首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PM10 samples were collected over three years at Monzenmachi, the Japan Sea coast, the Noto Peninsula, Ishikawa, Japan from January 17, 2001 to December 18, 2003, using a high volume air sampler with quartz filters. The concentrations of the water-soluble inorganic ions in PM10 were determined with using ion chromatography. By analyzing the characteristics of these, the evidences were found that the Asian outflow had an obviously influence on the air quality at our study site. The results were as follows: the secondary pollutants SO42−, NO3 and NH4+ were the primary water-soluble inorganic ions at our study site. The monthly mean concentrations of SO42−, NH4+, NO3 and Ca2+ have prominent peak in spring due to the strong influence of the Asian continent outflow—these according to backward air trajectory analysis, the maximum of which were 6.09 for nss-SO42− in May, 2.87 for NO3 and 0.68 μg m−3 for nss-Ca2+ in April, respectively. Comparable to similar data reported from various points around East Asia, it had the characteristics of a polluted coastal area at our study site. The concentration of nss-Ca2+ in PM10 drastically increased when the Asian dust invaded, the mean value during the Asian dust days(AD) was 0.86 μg m−3, about 4 times higher than those of normal days (NAD). Meanwhile, the mean concentrations of nss-SO42−, NO3 and NH4+ in AD periods were higher than those in NAD periods which were 5.87, 1.76 and 1.82 μg m−3, respectively, it is due to the interaction between dust and secondary particles during the long-range transport of dust storms. Finally, according to the source apportionment with positive matrix factorization (PMF) method in this study, the major source profiles of PM10 at our study site were categorized as (1) marine salt, (2) secondary sulfate, (3) secondary nitrate and (4) crustal source.  相似文献   

2.
The compositions of TSP between AD and NAD storm periods were compared to study their long-term variations and chemical characteristics. TSP samples were collected at Gosan site in Jeju Island of Korea from February to May of 1992–2004. The major ionic and elemental species of TSP aerosols were analyzed. During AD periods, the concentrations of crust components (nss-Ca2+, Al, Fe, Ca, Mg, Ba, Sr, Ti) increased remarkably, and the concentrations of anthropogenic components (nss-SO42−, NO3, S, Zn, Pb, Cr, Ni, Cd), with the exception of NH4+, increased weakly. The concentration ratios of all major components between AD and NAD periods showed ranges from 1.2 to 8.5, except for NH4+. The slope of the linear regression indicated that the contribution of CO32− may have comprised up to 17% of the total anions. Our results suggested that the AD storm greatly influenced TSP compositions. Linear regression analyses indicated that NH4+ was not correlated with NO3, but highly correlated with nss-SO42− during both periods. The nss-SO42− was also correlated with NH4+, K+, nss-Mg2+, and nss-Ca2+ during both periods. Interestingly, NO3 was associated with nss-Ca2+ and nss-Mg2+ during AD periods. Of the metal elements, Fe, Ca, Mg, Ti, Mn, Ba, Sr, V, and Co were highly correlated with Al during both periods, signifying that these metals were mostly originated from soils.  相似文献   

3.
Aerosol and rain samples were collected between 48°N and 55°S during the KH-08-2 and MR08-06 cruises conducted over the North and South Pacific Ocean in 2008 and 2009, to estimate dry and wet deposition fluxes of atmospheric inorganic nitrogen (N). Inorganic N in aerosols was composed of ~68% NH4+ and ~32% NO3 (median values for all data), with ~81% and ~45% of each species being present on fine mode aerosol, respectively. Concentrations of NH4+ and NO3 in rainwater ranged from 1.7–55 μmol L−1 and 0.16–18 μmol L−1, respectively, accounting for ~87% by NH4+ and ~13% by NO3 of total inorganic N (median values for all data). A significant correlation (r = 0.74, p < 0.05, n = 10) between NH4+ and methanesulfonic acid (MSA) was found in rainwater samples collected over the South Pacific, whereas no significant correlations were found between NH4+ and MSA in rainwater collected over the subarctic (r = 0.42, p > 0.1, n = 6) and subtropical (r = 0.33, p > 0.5, n = 6) western North Pacific, suggesting that emissions of ammonia (NH3) by marine biological activity from the ocean could become a significant source of NH4+ over the South Pacific. While NO3 was the dominant inorganic N species in dry deposition, inorganic N supplied to surface waters by wet deposition was predominantly by NH4+ (42–99% of the wet deposition fluxes for total inorganic N). We estimated mean total (dry + wet) deposition fluxes of atmospheric total inorganic N in the Pacific Ocean to be 32–64 μmol m−2 d−1, with 66–99% of this by wet deposition, indicating that wet deposition plays a more important role in the supply of atmospheric inorganic N than dry deposition.  相似文献   

