首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basin-scale variations in oceanic physical variables are thought to organize patterns of biological response across the Pacific Ocean over decadal time scales. Different physical mechanisms can be responsible for the diverse basin-scale patterns of sea-surface temperature (SST), mixed-layer depth, thermocline depth, and horizontal currents, although they are linked in various ways. In light of various theories and observations, we interpret observed basinwide patterns of decadal-scale variations in upper-ocean temperatures. Evidence so far indicates that large-scale perturbations of the Aleutian Low generate temperature anomalies in the central and eastern North Pacific through the combined action of net surface heat flux, turbulent mixing and Ekman advection. The surface-forced temperature anomalies in the central North Pacific subduct and propagate southwestwards in the ocean thermocline to the subtropics but apparently do not reach the equator. The large-scale Ekman pumping resulting from changes of the Aleutian Low forces western-intensified thermocline depth anomalies that are approximately consistent with Sverdrup theory. These thermocline changes are associated with SST anomalies in the Kuroshio/Oyashio Extension that are of the same sign as those in the central North Pacific, but lagged by several years. The physics of the possible feedback from the SST anomalies to the Aleutian Low, which might close a coupled ocean–atmosphere mode of decadal variability, is poorly understood and is an area of active research. The possible responses of North Pacific Ocean ecosystems to these complicated physical patterns is summarized.  相似文献   

2.
Climate fluctuations, or modes, are largely manifested in terms of coherent, large-scale (3000 km) patterns of anomalous sea-level pressure or geopotential height at various altitudes. It is worthwhile to investigate how these modes relate to the specific processes associated with atmospheric forcing of the ocean, in this case for the southeast Bering Sea. This approach has been termed “downscaling.” Climate-scale patterns in this study are derived from covariance-based empirical orthogonal functions (EOFs) of low-pass filtered (10-day cut-off) 700-mb geopotential height fields for 1958–1999. By design, this EOF analysis elicits sets of patterns for characterizing the variability in the large-scale atmospheric circulation centered on the Bering Sea. Four modes are considered for each of three periods, January–March, April–May, and June–July. These modes are compared with atmospheric circulation patterns formed by compositing 700-mb height anomalies based on the individual elements constituting the local forcing, i.e. the surface heat and momentum fluxes.In general, different aspects of local forcing are associated with different climate modes. In winter, the modes dominating the forcing of sea-ice include considerable interannual variability, but no discernible long-term trends. A prominent shift did occur around 1977 in the sign of a winter mode resembling the Pacific North American pattern; this mode is most significantly related to the local wind-stress curl. In spring, forcing of currents and stratification are related to the two leading climate modes, one resembling the North Pacific (NP) pattern and one reflecting the strength of the Aleutian low; both exhibit long-term trends with implications for the Bering Sea. In summer, an NP-like mode and a mode featuring a center over the Bering Sea include long-term trends with impacts on surface heating and wind mixing, respectively. Rare events, such as a persistent period of strong high pressure or a major storm, also can dominate the summer Bering Sea forcing in particular years.  相似文献   

3.
Three recurring regional patterns of extratropical baroclinic development associated with synoptic‐scale collapses of Northern Hemisphere available potential energy (APE) are identified using a 1979–95 time series derived from the National Centers for Environmental Prediction (NCEP) reanalysis. A time series of the intraseasonal signal (from 1.6 to 180 days) of APE is used to discern an average cycle of approximately 3 days in the APE generation rate d A /d t (referred to as APE depletion rate if negative). An APE depletion event is defined as a fall and subsequent rise in the time series of d A /d t associated with this cycle. We define synoptic‐scale APE collapses as APE depletion events with maximum depletion rates (d A /d t min) and maximum APE falls (Δ A min) of less than −0.145× 106 J m−2 day−1 and −0.280×106 J m−2, respectively. All are cold season (15 October–15 April) events. APE collapses were classified based on the evolution of regional synoptic patterns during the 2 days centered at the time of d A /d t min . All are accompanied by deep tropospheric warming. The west Pacific warm surge (Type A) is driven by cyclogenesis over Japan and anticyclogenesis over the west‐central North Pacific. The Bering warm surge (Type B) is associated with an intense southerly flow across the Bering Strait brought on by cyclogenesis near the Kamchatka Peninsula and an intense anticyclone over Alaska. The Atlantic Canada warm surge (Type C) is characterized by an onshore flow of warm air ahead of a continental storm track over eastern North America.  相似文献   

