首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two methods for sampling aggregates in the soil surface under simulated rain were compared using two soil types. Results showed that aggregate size distributions obtained by spatula sampling were not significantly different from those obtained using rings buried in the soil surface, provided both were sampled to the same depth. The effect of transporting samples over a distance of 60 km was non-significant when samples were placed in bottles half-filled with rainwater and transported in an upright position. The per cent aggregates > 0.125 mm was found to be the most suitable index of aggregate stability for both soils.  相似文献   

2.
A series of large rainfall simulator experiments was conducted in 2002 and 2003 on a small plot located in an experimental catchment in the North Island of New Zealand. These experiments measured both runoff and sediment transport under carefully controlled conditions. A physically based hydrological modelling system (SHETRAN) was then applied to reproduce the observed hydrographs and sedigraphs. SHETRAN uses physically based equations to represent flow and sediment transport, and two erodibility coefficients to model detachment of soil particles by raindrop erosion and overland flow erosion. The rate of raindrop erosion also depended on the amount of bare ground under the simulator; this was estimated before each experiment. These erodibility coefficients were calibrated systematically for summer and winter experiments separately, and lower values were obtained for the summer experiments. Earlier studies using small rainfall simulators in the vicinity of the plot also found the soil to be less erodible in summer and autumn. Limited validation of model parameters was carried out using results from a series of autumn experiments. The modelled suspended sediment load was also sensitive to parameters controlling the generation of runoff from the rainfall simulator plot; therefore, we found that accurate runoff predictions were important for the sediment predictions, especially from the experiments where the pasture cover was good and overland flow erosion was the dominant mechanism. The rainfall simulator experiments showed that the mass of suspended sediment increased post‐grazing, and according to the model this was due to raindrop detachment. The results indicated that grazing cattle or sheep on steeply sloping hill‐country paddocks should be carefully managed, especially in winter, to limit the transport of suspended sediment into watercourses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
Badland areas are usually regarded as impermeable zones which generate high runoff and are very vulnerable to sheetwash and rainsplash. To test those considerations sprinkling experiments using two rainfall simulators were carried out on slopes of varying aspect in the northern Negev (Israel). For one unit 1·5 m2 plots were used with rainfall of natural characteristics at 36 mm/hr intensity and 43–48 minute duration, runoff being recorded and water/sediment samples taken every 5 minutes. The second unit was used on 30–50 m2 plots but rainfall energy production was below that of natural rainfall. Results show that due to the high stability and strong flocculation of clay-rich aggregates rainsplash is ineffective in surface sealing so that infiltration capacities remain high despite intense, prolonged rainfall. Aspect differences are reflected in variation of surface properties despite homogenous bed-rock, which cause marked differences in hydrological response. North-facing slopes respond more quickly, more frequently and produce more runoff than south-facing slopes. Non-uniform runoff generation is also seen within plots of one aspect reflecting subtle variations in surface properties. Comparison of rainfall intensity and duration used during the experiments with those prevailing under natural conditions shows that under present day conditions surface flow in the Zin valley badlands must be extremely infrequent and denudation rates very low.  相似文献   

5.
