using two receiver technologies, namely dual-frequency P code and high performance, single frequency, C/A code receivers. Both receiver types were used simultaneously in a series of land kinematic trials. A least-squares search technique is used to find the correct double difference carrier phase ambiguities. Both C/A and single frequency P code technologies are found to be equivalent and capable of resolving the integer ambiguities on the fly using some 30 to 200 seconds of data under benign multipath conditions. Successful ambiguity resolution on the fly results in cm-level accuracy kinematic positioning. The ambiguity resolution time required and success rate are however found to be strongly dependent on the level of carrier phase multipath and, as a consequence, on the error variance assigned to the carrier phase measurements. The use of widelaning with the dual frequency P code results in ambiguity resolution in seconds. The performance of widelaning is also superior in a comparatively high carrier phase multipath environment.  相似文献   

20.
Due to their low cost and low power consumption, single-frequency GPS receivers are considered suitable for low-cost space applications such as small satellite missions. Recently, requirements have emerged for real-time accurate orbit determination at sub-meter level in order to carry out onboard geocoding of high-resolution imagery, open-loop operation of altimeters and radio occultation. This study proposes an improved real-time kinematic positioning method for LEO satellites using single-frequency receivers. The C/A code and L1 phase are combined to eliminate ionospheric effects. The epoch-differenced carrier phase measurements are utilized to acquire receiver position changes which are further used to smooth the absolute positions. A kinematic Kalman filter is developed to implement kinematic orbit determination. Actual flight data from China’s small satellite SJ-9A are used to test the navigation performance. Results show that the proposed method outperforms traditional kinematic positioning method in terms of accuracy. A 3D position accuracy of 0.72 and 0.79 m has been achieved using the predicted portion of IGS ultra-rapid products and broadcast ephemerides, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号