4.
In 1999, synoptic and hydrological conditions in the western Bering Sea were characterized by negative SST and air temperature anomalies, extensive ice coverage and late melting. Biological processes were also delayed. In 1999, the average zooplankton biomass was 1.76 g/m3, approximately half the average 3.07 g/m3 in 1998. Pacific salmon migrated to the northeastern Kamchatka streams two weeks later. This contrasts with 1997 (spring and summer) and 1998 (summer) when positive SST anomalies were widely distributed throughout the northwestern Bering Sea shelf. Since the second half of the 1990s, seasonal atmospheric processes developed over the western Bering Sea that were similar to those of the cold decades of the 1960–1970s. A meridional atmospheric circulation pattern began to replace zonal transport. Colder Arctic air masses have shifted over the Bering Sea region and shelf water temperatures have cooled considerably with the weakening of zonal atmospheric circulation. Temperature decreased in the cold intermediate layer during its renewal in winter. Besides, oceanic water inflow intensified into the Bering Sea in intermediate layers. Water temperature warmed to 4°C and a double temperature maximum existed in the warm intermediate layer in late summer in both 1997 and 1998. Opposing trends of cold water temperature and a warm intermediate layer led to an increase of vertical gradients in the main thermocline and progressing frontogenesis. It accelerates frontal transport and can be regarded as a chief cause of increased water exchange with the Pacific Ocean.  相似文献   

5.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
白令海是冬季北极海冰变化最明显的区域之一,该区域海冰的季节和长期变化与局地的气候、水文环境和生态系统密切相关,并会影响我国的天气气候过程。为了识别该区冬季海冰的长期变化,基于Hadley中心数据,采用滑动t检验和线性回归分析方法对白令海1960–2020年海冰范围的变化趋势及其空间差异进行分析,并分析了海冰变化对大气环流等大气强迫的影响。结果表明:白令海冬季海冰范围在1960–2020年显著减小,20世纪70年代和2000年前后白令海海冰范围存在显著的均值突变。其过程中伴随着阿留申低压中心低压加强、核心位置向白令海西部偏移以及对应风场分布的变化,这个过程存在一个近20 a周期的振荡。同时,太平洋年代际震荡的相位变化可以通过改变海平面气压来调节经向风,改变进入白令海的热平流,进而影响白令海冬季海冰范围。因此,阿留申低压系统和北太平洋年代际振荡对冬季白令海海冰的变化起到重要的调节作用。  相似文献   

7.
Seasonal and interannual variability of surface chlorophyll concentration in the Bering Sea was examined using Empirical Orthogonal Function (EOF) analysis of data obtained by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from 1998 to 2002. The analysis of normalized monthly fields (removing temporal and spatial monthly means) shows that different temporal and spatial patterns are evident in the eastern and western Bering Sea during the spring bloom period. The first EOF mode explains 30% of the variability and shows how the eastern shelf break region and the western Bering Sea are out of phase during the spring bloom. The second EOF mode (17.6%) indicates a pattern involving the eastern shelf break region and the Kamchatka Basin. This strong east–west signal is linked by both surface winds and light. EOF modes of wind-speed anomalies, derived from Special Sensor Microwave Imager (SSM/I), and photosynthetically active radiance (PAR) from SeaWiFS, show a similar dipole feature where the east–west pattern is related to the position and strength of the Aleutian Low pressure system. In years when the Aleutian Low shifts from west to east, weaker wind stress facilitates the development of stratification resulting in a strong spring bloom in the western Bering Sea. The variability of spring chlorophyll has a strong connection with variability in atmospheric forcing in the Bering Sea.  相似文献   