Many pumped rainfall simulators used in soil erosion studies use pulsed rain to control the rainfall intensity. We examined the effect of the rain pulsing on sediment concentration and size using three different pulse cycles with the same rainfall intensity. There was considerable variation in sediment concentration through the pulse cycle: the highest concentration was up to four times that of the lowest concentration. Furthermore, the particle size distribution also varied: the peak median particle size was double the lowest median particle size. The magnitude of differences in sediment concentration and particle size were greater the longer the pulse cycle and these dynamics will vary between rainfall simulators and studies. We suggest the impact of the pulsing on sediment is significant and should be investigated prior to experimentation so that sampling periods are designed to avoid bias introduced by fine temporal scale sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Interrill soil erosion processes and their interaction on low slopes   总被引:5,自引:0,他引:5  
Soil erosion by water is mostly the result of rainfall‐driven and runoff‐driven processes taking place simultaneously during a storm event. However, the effect of interaction between these two erosion processes has received limited attention. Most laboratory experiments indicate that the rate of erosion in a rain‐impacted flow is greater than for un‐impacted flows of similar depth and velocity; however, negative interaction between the two processes has also been reported. There is no provision for any such interaction in any of the current erosion models. This paper reports on the results of a number of exact experiments on three soil types carried out in the flume of Griffith University's large rainfall simulator to study interaction between rain and runoff processes. The results show that interaction is generally positive under approximately steady state condition and there is very limited sign of negative interaction reported by others. Results provide strong evidence that raindrops continuously peel fine sediment from larger stable aggregates. This mechanism could be the reason for positive interaction during simultaneous rainfall and flow driven erosion in well aggregated soils as a result of increased fine particles in the eroded sediment. Strong positive interaction between rain and runoff erosion also occurs for medium to large aggregates. This strongly suggests that mechanisms that are not well understood are operational. It is quite possible that particle movement can be stimulated by rolling or creeping in a size‐selective manner. Indeed, such additional mechanisms may well be largely responsible for the positive interaction observed between rain and surface flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The decay of roughness is an important factor governing surface processes such as infiltration and soil erosion. Thus the decay of surface roughness under different surface conditions was investigated and related to quantitative amounts of soil loss, runoff and sediment concentration in a laboratory experiment. Rainfall with an intensity of 128 mm/h was applied to a bare or mulched surfaces of a sandy loam soil with known surface roughness at specified time intervals. The decay of roughness as expressed by roughness ratio, in this experiment, was better predicted when related to an exponential function of the square root of cumulative kinetic energy of rainfall rather than with the cumulative rainfall. The roughness decay equations in literature did not predict breakdown under mulched surfaces accurately. Thus the exponent parameters of the roughness decay equations were adjusted to reflect the reduced decay occurring under mulched surfaces. In a bare soil, regression equations expressing the dependent variables as a function of initial roughness index were significant, but with low coefficients of determination, being 0·39 for soil loss, 0·12 for runoff and 0·36 for sediment concentration. In addition to initial roughness index, cumulative kinetic energy of rainfall was further included in the regressions. This led to an increase in coefficients of determination, which was 0·81 for soil loss, 0·74 for runoff and 0·49 for sediment concentration. The coefficients of determination (0·87 for soil loss, 0·85 for runoff and 0·51 for sediment concentration) were further increased when the final roughness index was included in addition to initial roughness index and cumulative kinetic energy in the regressions. This work shows that soil loss and runoff could be predicted from bare soil surface provided the initial roughness and the energy of rainfall is known. However, field verifications of these relationships are needed under different tillage tools and under natural rainfall. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
We developed a difference infiltrometer to measure time series of non‐steady infiltration rates during rainstorms at the point scale. The infiltrometer uses two, tipping bucket rain gages. One gage measures rainfall onto, and the other measures runoff from, a small circular plot about 0.5‐m in diameter. The small size allows the infiltration rate to be computed as the difference of the cumulative rainfall and cumulative runoff without having to route water through a large plot. Difference infiltrometers were deployed in an area burned by the 2010 Fourmile Canyon Fire near Boulder, Colorado, USA, and data were collected during the summer of 2011. The difference infiltrometer demonstrated the capability to capture different magnitudes of infiltration rates and temporal variability associated with convective (high intensity, short duration) and cyclonic (low intensity, long duration) rainstorms. Data from the difference infiltrometer were used to estimate saturated hydraulic conductivity of soil affected by the heat from a wildfire. The difference infiltrometer is portable and can be deployed in rugged, steep terrain and does not require the transport of water, as many rainfall simulators require, because it uses natural rainfall. It can be used to assess infiltration models, determine runoff coefficients, identify rainfall depth or rainfall intensity thresholds to initiate runoff, estimate parameters for infiltration models, and compare remediation treatments on disturbed landscapes. The difference infiltrometer can be linked with other types of soil monitoring equipment in long‐term studies for detecting temporal and spatial variability at multiple time scales and in nested designs where it can be linked to hillslope and basin‐scale runoff responses. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

9.