4.
Both aerosol and rainwater samples were collected and analyzed for ionic species at a coastal site in Southeast Asia over a period of 9 months (January–September 2006) covering different monsoons. In general, the occurrence and distribution of ionic species showed a distinct seasonal variation in response to changes in air mass origins. Real-time physical characterization of aerosol particles during rain events showed changes in particle number distributions which were used to assess particle removal processes associated with precipitation, or scavenging. The mean scavenging coefficients for particles in the range 10–500 nm and 500–10 μm were 7.0 × 10−5 ± 2.8 × 10−5 s−1 and 1.9 × 10−4 ± 1.6 × 10−5 s−1, respectively. A critical analysis of the scavenging coefficients obtained from this study suggested that the wet removal of aerosol particles was greatly influenced by rain intensity, and was particle size-dependent as well. The scavenging ratios, another parameter used to characterize particle removal processes by precipitation, for NH4 +, Cl, SO4 2−, and NO3 were found to be higher than those of Na+, K+, and Ca2+ of oceanic and crustal origins. This enrichment implied that gaseous species NH3, HCl, and HNO3 could also be washed out readily. These additional sources of ions in precipitation presumably counter-balanced the dilution effect caused by high total precipitation volume in the marine and tropical area.  相似文献   

5.
Secondary aerosol formation was studied at Allahabad in the Indo-Gangetic region during a field campaign called Land Campaign-II in December 2004 (northern winter). Regional source locations of the ionic species in PM10 were identified by using Potential Source Contribution Function (PSCF analysis). On an average, the concentration of water soluble inorganic ions (sum of anions and cations) was 63.2 μgm−3. Amongst the water soluble ions, average NO3 concentration was the highest (25.0 μgm−3) followed by SO42− (15.8 μgm−3) and NH4+ (13.8 μgm−3) concentrations. These species, contributed 87% of the total mass of water soluble species, indicating that most of the water soluble PM10 was composed of NH4NO3 and (NH4)2SO4/NH4HSO4 or (NH4)3H(SO4)2 particles. Further, the concentrations of SO42−, NO3, and NH4+ aerosols increased at high relative humidity levels up to the deliquescence point (∼63% RH) for salts of these species suggesting that high humidity levels favor the conversion and partitioning of gaseous SO2, NOx, and NH3 to their aerosol phase. Additionally, lowering of ambient temperature as the winter progressed also resulted in an increase of NO3 and NH4+ concentrations, probably due to the semi volatile nature of ammonium nitrate. PSCF analysis identified regions along the Indo-Gangetic Plain (IGP) including Northern and Central Uttar Pradesh, Punjab, Haryana, Northern Pakistan, and parts of Rajasthan as source regions of airborne nitrate. Similar source regions, along with Northeastern Madhya Pradesh were identified for sulfate.  相似文献   

6.
Intensive measurements of gas and aerosol for 2 weeks were carried out at Qingdao (gas and aerosol in 2000, 2001 and 2002), Fenghuangshan (gas and aerosol in 2000 and 2001), and Dalian (aerosol in 2002) in the winter–spring period. High SO2 episodes were observed on 18 January 2000 at both Qingdao and Fenghuangshan. According to back trajectory calculations and analysis of gaseous species, high SO2 episodes were caused by local pollution and transport.Nitrate, sulfate and ammonium were the major species in PM2.5. Mass fractions of NO3, nss-SO42− and NH4+ at Qingdao in 2002 were 10%, 12% and 5.5% for PM2.5, respectively, which were higher than that of nss-Ca2+ (1%). Chemical compositions observed at Dalian and Fenghuangshan were similar to those at Qingdao. The mass ratio of nss-SO42−/SO2 at Qingdao in winter was low (< 1.2), indicating that sulfate was probably produced by the slow oxidation of SO2 in the gas phase and/or was transported from outside of Qingdao in winter. The equivalent ratio of NH4+ to nss-SO42− was 1.39, suggesting that ammonium sulfate was one of the major chemical compositions in PM2.5. The NO3/SO42− ratio at Qingdao was higher than that at remote places in East Asia. Gas and aerosol data obtained at Fenghuangshan were similar to data at Qingdao, suggesting that emissions from small cities may have a great influence on pollution in northern China.  相似文献   

