首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On 19 September 2003, 40 landslides of 140–18 000 m3 volume occurred within 2·5 km2 on the slopes of Dooncarton Mountain (Republic of Ireland) during a storm that may have exceeded 90 mm within 90 minutes. The landslides were investigated to determine the reasons for such a high density of slope failures. All of the landslides were surveyed within four months, and nine of them were investigated in detail. The six largest landslides, all peat failures, accounted for 57% of the more than 100 000 m3 of material displaced during the event. A consistent sequence of superficial materials was found on the failed hillslopes, including an extensive iron pan at the base of a buried soil horizon 0·3 m below the base of the peat. Morphologically, almost all of the landslides occurred on steep planar slopes or around sharp convexities, with the latter failures developing retrogressively upslope. The only significant relationship found from analysis of 371 subsurface pipes and 142 seepage cracks (defined here as contiguous fissures conducting concentrated subsurface flow) across all the failures was that the thinner the peat cover, the deeper the pipes and seepage cracks occurred below the base of peat. It is concluded that most of the landslides were probably caused by a combination of excess water pressures in the buried soil horizon and the thinner overburden of peat or peaty soil associated with the steeper slope segments. Pipes and seepage cracks formed on the iron pan probably existed prior to the failure event and may have contributed to the high water pressures as rainwater inputs exceeded their discharge capacities. One large peat slide was probably triggered by excess water pressures developed within and between artificial tine cuts. The properties of the blanket peat were generally of little consequence in the occurrence of the landslides, but relict desiccation cracks and other structural weaknesses through the peat mass were probably highly significant. Although several aspects of the peat failures correspond to previously published examples, the context of these failures in terms of the topography and upland catena is distinctive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, rapid topographic changes and increased erosion rates caused by massive slope failures in a glacierized and permafrost‐affected high‐mountain face were investigated with respect to the current climatic change. The study was conducted at one of the highest periglacial rock faces in the European Alps, the east face of Monte Rosa, Italy. Pronounced changes in ice cover and repeated rock and ice avalanche events have been documented in this rock wall since around 1990. The performed multi‐temporal comparison of high‐resolution digital terrain models (DTMs) complemented by detailed analyses of repeat photography represents a unique assessment of topographic changes and slope failures over half a century and reveals a total volume loss in bedrock and steep glaciers in the central part of the face of around 25 × 106 m3 between 1988 and 2007. The high rock and ice avalanche activity translates into an increase in erosion rates of about one order of magnitude during recent decades. The study indicates that changes in atmospheric temperatures and connected changes in ice cover can induce slope destabilization in high‐mountain faces. Analyses of temperature data show that the start of the intense mass movement activity coincided with increased mean annual temperatures in the region around 1990. However, once triggered, mass movement activity seems to be able to proceed in a self‐reinforcing cycle, whereby single mass movement events might be strongly influenced by short‐term extreme temperature events. The investigations suggest a strong stability coupling between steep glaciers and underlying bedrock, as most bedrock instabilities are located in areas where surface ice has disappeared recently and the failure zones are frequently spatially correlated and often develop from lower altitudes progressively upwards. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Large cliff failures involving forward toppling over a basal hinge have occurred on more than half of the plateau edge of Ben Lomond, northeastern Tasmania. This mode of failure, which is readily identified from the columnar structure of the dolerite involved, has affected up to 107 m3 of rock at a time and a total of more than 50 × 106 m3 in all the cases which can still be identified. It represents perhaps the most important form of cliff retreat, amounting to a rate of 0.2 mm yr?1 over the last 100,000 years. Topographic evidence and joint surveys suggest that two different mechanisms have produced the topples on Ben Lomond. One has involved failure in the sediments underlying the dolerite with consequent foundering and cambering of large sections of the plateau edge. This mechanism accounts for relatively few of the Ben Lomond topples, though it includes the largest individual cases. The second mechanism, dominant in most of the topples, involved slab failure in the cliffs. Both modes of failure have been facilitated by vertical weaknesses within the bedrock and both require an initially steep cliff profile. Because of the latter requirement, which is not met on the other mountains of northeastern Tasmania, large-scale topples are found only on Ben Lomond, and only there where glacial steepening of the cliff has been possible. Following the initial failure, topples of both types have migrated downslope by block sliding for distances up to 2 km.  相似文献   