For interrill erosion, raindrop‐induced detachment and transport of sediment by rainfall‐disturbed sheet flow are the predominant processes, while detachment by sheet flow and transport by raindrop impact are negligible. In general, interrill subprocesses are inter‐actively affected by rainfall, soil and surface properties. The objective of this work was to study the relationships among interrill runoff and sediment loss and some selected para‐meters, for cultivated soils in central Greece, and also the development of a formula for predicting single storm sediment delivery. Runoff and soil loss measurement field experiments have been conducted for a 3·5‐year period, under natural storms. The soils studied were developed on Tertiary calcareous materials and Quaternary alluvial deposits and were textured from sandy loam to clay. The second group of soils showed greater susceptibility to sealing and erosion than the first group. Single storm sediment loss was mainly affected by rain and runoff erosivity, being significantly correlated with rain kinetic energy (r = 0·64***), its maximum 30‐minute intensity (r = 0·64***) and runoff amount (r = 0·56***). Runoff had the greatest correlation with rain kinetic energy (r = 0·64***). A complementary effect on soil loss was detected between rain kinetic energy and its maximum 30‐minute intensity. The same was true for rain kinetic energy and topsoil aggregate instability, on surface seal formation and thus on infiltration characteristics and overland flow rate. Empirical analysis showed that the following formula can be used for the successful prediction of sediment delivery (Di): Di = 0·638βEI30tan(θ) (R2 = 0·893***), where β is a topsoil aggregate instability index, E the rain kinetic energy, I30 the maximum 30‐minute rain intensity and θ the slope angle. It describes soil erodibility using a topsoil aggregate instability index, which can be determined easily by a simple laboratory technique, and runoff through the product of this index and rain kinetic energy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
R. M. Bajracharya  R. Lal 《水文研究》1998,12(12):1927-1938
Sealing and crusting of soil surfaces have dramatic effects on water infiltration into and runoff from soils, thereby greatly influencing erosion processes. This study focused on the effect of the initial stage of crusting on inter-rill erosion processes for a crust-prone Alfisol sampled from south-central India. Soil aggregates ranging from 2·4 to 8 mm collected from ploughed (PL) and naturally vegetated (NV) treatments were subjected to rainfall simulation under laboratory conditions. Runoff from PL soil aggregates was 2–2·5 times higher, while percolation was 20–100% lower, than for NV aggregates. Soil wash and splash losses were 0·5–3 times greater for PL than for NV soil. Runoff and inter-rill erosion were significantly higher during the wet simulation run compared with the dry run. The results indicated that NV soil aggregates were more resistant to breakdown from raindrop impact and slaking, and subject to less rapid sealing, than PL soil. Total soil loss was influenced most by initial aggregate stability and the extent of seal development. Splash and wash losses of soil both increased as a result of surface sealing regardless of soil condition for short (30–60 min) rainfall durations. High drying rates resulted in the highest crust bulk densities. Increased crust strength for PL soil compared with NV soil reflected the greater susceptibility of cultivated soil to surface sealing and crusting. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Based on observations of runoff plots and field investigations of gully cross-sections, impacts of various soil and water conservation measures on runoff and sediment yield are analyzed for different rainfall conditions. The results show that antecedent rainfall and rainfall intensity are the main factors affecting the runoff and soil erosion processes. Rainfall events with antecedent rainfall can produce high runoff and sediment yield. Large differences in the characteristics of two rainfall events will result in greater variations of total runoff and sediment yield from the same runoff plot. Under the same soil control measure and rainfall condition, soil and water conservation measures can reduce the impacts of antecedent rainfall and rainfall intensity on runoff and soil erosion. Among various measures, level terrace seems to be the greatest for soil conservation purposes. Combining with engineering measures,Vegetation measures is also effective in controlling runoff and soil erosion. In the initial stage of vegetation enclosure measures, engineering measure is necessary to improve the environment for ecological recovery. Gully head protection can control gully erosion effectively, but the effectiveness of gully head protection would be reduced when rainfall intensity increases. Therefore, the design of a gully head protection structure must be based on local hydrological conditions.  相似文献   

12.