7.
《Atmospheric Research》2007,83(3-4):688-697
Intensive measurements of gas and aerosol for 2 weeks were carried out at Qingdao (gas and aerosol in 2000, 2001 and 2002), Fenghuangshan (gas and aerosol in 2000 and 2001), and Dalian (aerosol in 2002) in the winter–spring period. High SO2 episodes were observed on 18 January 2000 at both Qingdao and Fenghuangshan. According to back trajectory calculations and analysis of gaseous species, high SO2 episodes were caused by local pollution and transport.Nitrate, sulfate and ammonium were the major species in PM2.5. Mass fractions of NO3, nss-SO42− and NH4+ at Qingdao in 2002 were 10%, 12% and 5.5% for PM2.5, respectively, which were higher than that of nss-Ca2+ (1%). Chemical compositions observed at Dalian and Fenghuangshan were similar to those at Qingdao. The mass ratio of nss-SO42−/SO2 at Qingdao in winter was low (< 1.2), indicating that sulfate was probably produced by the slow oxidation of SO2 in the gas phase and/or was transported from outside of Qingdao in winter. The equivalent ratio of NH4+ to nss-SO42− was 1.39, suggesting that ammonium sulfate was one of the major chemical compositions in PM2.5. The NO3/SO42− ratio at Qingdao was higher than that at remote places in East Asia. Gas and aerosol data obtained at Fenghuangshan were similar to data at Qingdao, suggesting that emissions from small cities may have a great influence on pollution in northern China.  相似文献   

8.
The new European Council Directive (PE-CONS 3696/07) frames the inhalable (PM10) and fine particles (PM2.5) on priority to chemically characterize these fractions in order to understand their possible relation with health effects. Considering this, PM2.5 was collected during four different seasons to evaluate the relative abundance of bulk elements (Cl, S, Si, Al, Br, Cu, Fe, Ti, Ca, K, Pb, Zn, Ni, Mn, Cr and V) and water soluble ions (F, Cl, NO2 , NO3 , SO4 2−, Na+, NH4 +, Ca2+ and Mg2+) over Menen, a Belgian city near the French border. The air quality over Menen is influenced by industrialized regions on both sides of the border. The most abundant ionic species were NO3 , SO4 2− and NH4 +, and they showed distinct seasonal variation. The elevated levels of NO3 during spring and summer were found to be related to the larger availability of the NOx precursor. The various elemental species analyzed were distinguished into crustal and anthropogenic source categories. The dominating elements were S and Cl in the PM2.5 particles. The anthropogenic fraction (e.g. Zn, Pb, and Cu) shows a more scattered abundance. Furthermore, the ions and elemental data were also processed using principal component analysis and cluster analysis to identify their sources and chemistry. These approach identifies anthropogenic (traffic and industrial) emissions as a major source for fine particles. The variations in the natural/anthropogenic fractions of PM2.5 were also found to be a function of meteorological conditions as well as of long-range transport of air masses from the industrialized regions of the continent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Cloud/fog water samples were collected at Daekwanreung (840 m msl), a ridge site, in South Korea, from March 2002 to September 2003, by using a Caltech type, self fabricated active strand cloud water collector. The pH, electrical conductivity and major ion concentrations were analyzed. The cloud water pH ranged from 3.6 to 6.8 with an average of 5.2, which was close to the atmospheric neutral point. However, the pH calculated from average concentrations of H+ was 4.7, indicating the cloud/fog water was weakly acidified. SO4 2−, NO3 and NH4 + are predominant ions of which average concentrations were 203.1, 128.1, and 211.7 μeq⋅L−1, respectively. Samples were categorized into four groups by applying 48-hour back trajectory analysis, using the HYbrid Single-Particle Largrangian Integrated Trajectory (HYSPLIT) model. Chemical compositions for the four cases significantly differed from each other. For air masses transported from the East Sea (group E), sea salt concentrations, including Na+, Cl Mg2+, were relatively high. Principal acidifying pollutants, such as NO3 and nss-SO4 2−, significantly increased in the case of air masses transported from the Northeast Asian continent through North Korea (group N) and air masses from the Seoul metropolitan area (group W). However, the mean pH of group N was the highest while the mean pH of group W was the lowest. This suggests that most NO3 and nss-SO4 2− in cloud/fog water was neutralized by ammonia and calcium compounds under the influence of air masses transported from Northeast Asia. N/S ratio for the group W was significantly higher than those for the other three groups, suggesting nitrogen species transported from the Seoul metropolitan area contributed to acidification of cloud/fog water at Daekwanreung. Principle Component analysis (PCA) was applied to the cloud/fog water data for presenting characteristics in the four different categories.  相似文献   