4.
During the 1999 Kocaeli earthquake (Mw=7.4) in Turkey, coastal failures and sea inundation were observed and were particularly concentrated along the margins of Izmit Bay and Lake Sapanca, in pull-apart basins created by stepovers in the fault rupture. Geotechnical site characterization, geologic mapping, liquefaction evaluation, and slope stability analysis were carried out to identify the principal contributing factors of the coastal failures. Results from this study indicate that both liquefaction and tectonic subsidence contributed to the failures and sea inundation within the pull-apart basins. Most of the liquefaction sites were situated at the prograding nose of active delta fans, where the presence of steep slopes coupled with the loose sediments found within young active delta fan deposits resulted in liquefaction-induced slope failures and sea inundation. Liquefaction in other coastal deposits outside the actively prograding delta fans caused limited lateral spreading and only minor sea inundation. Outside the delta fans, where soils were not liquefiable, tectonic subsidence associated with normal faulting was the cause of the observed sea inundation. Generally, tectonic subsidence caused the most severe sea inundation. Based on these observations, the identification of regions susceptible to both tectonic subsidence and liquefaction are important when evaluating seismic hazards.  相似文献   

5.
We use a viscous slide model of Jiang and LeBlond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the M W 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation.  相似文献   

6.
Channels on the north‐facing piedmont of the Sierra Madre range in Cuyama Valley, California have alternated between three process regimes during the late Quaternary: (1) vertical incision into piedmont alluvium and older sedimentary deposits; (2) lateral erosion; and (3) sediment accumulation. The state of the piedmont system at a given time has been controlled by upstream sediment flux, regional tectonic uplift and incision of the axial Cuyama River. To better understand the timing and to attempt to interpret causes of past geomorphological processes on the Sierra Madre piedmont, we mapped the surficial geology and dated alluvial deposits using radiocarbon, cosmogenic and optical dating methods. Four primary episodes of sedimentation have occurred since ca. 100 ka, culminating in the most recent period of extensive piedmont sedimentation between 30 and 20 ka. Fill terraces in Cuyama Valley formed by piedmont sediment accumulation followed by vertical incision and lateral erosion are fairly planar and often mantle strath bedrock surfaces. Their vertical spatial arrangement is a record of progressive regional tectonic uplift and concomitant axial Cuyama River channel incision migrating up tributary piedmont channels. Subparallel longitudinal terrace profiles which have a linear age–elevation relationship indicate that multiple episodes of climatically controlled sedimentation overprints ~1 m kyr?1 of regional uplift affecting the Cuyama River and its tributaries. Sedimentation was probably a result of increased precipitation that caused saturation landsliding in steep catchments. It is possible that increased precipitation during the Last Glacial Maximum was caused by both continental‐scale circulation pattern reorganization and increased Pacific storm frequency and intensity caused by ‘early warming’ of nearby Pacific Ocean surface waters. Older episodes of piedmont sedimentation are difficult to correlate with specific climate regimes, but may correlate with previous periods of increased precipitation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The Dead Sea has been continuously dropping 0·4–1·0 m yr?1 since the middle of the 20th century and thus provides a unique field laboratory for studying in real time the response of drainage systems to a non‐tectonic base‐level fall. The aim of this work is to study the short‐term ongoing erosive response to a rapid base‐level drop in a small, steep‐fronted, erodible fan‐delta setting. The work explores the controls of the steep Qedem fan‐delta, guided by its clinoform structure, on its incision. Longitudinal profiles of the fan‐delta and of its entrenched channel were measured in the field. Sedimentary facies changes – fluviatile, shallow lacustrine and beach – were followed along exposures. The existence of large boulders provided an opportunity to examine the uncertain role of armouring and boulder flux on incision. The field study was combined with digital elevation models (DEMs) that were extracted from pairs of overlapping aerial photos. Maps of erosion and deposition were prepared using a change detection algorithm. The longitudinal profile of the entrenched channel was found to be steep and linear. The outlet temporarily ‘hangs’ elevated and ungraded above the retreating lake level, indicating years without incision flow events, which cause lags in response to the rapid lake level drop. In spite of the large boulders, the small drainage basin and precipitation volume over the basin of the Qedem, the recorded vertical incision rates in the unconsolidated sediments are as high as 0·8 m yr?1, i.e. similar to those of the largest wadis draining to the Dead Sea. The steep front of the fan‐delta is suggested to be a main factor controlling the efficient incision. A unique transport mechanism of rolling boulders, following undercutting, contributed to the entrenchment efficiency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
During Hurricane Mitch in 1998, a debris avalanche occurred at Casita volcano, Nicaragua, resulting in a lahar that killed approximately 2500 people. The failure that initiated the avalanche developed at a pre-existing cliff, part of the headwall of a gravitational slide of approximately 1.8 km2 in plan view that cuts the southern flank of the volcano. Structural analysis, primarily based on a high-resolution DEM, has shown that this slide is caused by edifice deformation. Casita's eastern side is spreading radially outwards, forming a convex–concave profile and steepening original slopes. This deformation is possibly facilitated by millennia of persistent hydrothermal alteration of the volcano's core. The gravity slide has some typical features of smaller slumps, such as steep headwalls, an inner flatter area and a pronounced basal bulge fronted by thrusts. The headwall is the source of the 1998 avalanche, as well as several previous mass movements. Edifice deformation has led to extensive fracturing of the hydrothermally altered andesitic source rock, increasing instability further. Field evidence indicates that the gravity slide is still actively deforming, and with steep headscarps remaining, the hazard of future avalanches is increasing. The analysis presented here shows how small but highly damaging landslides can occur during the deformation of a volcanic edifice. We show that identification of instability is possible with remote sensing data and minimal reconnaissance work, implying the possibility of similar efficient and cost-effective analysis at other volcanoes known to host extensive hydrothermal systems. We demonstrate this with a simple structural analysis of two similar stratovolcanoes, Orosí (Costa Rica) and Maderas (Nicaragua).  相似文献   