This study examines the size characteristics of sediment removed from a semiarid hillslope by interrill overland flow. Rainfall simulation experiments were conducted on a runoff plot 18 m wide and 35 m long established on a piedmont hillslope in southern Arizona. The top of the plot coincided with the hillslope divide, and its outlet was located within a shallow rill. Samples of runoff were obtained from two cross-sections located in the interrill portion of the plot upslope of the rill and from a calibrated flume through which was directed interrill overland flow reaching the bottom of the plot. Analyses of sediment contained in these samples showed that sediment in interrill flow is finer than the matrix soil. The fineness of the interrill sediment compared to the matrix soil appears to be due to the inability of interrill overland flow to transport the coarser fraction of the sediment supplied to it by raindrop detachment. This finding implies that the rate of soil erosion in interrill areas is not. as is commonly supposed, limited by the rate at which raindrops can detach sediment but by the rate at which they detach sediment of a size that the overland flow is competent to transport. The relative fineness of sediment eroded from this hillslope is consistent with other evidence for the recent evolution of shrub-covered hillslopes in southern Arizona.  相似文献   

13.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The response of runoff and erosion to soil crusts has been extensively investigated in recent decades. However, there have been few attempts to look at the effects of spatial configuration of different soil crusts on erosion processes. Here we investigated the effects of different spatial distributions of physical soil crusts on runoff and erosion in the semi‐arid Loess Plateau region. Soil boxes (1.5 m long × 0.2 m wide) were set to a slope of 17.6% (10°) and simulated rainfall of 120 mm h?1 (60 minutes). The runoff generation and erosion rates were determined for three crust area ratios (depositional crust for 20%, 33%, and 50% of the total slope) and five spatial distribution patterns (depositional crust on the lower, lower‐middle, middle, mid‐upper, and upper slope) of soil crusts. The reduction in sediment loss (‘sediment reduction’) was calculated to evaluate the effects of different spatial distributions of soil crusts on erosion. Sediment yield was influenced by the area ratio and spatial position of different soil crusts. The runoff rate reached a steady state after an initial trend of unsteadily increasing with increasing rainfall duration. Sediment yield was controlled by detachment limitation and then transport limitation under rainfall. The shifting time of erosion from a transport to detachment‐limiting regime decreased with increasing area of depositional crust. No significant differences were observed in the total runoff among treatments, while the total sediment yield varied under different spatial distributions. At the same area ratio, total sediment yield was the largest when the depositional crust was on the upper slope, and it was smallest when the crust was deposited on the lower slope. The sediment reduction of structural crust (42.5–66.5%) was greater than that of depositional crust (16.7–34.3%). These results provide a mechanistic understanding of how different spatial distributions of soil crusts affect runoff and sediment production. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Automated rainfall simulator for variable rainfall on urban green areas   总被引:1,自引:0,他引:1  
Rainfall simulators can enhance our understanding of the hydrologic processes affecting the total runoff to urban drainage systems. This knowledge can be used to improve urban drainage designs. In this study, a rainfall simulator is developed to simulate rainfall on urban green surfaces. The rainfall simulator is controlled by a microcomputer programmed to replicate the temporal variations in rainfall intensity of both historical and synthetic rainfall events with constant rainfall intensity on an area of 1 m2. The performance of the rainfall simulator is tested under laboratory conditions with regard to spatial uniformity of the rainfall, the kinetic energy of the raindrops, and the ability to replicate historical and synthetic rainfall events with temporally varying intensity. The rainfall simulator is applied in the field to evaluate its functionality under field conditions and the influence of wind on simulated rainfall. Finally, a field study is carried out on the relationship between runoff, soil volumetric water content, and surface slope. Performance and field tests show that the simulated rainfall has a uniform spatial distribution, whereas the kinetic energy of the raindrops is slightly higher than that of other comparable rainfall simulators. The rainfall simulator performs best in low wind speed conditions. The simulator performs well in replicating historical and synthetic rainfall events by matching both intensity variations and accumulated rainfall depth. The field study shows good correlation between rainfall, runoff, infiltration, soil water content, and surface slope.  相似文献   

16.