8.
Relations in year-to-year variability between wintertime Sea-Ice Concentrations (SICs) in the Okhotsk Sea and atmospheric anomalies consisting of zonal and meridional 1000-hPa wind speeds and 850-hPa air temperatures are studied using a singular value decomposition analysis. It is revealed that the late autumn (October–November) atmospheric conditions strongly influence sea-ice variability from the same season (late autumn) through late winter (February—March), in which sea-ice extent is at its maximum. The autumn atmospheric conditions for the positive sea-ice anomalies exhibit cold air temperature anomalies over the Okhotsk Sea and wind anomalies blowing into the Okhotsk Sea from Siberia. These atmospheric conditions yield anomalous ocean-to-atmosphere heat fluxes and cold sea surface temperature anomalies in the Okhotsk Sea. Hence, these results suggest that the atmospheric conditions affect the sea-ice through heat anomalies stored in sea-ice and oceanic fields. The late autumn atmosphere conditions are related to large 700-hPa geopotential height anomalies over the Bering Sea and northern Eurasia, which are related to a stationary Rossby wave propagation over the North Pacific and that from the North Atlantic to Eurasia, respectively. In addition, the late autumn atmospheric preconditioning also plays an important role in the decreasing trend in the Okhotsk sea-ice extent observed from 1980 to the mid-1990s. Based on the lagged sea-ice response to the late autumn atmosphere, a simple seasonal prediction scheme is proposed for the February–March sea-ice extent using four-month leading atmospheric conditions. This scheme explains 45% of the variance of the Okhotsk sea-ice extent.  相似文献   

9.
The interdecadal modulation of interannual variability of the atmosphere and ocean is examined over the North Pacific by using Wavelet Transform combined with Empirical Orthogonal Function (EOF) or Singular Value Decomposition (SVD) analysis. For the period of record 1899–1997, the interannual variability of the wintertime Aleutian Low, identified by either the North Pacific Index or the leading eigenvector (EOF-1) of North Pacific sea level pressure (SLP), exhibits an interdecadal modulation. Interannual variance in the strength of the Aleutian Low was relatively large from the mid-1920s to mid-1940s and in the mid-1980s, but relatively small in the periods from 1899 to the mid-1920s and from the mid-1940s to the mid-1970s. The periods of high (low) interannual variability roughly coincide with pentadecadal regimes having a time averaged relatively intense (weak) Aleutian Low. Consistent with this SLP variability the interannual variance in the zonal wind stress is strengthened in the central North Pacific after the 1970s. The SLP EOF-2, which is related to the North Pacific Oscillation, exhibited a strengthening trend from the beginning of this century to the mid-1960s. After the 1970s, the interannual variance of SLP EOF-2 is generally smaller than that in the period from 1930 to 1970. Similar interdecadal changes in interannual variance are found in expansion coefficients for the first two EOFs of the Pacific sector 500 hPa height field for the period 1946–1993. EOF-1 of Pacific sector 500 hPa corresponds to the Pacific/North American (PNA) teleconnection pattern, while EOF-2 is related to the Western Pacific (WP) pattern. The relative influence of the atmospheric PNA and WP interannual variability on North Pacific SSTs appears to have varied at pentadecadal time scales. Results from an SVD analysis of winter season (December–February) 500 hPa and North Pacific spring season (March–May) SST fields demonstrate that the PNA-related SST anomaly exhibited larger interannual variance after the 1970s, whereas the interannual variance of the WP related SST anomaly is larger before the 1970s. Correlations between the coastal North Pacific SST records and gridded atmospheric field data also change on interdecadal time scales. Our results suggest that the SST records from both the northwest and northeast Pacific coasts were more closely coupled with the PNA teleconnection pattern during the periods of 1925–1947 and 1977–1997 than in the regime from 1948 to 1976. Teleconnections between ENSO and preferred patterns of atmospheric variability over the North Pacific also appear to vary on interdecadal time scales. However, these variations do not reflect a unique regime-dependent influence. Our results indicate that ENSO is primarily related to the PNA (WP) pattern in the first (last) half of the present century. Correlation coefficients between indices for ENSO and PNA-like atmospheric variability are remarkably weak in the period from 1948 to 1976.  相似文献   

10.
利用COADS资料,首先计算了1949-1979年逐月北太平洋洋面的潜热通量与感热通量之和,并进行EOF分解,然后分析它们的时空变化特征。结果表明:1、在北太平洋,季平均热通值的季节变化具有两种形式,而且主要决定于风速值的季节变化,尤以东亚季风的效应为最明显。2、暖池区全年平均的多年月平均热通量及其标准差都居北太平洋诸洋流区之首。3、北太平洋异常热通量场具有最重要的两种类型。1月异常热通量主要类型  相似文献   