10.
Factors Influencing Nitrogen Speciation in Coastal Rainwater   总被引:1,自引:0,他引:1  
Rainwater was collected from 129 rain events between February 2002 and August 2003 and analyzed for ammonium (NH4+), nitrate (NO3), organic nitrogen (ON) and free amino acids (AA). Inorganic nitrogen (NO3 + NH4+) was the dominant form of N representing 85% of total nitrogen based on volume-weighted averages. The remainder of the N occurred as organic nitrogen species of which free amino acids contribute approximately 17%. A significant, and in some cases the majority (> 75%), of the remaining ON could be accounted for by macromolecular uncharacterized humic like substances. This has important ramifications with respect to the long range transport of atmospheric ON because humic materials are recalcitrant and therefore may travel long distances from their source. There was a distinct seasonality to the N speciation data with maximum concentrations of NH4+, ON and AA occurring in the spring. Air-mass back trajectory analysis indicates there is a strong anthropogenic component to the NO3, NH4+ and AA signal but not ON. There was a strong positive correlation between amino acid concentrations and ammonium which suggests they have similar sources and sinks in rainwater. Finally, large episodic additions of NH4+ and AA during tropical events could significantly impact short term bioavailable N budgets in estuaries impacted by these storms. Approximately three times as much NH4+ and AA were deposited during Hurricane Isabel (317 μ moles ⋅ m−2 and 84 μ moles ⋅ m−2 respectively) compared to the mean impact of average summertime rain events at this location.  相似文献   

11.
Summary Net Ecosystem CO2 Exchange (NEE) was studied during the summer season (June–August) at a high Arctic heath ecosystem for 5 years in Zackenberg, NE Greenland. Integrated over the 80 day summer season, the heath is presently a sink ranging from −1.4 g C m−2 in 1997 to −23.3 g C m−2 in 2003. The results indicate that photosynthesis might be more variable than ecosystem respiration on the seasonal timescale. The years focused on in this paper differ climatically, which is reflected in the measured fluxes. The environmental conditions during the five years strongly indicated that time of snow-melt and air temperature during the growing season are closely related to the interannual variation in the measured fluxes of CO2 at the heath. Our estimates suggest that net ecosystem CO2 uptake is enhanced by 0.16 g C m−2 per increase in growing degree-days during the period of growth. This study emphasises that increased summer time air temperatures are favourable for this particular ecosystem in terms of carbon accumulation.  相似文献   

12.
Gaseous pollutants and PM2.5 aerosol particles were investigated during a tropical storm and an air pollution episode in southern Taiwan. Field sampling and chemical analysis of particulate matter and gaseous pollutants were conducted in Daliao and Tzouying in the Kaohsiung area, using a denuder-filter pack system during the period of 22 October to 3 November 2004. Sulfate, nitrate and ammonium were the major ionic species in the PM2.5, accounting for 46 and 39% of the PM2.5 for Daliao and Tzouying, respectively. Higher PM2.5, Cl?, NO3? and NH4+, HNO2 and NH3 concentrations were found at night in both stations, whereas higher HNO3 was found during the day. In general, higher PM2.5, HCl, NH3, SO2, Cl?, NO3?, SO42? and NH4+ concentrations were found in Daliao. The synoptic weather during the experiment was first influenced by Typhoon NOCK-TEN, which resulted in the pollutant concentrations decreasing by about two-thirds. After the tropical thunderstorm system passed, the ambient air quality returned to the previous condition in 12 to 24 h. When there was a strong subsidence accompanied by a high-pressure system, a more stable environment with lower wind speed and mixing height resulted in higher PM2.5, as well as HNO2, NH3, SO42?, Cl?, NO3?, NH4+ and K+ concentrations during the episode days. The rainfall is mainly a scavenger of air pollutants in this study, and the stable atmospheric system and the high emission loading are the major reasons for high air pollutant concentrations.  相似文献   