The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall–runoff–erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4–16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the ‘treatment’ parameters affecting the rainfall–runoff–erosion process, use of ANOVA methods were found to be inappropriate; multiple‐factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be adequately scaled up one to two orders of magnitude in terms of land areas considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
The connectivity and upscaling of overland runoff and sediment transport are important issues in hillslope hydrology to identify water flux and sediment transport within landscape. These processes are highly variable in time and space with regard to their interactions with vegetation and soil surface conditions. The generation of overland runoff and its spatial connectivity were examined along a slope to determine the variations in the transport mechanism of runoff and soil particles by rain splash and overland runoff. Field experiments were conducted by erosion plots on a steep hillslope at lengths of 5, 10, and 15 m. The overland runoff connectivity and flow transport distance decreased with the slope length, while spatial variability of infiltration increased significantly with the slope length. Observation of subsurface flow revealed that surface soil and litter layer could have important role in water transport. However, the surface soil water content and water flux transport along the slope was highly variable for different storm events; the variability was related to the complexity of the system, mainly by way of the initial wetness conditions and infiltration characteristics. Only net rain‐splashed soil was measurable, but examination of the water flux, overland runoff and sediment transport connectivity, characteristics of sheetwash, and the variability in spatial infiltration indicated an increase in the contribution of the rain splash transport mechanism along the slope. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Soil moisture dynamics have a significant effect on overland flow generation. Catchment aspect is one of the major controlling factors of overland flow and soil moisture behaviour. A few experimental studies have been carried out in the uneven topography of the Himalayas. This study presents plot‐scale experiments using portable rainfall simulator at an altitude of 1,230 m above mean sea level and modelling of overland flow using observed datasets. Two plots were selected in 2 different aspects of Aglar watershed of Lesser Himalaya; the agro‐forested (AF) plot was positioned at the north aspect whereas the degraded (DE) plot was located at the south aspect of the hillslope. HS flumes and rain gauges were installed to measure the runoff at the outlet of the plot and the rainfall depth during rainfall simulation experiments. Moreover, 10 soil moisture sensors were installed at upslope and downslope locations of both the plots at 5, 15, 25, 35, and 45 cm depth from ground level to capture the soil moisture dynamics. The tests were conducted at intensities of 79.8 and 75 mm/hr in AF plot and 82.2 and 72 mm/hr in the DE plot during Test 1 and Test 2, respectively. The observed data indicate the presence of reinfiltration process only in the AF plot. The high water holding capacity and the presence of reinfiltration process results in less runoff volume in the AF plot compared with the DE plot. The Hortonian overland flow mechanism was found to be the dominant overland flow mechanism as only a few layers of top soil get saturated during all of the rainfall–runoff experiments. The runoff, rainfall, and soil moisture data were subsequently used to calibrate the parameters of HYDRUS‐2D overland flow module to simulate the runoff hydrograph and soil moisture. The components of hydrograph were evaluated in terms of peak discharge, runoff volume and time of concentration, the results were found to be within the satisfactory range. The goodness of fit of simulated hydrographs were more than 0.85 and 0.95 for AF and DE plot, respectively. The model produced satisfactory simulation results of soil moisture for all of the rainfall–runoff experiments. The HYDRUS‐2D overland flow module was found promising to simulate the runoff hydrograph and soil moisture in plot‐scale research.  相似文献   

19.
The interrill erosion for a sandy loam soil   总被引:1,自引:0,他引:1  
This paper resumes a laboratory experience on a slope adjustable plot with the aim of examining the role of rainfall intensity and slope gradient for a sandy loam soil, typical of Southern Italy, with particular initial moisture content. The results of the simulations performed show that a rainfall reduction causes a corresponding percentage reduction of sediment output. A similar behaviour can be attributed to slope gradient, while runoff moderately increases with rainfall intensity but it is not sensitive to slope gradient. Data also highlight that the degree of saturation can affect runoff and soil loss values.  相似文献   

20.
Simulations using a mechanistic model of raindrop driven erosion in rain‐impacted flow were performed with particles travelling by suspension, raindrop induced saltation and flow driven saltation. Results generated by both a high intensity storm, and a less intense one, indicate that, because of the effect of flow depth on the delivery of raindrop energy to the bed, there is a decline in sediment concentration, and hence soil loss per unit area, with slope length when particles are transported by raindrop induced saltation. However, that decline is reversed when the critical velocities that lead to flow driven saltation are episodically exceeded during an event. The simulations were performed on smooth surfaces and a single drop size but the general relationships are likely to apply for rain made up of a wide range of drop size. Although runoff is not always produced uniformly, as a general rule, flow velocities increase with slope length so that, typically, the distance particles travel before being discharged during an event increase with slope length. The effect of slope length on soil loss per unit area is often considered to vary with slope length to a power greater than zero and less that 1·0. The simulations show that effect of slope length on sediment discharge is highly dependent on the variations in runoff response resulting from variations in rainfall duration‐intensity‐infiltration conditions rather than plot length per se. Consequently, predicting soil loss per unit area using slope length with positive powers close to zero when sheet erosion occurs may not be as effective as commonly expected. Erosion by rain‐impacted flow is a complex process and that complexity needs to be considered when analysing the results of experiments associated with rain‐impacted flow under both natural and artificial conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号