9.
Raise Beck is a mountain torrent located in the central Lake District fells, northern England (drainage area of 1·27 km2). The torrent shows evidence of several major flood events, the most recent of which was in January 1995. This event caused a major channel avulsion at the fan apex diverting the main flood flow to the south, blocking the A591 trunk road and causing local flooding. The meteorological conditions associated with this event are described using local rainfall records and climatic data. Records show 164 mm of rainfall in the 24 hours preceding the flood. The peak flood discharge is reconstructed using palaeohydrological and rainfall–runoff methods, which provide discharge values of 27–74 m3 s?1, and 4–6 m3 s?1, respectively. The flood transported boulders with b‐axes up to 1400 mm. These results raise some important general questions about flood estimation in steep mountain catchments. The geomorphological impact of the event is evaluated by comparing aerial photographs from before and after the flood, along with direct field observations. Over the historical timescale the impact and occurrence of flooding is investigated using lichenometry, long‐term rainfall data, and documentary records. Two major historical floods events are identified in the middle of the nineteenth century. The deposits of the recent and historical flood events dominate the sedimentological evidence of flooding at Raise Beck, therefore the catchment is sensitive to high magnitude, low frequency events. Following the 1995 flood much of the lower catchment was channelized using rip‐rap bank protection, re‐establishing flow north towards Thirlmere. The likely success of this management strategy in containing future floods is considered, based on an analysis of channel capacities. It is concluded that the channelization scheme is only a short‐term solution, which would fail to contain the discharge of an event equivalent to the January 1995 flood. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Through examination of the vent region of Volcán Huaynaputina, Peru, we address why some major explosive eruptions do not produce an equivalent caldera at the eruption site. Here, in 1600, more than 11 km3 DRE (VEI 6) were erupted in three stages without developing a volumetrically equivalent caldera. Fieldwork and analysis of aerial photographs reveal evidence for cryptic collapse in the form of two small subsidence structures. The first is a small non-coherent collapse that is superimposed on a cored-out vent. This structure is delimited by a partial ring of steep faults estimated at 0.85 by 0.95 km. Collapse was non-coherent with an inwardly tilted terrace in the north and a southern sector broken up along a pre-existing local fault. Displacement was variable along this fault, but subsidence of approximately 70 m was found and caused the formation of restricted extensional gashes in the periphery. The second subsidence structure developed at the margin of a dome; the structure has a diameter of 0.56 km and crosscuts the non-coherent collapse structure. Subsidence of the dome occurred along a series of up to seven concentric listric faults that together accommodate approximately 14 m of subsidence. Both subsidence structures total 0.043 km3 in volume, and are much smaller than the 11 km3 of erupted magma. Crosscutting relationships show that subsidence occurred during stages II and III when ∼2 km3 was erupted and not during the main plinian eruption of stage I (8.8 km3). The mismatch in erupted volume vs. subsidence volume is the result of a complex plumbing system. The stage I magma that constitutes the bulk of the erupted volume is thought to originate from a ∼20-km-deep regional reservoir based on petrological constraints supported by seismic data. The underpressure resulting from the extraction of a relatively small fraction of magma from the deep reservoir was not sufficient enough to trigger collapse at the surface, but the eruption left a 0.56-km diameter cored-out vent in which a dome was emplaced at the end of stage II. Petrologic evidence suggests that the stage I magma interacted with and remobilized a shallow crystal mush (∼4–6 km) that erupted during stage II and III. As the crystal mush erupted from the shallow reservoir, depressurization led to incremental subsidence of the non-coherent collapse structure. As the stage III eruption waned, local pressure release caused subsidence of the dome. Our findings highlight the importance of a connected magma reservoir, the complexity of the plumbing system, and the pattern of underpressure in controlling the nature of collapse during explosive eruptions. Huaynaputina shows that some major explosive eruptions are not always associated with caldera collapse. Editorial responsibility: J Stix  相似文献   