13.
Using a single drop experiment, the uptake of NO3 radicals on aqueous solutions of the dye Alizarin Red S and NaCl was measured at 293 K. Uptake coefficients in the range (1.7–3.1) ⋅ 10− 3 were measured on Alizarin Red S solutions. The uptake coefficients measured on NaCl solutions were in the range of (1.1–2.0) ⋅ 10−3 depending on the salt concentration. Both experiments lead to a consistent result for the mass accommodation coefficient of αNO3 = (4.2− 1.7+2.2)⋅ 10−3. The product H(Dl kClII)0.5 for the NO3 radical was determined to be (1.9 ± 0.2) M atm− 1 cm s−0.5 M−0.5 s−0.5 by fitting the uptake data for the NaCl solutions to the so-called resistance model. The yield of the chemical NO3 radical source was characterized using UV-VIS and FT-IR spectroscopy. The amount of gas-phase NO3 radicals measured at elevated humidities was less than expected. Instead, a rise of the gas-phase HNO3 concentration was found indicating a conversion of gas-phase NO3 radicals to gas-phase HNO3 on the moist reactor walls.  相似文献   

14.
Long-term measurements of ambient particulate matter less than 2.5 μm in diameter (PM2.5) and its chemical compositions were performed at a rural site in Korea from December 2005 to August 2009. The average PM2.5 concentration was 31 μg m−3 for the whole sampling period, and showed a slightly downward annual trend. The major components of PM2.5 were organic carbon, SO42−, NO3, and NH4+, which accounted for 55 % of total PM2.5 mass on average. For the top 10 % of PM2.5 samples, anionic constituents and trace elements clearly increased while carbonaceous constituents and NH4+ remained relatively constant. Both Asian dust and fog events clearly increased PM2.5 concentrations, but affected its chemical composition differently. While trace elements significantly increased during Asian dust events, NO3, NH4+ and Cl were dramatically enhanced during fog events due to the formation of saturated or supersaturated salt solution. The back-trajectory based model, PSCF (Potential Source Contribution Function) identified the major industrial areas in Eastern China as the possible source areas for the high PM2.5 concentrations at the sampling site. Using factor analysis, soil, combustion processes, non-metal manufacture, and secondary PM2.5 sources accounted for 77 % of the total explained variance.  相似文献   

15.
In the present study, the wet and dry depositions of particulate NO3, SO42−, Cl and NH4+ were measured using a wet/dry sampler as a surrogate surface. Gas phase compounds of nitrogen, sulfur and chloride (HNO3, NH3, SO2 and HCl) were measured by an annular denuder system (ADS) equipped with a back up filter for the collection of particles with diameter ≤ 5 μm. Ambient concentrations of NO, NO2 and SO2 were also taken into consideration. Sampling was conducted at an urban site in the center of the city of Thessaloniki, northern Greece. The presence of the aerosol species was examined by cold/warm period and the possible compounds in dry deposits were also considered. Dry deposition fluxes were found to be well correlated with ambient particle concentrations in order to be used for the calculation of particle deposition velocity. Average particulate deposition velocities calculated were 0.36, 0.20, 0.20 and 0.10 cm s− 1 for Cl, NO3, SO42− and NH4+, respectively. Total dry deposition fluxes (gas and particles) were estimated at 3.24 kg ha− 1 year− 1 for chloride (HCl + p-Cl), 9.97 kg ha− 1 year− 1 for nitrogen oxidized (NO + NO2 + HNO3 + p-NO3), 5.32 kg ha− 1 year− 1 for nitrogen reduced (NH3 + p-NH4) and 15.77 kg ha− 1 year− 1 for sulfur (SO2 + p-SO4). 70–90% total dry deposition was due to gaseous species deposition. The contribution of dry deposition to the total (wet + dry) was at the level of 60–70% for sulfur and nitrogen (oxidized and reduced), whereas dry chloride deposition contributed 35% to the total. The dry-to-wet deposition ratio of all the studied species was found to be significantly associated with the precipitation amount, with nitrogen species being better and higher correlated. Wet, dry and total depositions measured in Thessaloniki, were compared with other countries of Europe, US and Asia.  相似文献   