11.
Observations of the equilibrium partial pressure of carbon dioxide in the surface waters of the North Pacific Ocean and Bering Sea indicate conditions of local upwelling or vertical mixing near the Aleutian Island passes, seasonal depletion of CO2 in the sea surface by photosynthesis, and conditions of CO2 supersaturation in the surface waters off the mouths of large rivers. Horizontal mixing has a large effect on the PCO2 distribution. The area distribution of carbon dioxide in the surface waters of the Pacific Ocean from 19°N to 55°N latitude and in the Bering Sea is presented.  相似文献   

12.
We examined inflow through Unimak Pass (<200 m deep), which is the only major connection between the shelves of the North Pacific Ocean and the eastern Bering Sea. Geostrophic transport was generally northward from the Gulf of Alaska into the Bering Sea. The flow through the pass appeared to be modulated by the seasonal cycle of freshwater discharge. On shorter time scales, transport also was affected by semi-daily variations in tidal mixing. This effect was significant and not anticipated. Near-bottom currents, measured from moorings, were maximum during winter, and significantly correlated (r=0.7) with the alongshore winds. Although the flow through Unimak Pass transported some nutrients from the North Pacific Ocean, the Gulf of Alaska shelf is not the major source of nutrients to the Bering Sea shelf.  相似文献   

13.
The cold bottom water, formed in the previous winter on the eastern Bering Sea shelf, remains throughout the summer. in order to examine the mechanism for the formation of the cold bottom water, we used minimum water temperature in the cold bottom water observed over the eastern Bering Sea shelf for 30 years. The interannual variation in the minimum water temperature of the cold bottom water was closely related to that of mean air temperature during cooling period at St. Paul Island. The air temperature in previous winter primarily affects the cold bottom water. We estimated decrement of the water temperature due to ice melting with simple box model. It was found with the box model that decreasing of the water temperature and lowering of the salinity depend on ice melting. To investigate the cause of interannual variation in air temperature in winter, we applied EOF analysis to the 500 hPa height. The Pacific/North American pattern (PNA) was related to mean air temperature at St. Paul Island in cooling season and the cold bottom water temperature. These results suggest the connection between ENSO events and warming or cooling in the Bering Sea shelf in winter.  相似文献   

14.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.  相似文献   

16.
A simple dissolved silica (Si) and dissolved oxygen (O) diagram method was applied to study the deep-water circulation in the North Pacific and the following results and conclusion have been obtained. In the abyssal water flowing northward in the western Pacific Si increases with a constant ratio of Si to decreasing O(Si/O=–0.30). The water is designated as the main sequence. In the eastern Pacific the Si-O diagram is characteristic of the location and reflects the degrees of mixing with older waters and of alteration due to decomposition of biogenic material. The Bay of Alaska is found to be a great source of silica in the North Pacific and its bottom water spreads out to the central North Pacific north of 40°N, called here the abyssal front. The younger abyssal water in the Aleutian Trench flowing to the eastern North Pacific north of 40°N comes through the north end of the Kuril-Kamchatka Trench instead of the gap in the Emperor Seamounts at about 46°N. The deep water is almost completely homogenized by active isopycnal mixing and advection when the deep water reaches its upper boundary by upwelling in the western North Pacific including the Bering Sea. Thus the high productivity in the Bering Sea is principally caused neither by the direct supply of abyssal water rich in nutrients nor by the extremely active vertical mixing reaching depths greater than 500 m, but it may be caused simply by the shallower upper boundary of the deep water mass in the Bering Sea, from which nutrients are easily transported to the surface.  相似文献   

17.
It is generally accepted that a climate shift occurred about 1977 that affected the dynamics of North Pacific marine ecosystems. Agreement on the possibility of further climate shifts in 1989 and the late 1990s is yet to be achieved. However, there have been changes in the dynamics of key commercial fishes that indicate changes in their environment occurred in the early 1990s, and possibly around 1998. One method of measuring climate change is to observe the dynamics of species that could be affected.Several studies have described decadal-scale changes in North Pacific climate–ocean conditions. Generally, these studies focus on a single index. Using principal components analysis, we use a composite index based on three aspects of climate ocean conditions: the Aleutian Low Pressure Index, the Pacific Atmospheric Circulation Index and the Pacific Interdecadal Oscillation Index. We link this composite index (Atmospheric Forcing Index) to decadal-scale changes in British Columbia salmon and other fish populations. Around 1989 there was a change from intense Aleutian Lows (above average south-westerly and westerly circulation patterns and warming of coastal sea surface temperatures) to average Aleutian Lows (less frequent south-westerly and westerly circulation and slightly cooler coastal sea surface temperatures in winter). These climate–ocean changes were associated with changes in the abundance and ocean survival of salmon (Oncorhynchus spp.), distribution and spawning behaviour of hake (Merluccius productus) and sardines (Sardinops sagax) and in recruitment patterns of several groundfish species.  相似文献   