11.
Kaguyak Caldera lies in a remote corner of Katmai National Park, 375 km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ± 0.2 ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61–67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80 km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5–64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53–74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60 ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200 years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62–65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.  相似文献   

12.
Tenerife is the largest of the seven Canary Islands, encompassing an area of 2,058 km2. It is situated in the Atlantic Ocean between 16–17°W longitude and 28–29°N latitude. The topography of the island is characterized by generally steep slopes. The Teide Volcano has an elevation of 3,718 m. Precipitation is caused mainly by invasions of maritime polar air. Maximum mean precipitation recorded for 25-year period (1940–1965) is 1,000 mm.The fractured volcanic aquifer of the Old Basaltic Series is the main supplier of groundwater in Tenerife. Smaller quantities of groundwater are supplied by the Cañadas Series and minor amounts by alluvial sediments. Groundwater compartments develop in areas of dikes and contacts between permeable and impermeable zones. These compartments are irregular in volume, shape, and structure. The groundwater system forms a tortuous chain of compartments. Water circulates from one groundwater compartment to another through secondary fractures and other permeable elements which branch and intersect. Fractures which extend to the surface play an important role in recharge.The hydrologic system at Tenerife is characterized by three zones: the upper vadose, the lower vadose, and the saturated zone. In both the upper and lower vadose zones the dominant direction of flow is vertical, while in the saturated zone flow is generally oblique toward the sea.  相似文献   

13.
Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west‐central Montana, four sets of six hillslope plots were established to measure first‐year post‐wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment‐producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub‐sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post‐fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10‐min rainfall intensity of 75 mm h?1 caused the highest erosion rates (greater than 20 t ha?1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha?1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

14.
 Investigation of well-exposed volcaniclastic deposits of Shiveluch volcano indicates that large-scale failures have occurred at least eight times in its history: approximately 10,000, 5700, 3700, 2600, 1600, 1000, 600 14C BP and 1964 AD. The volcano was stable during the Late Pleistocene, when a large cone was formed (Old Shiveluch), and became unstable in the Holocene when repetitive collapses of a portion of the edifice (Young Shiveluch) generated debris avalanches. The transition in stability was connected with a change in composition of the erupting magma (increased SiO2 from ca. 55–56% to 60–62%) that resulted in an abrupt increase of viscosity and the production of lava domes. Each failure was triggered by a disturbance of the volcanic edifice related to the ascent of a new batch of viscous magma. The failures occurred before magma intruded into the upper part of the edifice, suggesting that the trigger mechanism was indirectly associated with magma and involved shaking by a moderate to large volcanic earthquake and/or enhancement of edifice pore pressure due to pressurised juvenile gas. The failures typically included: (a) a retrogressive landslide involving backward rotation of slide blocks; (b) fragmentation of the leading blocks and their transformation into a debris avalanche, while the trailing slide blocks decelerate and soon come to rest; and (c) long-distance runout of the avalanche as a transient wave of debris with yield strength that glides on a thin weak layer of mixed facies developed at the avalanche base. All the failures of Young Shiveluch were immediately followed by explosive eruptions that developed along a similar pattern. The slope failure was the first event, followed by a plinian eruption accompanied by partial fountain collapse and the emplacement of pumice flows. In several cases the slope failure depressurised the hydrothermal system to cause phreatic explosions that preceded the magmatic eruption. The collapse-induced plinian eruptions were moderate-sized and ordinary events in the history of the volcano. No evidence for directed blasts was found associated with any of the slope failures. Received: 28 June 1998 / Accepted: 28 March 1999  相似文献   

15.
Longshan Zhao  Rui Hou  Faqi Wu 《水文研究》2019,33(22):2918-2925
Reservoir tillage (RT) improves the soil rainwater harvesting capacity and reduces soil erosion on cropland, but there is some debate regarding its effectiveness. The objective of this study was to further verify the effect of RT on soil erosion and explore the reasons for this effect by analysing microrelief changes during rainfall. Rainfall intensities of 60, 90, and 120 mm/hr and three slope degrees (5, 15, and 25°, representing gentle, medium, and steep slopes) were considered. A smooth surface (SS) served as the control. The microrelief changes were determined based on digital elevation models, which were measured using a laser scanner with a 2‐cm grid before and after rainfall events. The results showed that compared with the values for the SS, RT reduced both the runoff and sediment by approximately 10‐20% on the gentle slope; on the medium slope, although RT also reduced the runoff in the 90‐ and 120‐mm/hr intensity rainfall events, the sediment increased by 158.90% and 246.08%; on the steep slope, the sediment increased by 92.33 to 296.47%. Overall, when the runoff control benefit of RT was lower than 5%, there was no sediment control benefit. RT was effective at controlling soil loss on the gentle slopes but was not effective on the medium and steep slopes. This is because the surface depressions created by RT were filled in with sediment that eroded from the upslopes, and the surface microrelief became smoother, which then caused greater soil and water loss than that on an SS at the later rainfall stage.  相似文献   

16.
The geomorphology of the central Coastal Range, a north-south trending horst along the west coast of northern Calabria, is governed largely by major faults, fault scarps and the distribution of principal rock types, as well as by a variety of slope processes operative in a Mediterranean climate. Segments of the major rivers and streams have three principal orientations parallel to major faults in the study area: northwest right-oblique slip faults (oldest); E-W oblique slip faults; NE left-oblique slip faults; and north-south right oblique normal faults (youngest), all of which cut pre-Tertiary metamorphic rocks, Mesozoic limestone, Miocene molasse and calcarenite. Small, underfit alluvial fans, composed chiefly of locally derived debris flow detritus, are present at the mouths of large, west-flowing canyons, some of which reach eastward to the crest of the mountain range. Not only do the north-south normal faults displace rocks and structures of all orientations, but they also make steep scarps in the small alluvial fans and in sediments of the coastal plain. Locally, some of the scarps are buried by recent debris flow deposits. Incipient young rivers utilized the weaknesses along the major faults and cracks as avenues of erosion. Smaller streams and gullies generally flowed westward downflank of the north-trending horst and incised, thereby, deep, V-shaped canyons; some of them have captured older, SW-flowing canyons. Locally, they were guided in other directions where they encountered faults or tectonic fractures. The rocks present a varied resistance to erosion, depending upon the degree of cementation by groundwater salts, upon the orientation of the foliation, and upon the rocks themselves. Thus, mica schist with a relatively flat foliation forms nearly vertical sea cliffs, but the sea cliffs are more gentle where the foliation is steep or dips towards the sea. Therefore, downslope movements are facilitated by seaward slip on foliation, schistosity, bedding and fault surfaces, and are evinced especially by large and deep pre-Holocene landslides (Sackung) in phyllite having areal dimensions up to 2 Km2. Other downslope processes include surficial creep and soil slip, particularly of highly fractured phyllite and schist, block sliding and rock falls.  相似文献   