18.
Sea surface height anomalies observed by satellites in 1992–2010 are combined with monthly climatologies of temperature and salinity to estimate circulation in the southern Bering Sea. The estimated surface and deep currents are consistent with independent velocity observations by surface drifters and Argo floats parked at 1,000?m. Analysis reveals 1–3-Sv interannual transport variations of the major currents with typical intra-annual variability of 3–7?Sv. On the seasonal scale, the Alaskan Stream transport is well correlated with the Kamchatka (0.81), Near Strait (0.53) and the Bering Slope (0.37) currents. Lagged correlations reveal a gradual increase of the time the lags between the transports of the Alaskan Stream, the Bering Slope Current and the Kamchatka Current, supporting the concept that the Bering Sea basin is ventilated by the waters carried by the Alaskan Stream south of the Aleutian Arc and by the flow through the Near Strait. Correlations of the Bering Sea currents with the Bering Strait transport are dominated by the seasonal cycle. On the interannual time scale, significant negative correlations are diagnosed between the Near Strait transport and the Bering Slope and Alaskan Stream currents. Substantial correlations are also diagnosed between the eddy kinetic energy and Pacific Decadal Oscillation.  相似文献   

19.
Geophysical data on the northern part of the Pacific Ocean were systematized to compile a map of geomagnetic and geothermal studies of the Bering Sea. The absence of reliable data about the formation time of the Bering Sea structures of oceanic and continental origins is noted; this hampered the assessment of the geodynamical processes in the North Pacific. Based on the geophysical data, we estimated the age of the structures of the Bering Sea floor such as the Commander Basin (21 My), the Shirshov Ridge (95 and 33 My in the northern and southern parts, respectively), the Aleutian Basin (70 My), the Vitus Arch (44 My), the Bowers Ridge (30 My), and the Bowers Basin (40 My). These values are confirmed by the geological, geophysical, and kinematic data. A numerical modeling of the formation of extensive regional structures (Emperor Fracture Zone, Chinook Trough, and others) in the Northern Pacific is carried out. A conclusion was made on the basis of the geological and geothermal analysis that the northern and southern parts of the Shirshov Ridge have different geological ages and different tectonic structures. The northern part of the ridge is characterized by an upthrust-nappe terrain origin, while the southern part has originated from a torn-away island arc similar to the origin of the Bowers Ridge. The sea floor of the Aleutian Basin represents a detached part of the Upper Cretaceous Kula plate, on which spreading processes took place in the Vitus Arch area in the Eocene. The final activity phase in the Bering Sea began 21 My B.P. by spreading of the ancient oceanic floor of the Commander Basin. Based on the age estimations of the structures of the Bering Sea floor, the results of the modeling of the process of formation of regional fracture zones and of the geomagnetic, geothermal, tectonic, geological, and structural data, we calculated and compiled a kinematic model (with respect to a hot spot reference system) of the northern part of the Pacific Ocean for 21 My B.P.  相似文献   

20.
A. Zabanbark 《Oceanology》2009,49(5):729-739
The Bering Sea sedimentary basin comprises the Bering Sea and the adjacent intermontane depressions on the continents. It includes the following subordinate sedimentary basins: the Norton; Bethel; Saint Lawrence; Anadyr; Navarin; Khatyrka; Saint George; Bristol; Cook Inlet; and Aleutian consisting of the autonomous Aleutian, Bowers, and Komandor basins. All of them exhibit significant geological similarity. The Middle and Upper Miocene terrigenous sequences, which are petroliferous through the entire periphery of the Pacific Ocean, are characterized by their high petroleum resource potential in the Bering Sea continental margin as well, which is confirmed by the oil and gas pools discovered in neighboring onshore lowlands. The younger (Pliocene) and older (up to Upper Cretaceous) sedimentary formations are also promising with respect to hydrocarbons. The integral potential oil and gas resources of the Bering Sea sedimentary basin, including the continental slopes, are estimated by the US Geological Survey to be 1120 × 106 t and 965 × 109 m3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号