17.
Correct and precise age determination of prehistorical catastrophic rock‐slope failures prerequisites any hypotheses relating this type of mass wasting to past climatic regimes or palaeo‐seismic records. Despite good exposure, easy accessibility and a long tradition of absolute dating, the age of the 230 million m3 carbonate‐lithic Tschirgant rock avalanche event of the Eastern Alps (Austria) still is relatively poorly constrained. We herein review the age of mass‐wasting based on a total of 17 absolute ages produced with three different methods (14C, 36Cl, 234U/230Th). Chlorine‐36 (36Cl) cosmogenic surface exposure dating of five boulders of the rock avalanche deposit indicates a mean event age of 3.06 ± 0.62 ka. Uranium‐234/thorium‐230 (234U/230Th) dating of soda‐straw stalactites formed in microcaves beneath boulders indicate mean precipitation ages of three individual soda straws at 3.20 ± 0.26 ka, 3.04 ± 0.10 ka and 2.81 ± 0.15 ka; notwithstanding potential internal errors, these ages provide an ‘older‐than’ (ante quam) proxy for mass‐wasting. Based on radiocarbon ages (nine sites) only, it was previously suggested that the present rock avalanche deposit represents two successive failures (3.75 ± 0.19 ka bp , 3.15 ± 0.19 ka bp ). There is, however, no evidence for two events neither in surface outcrops nor in LiDAR derived imagery and drill logs. The temporal distribution of all absolute ages (14C, 36Cl, 234U/230Th) also does not necessarily indicate two successive events but suggest that a single catastrophic mass‐wasting took place between 3.4 and 2.4 ka bp . Taking into account the maximum age boundary given by reinterpreted radiocarbon datings and the minimum U/Th‐ages of calcite precipitations within the rock avalanche deposits, a most probable event age of 3.01 ± 0.10 ka bp can be proposed. Our results underscore the difficulty to accurately date catastrophic rock slope failures, but also the potential to increase the accuracy of age determination by combining methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
As a response to channelization projects undertaken near the turn of the 20th century and in the late 1960s, upstream reaches and tributaries of the Yalobusha River, Mississippi, USA, have been rejuvenated by upstream‐migrating knickpoints. Sediment and woody vegetation delivered to the channels by mass failure of streambanks has been transported downstream to form a large sediment/debris plug where the downstream end of the channelized reach joins an unmodified sinuous reach. Classification within a model of channel evolution and analysis of thalweg elevations and channel slopes indicates that downstream reaches have equilibrated but that upstream reaches are actively degrading. The beds of degrading reaches are characterized by firm, cohesive clays of two formations of Palaeocene age. The erodibility of these clay beds was determined with a jet‐test device and related to critical shear stresses and erosion rates. Repeated surveys indicated that knickpoint migration rates in these clays varied from 0·7 to 12 m a?1, and that these rates and migration processes are highly dependent upon the bed substrate. Resistant clay beds of the Porters Creek Clay formation have restricted advancement of knickpoints in certain reaches and have caused a shift in channel adjustment processes towards bank failures and channel widening. Channel bank material accounts for at least 85 per cent of the material derived from the channel boundaries of the Yalobusha River system. Strategies to reduce downstream flooding problems while preventing upstream erosion and land loss are being contemplated by action agencies. One such proposal involves removal of the sediment/debris plug. Bank stability analyses that account for pore‐water and confining pressures have been conducted for a range of hydrologic conditions to aid in predicting future channel response. If the sediment/debris plug is removed to improve downstream drainage, care should be taken to provide sufficient time for drainage of groundwater from the channel banks so as not to induce accelerated bank failures. Published in 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The Guadiamar river ?ows from the southern Iberian Massif to the Guadalquivir foreland basin, SW Spain. Its drainage basin displays asymmetries in the stream network, the arrangement of alluvial terraces and the con?guration of the trunk river valley. The stream network asymmetry was studied using morphometric measures of transverse topographic sym‐metry, asymmetry factor and drainage basin shape. The alluvial terraces were studied through the lithologic logs of more than a hundred boreholes and ?eld mapping. The morphometric methods demonstrate a regional tectonic tilting toward the SSE, causing both the migration of the Guadiamar river toward the east and the migration of the Guadiamar tributaries toward the southwest. As a consequence of the Guadiamar river migration, an asymmetric valley developed, with a steep eastern margin caused by river dissection, and a gentle western margin where the main alluvial deposits are found. The ages obtained using the 14C analysis of samples from several alluvial deposits show that the river migration, and thus tilting, has occurred during the Holocene as well as earlier in the Quaternary. This interpretation revises the Guadiamar longitudinal fault assumed by previous studies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A large devastating earthquake with a magnitude of 7.6 struck in Kashmir on Oct. 8, 2005. The largest city influenced by the earthquake was Muzaffarabad. Balakot town was the nearest settlement to the epicenter, and it was the most heavily damaged. The earthquake caused extensive damage to housing and structures founded on loose deposits or weathered/sheared rock masses. Furthermore, extensive slope failures occurred along Neelum and Jhelum valleys, which obstructed both river flow and roadways. In this article, failures of natural and cut slopes as well as other ground failures induced by the earthquake and their geotechnical evaluation are presented, and their implications on civil infrastructures and site selection for reconstruction and rehabilitation are discussed. It is suggested that if housing and constructions on soil slopes containing boulders as observed in Balakot and Muzaffarabad are allowed, there should be a safety zone between the slope crest and allowable construction boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号