16.
Summary  Net ecosystem CO2 exchange was measured over a mountain birch forest in northern Finland throughout the growing season. The maximal net CO2 uptake rate of about − 0.5 mg(CO2) m−2 s−1 was observed at the end of July. The highest nocturnal respiration rates in early August were 0.2 mg(CO2) m−2 s−1. The daily CO2 balances during the time of maximal photosynthesis were about −15 g(CO2) m−2 d−1. The mountain birch forest acted as a net sink of CO2 from 30 June to 28 August. During that period the net CO2 balance was −448 g(CO2)m−2. The interannual representativeness of the observed balances was studied using a simplified daily balance model, with daily mean global radiation and air temperature as the input parameters. The year-to-year variation in the phenological development was parameterised as a function of the cumulative effective temperature sum. The daily balance model was used for estimating the variability in the seasonal CO2 balances due to the timing of spring and meteorological factors. The sink term of CO2 in 1996 was lower than the 15-year mean, mainly due to the relatively late emergence of the leaves. Received October 11, 1999 Revised April 25, 2000  相似文献   

17.
In this study, 24-h PM2.5 samples were collected using Harvard Honeycomb denuder/filter-pack system during different seasons in 2006 and 2007 at an urban site in Guangzhou, China. The particles collected in this study were generally acidic (average strong acidity ([H+]) ~ 70 nmol m? 3). Interestingly, aerosol sulfate was not fully neutralized in the ammonia-rich atmosphere (NH3 ~ 30 ppb) and even when NH4+]/[SO42?] was larger than 2. Consequently, strong acidity ([H+]) as high as 170 nmol m? 3 was observed in these samples. The kinetic rate of neutralization of acidity (acidic sulfate) by ambient ammonia was significantly higher than the rate of formation of ammonium nitrate involving HNO3 and NH3 for [NH4+]/[SO42?]  1.5 and much lower for NH4+]/[SO42?] > 1.5. Therefore, higher nitrate principally formed via homogeneous gas phase reactions involving ammonia and nitric acid were observed for [NH4+]/[SO42?] > 1.5. However, little nitrate, probably formed via heterogeneous processes e.g. reaction of HNO3 with sea salt or crustal species, was observed for [NH4+]/[SO42?]  1.5. These demonstrate a clear transition in the pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42?] = 1.5 and evidently explain the observed high acidity due to the unneutralized sulfate in the ammonium-rich aerosol (NH4+]/[SO42?] > 1.5). In fact, the measured acidity was almost similar to the excess acid defined as the acid that remains at [NH4+]/[SO42?] = 1.5 due to the un-neutralized fraction of sulfate ([H+] = 0.5[SO42?]). The presence of high excess acid and ammonium nitrate significantly lowered the deliquescence relative humidity of ammonium sulfate (from 80% to 40%) in the ammonium-rich samples.  相似文献   

18.
Simultaneous measurements of rain acidity and dimethyl sulfide (DMS) at the ocean surface and in the atmosphere were performed at Amsterdam Island over a 4 year period. During the last 2 years, measurements of sulfur dioxide (SO2) in the atmosphere and of methane sulfonic acid (MSA) and non-sea-salt-sulfate (nss-SO4 2-) in rainwater were also performed. Covariations are observed between the oceanic and atmospheric DMS concentrations, atmospheric SO2 concentrations, wet deposition of MSA, nss-SO4 2-, and rain acidity. A comparable summer to winter ratio of DMS and SO2 in the atmosphere and MSA in precipitation were also observed. From the chemical composition of precipitation we estimate that DMS oxidation products contribute approximately 40% of the rain acidity. If we consider the acidity in excess, then DMS oxidation products contribute about 55%.  相似文献   

19.
Summary  Turbulent fluxes of CO2 were continuously measured by eddy correlation for three months in 1997 over a gramineous fen in a high-arctic environment at Zackenberg (74°28′12″N, 20°34′23″W) in NE-Greenland. The measurements started on 1 June, when there was still a 1–2 m cover of dry snow, and ended 26 August at a time that corresponds to late autumn at this high-arctic site. During the 20-day period with snow cover, fluxes of CO2 to the atmosphere were small, typically 0.005 mg CO2 m−2 s−1 (0.41 g CO2 m−2 d−1), wheres during the thawed period, the fluxes displayed a clear diurnal variation. During the snow-free period, before the onset of vegetation growth, fluxes of CO2 to the atmosphere were typically 0.1 mg CO2 m−2 s−1 in the afternoon, and daily sums reached values up to almost 9 g CO2 m−2 d−1. After 4 July, downward fluxes of CO2 increased, and on sunny days in the middle of the growing season, the net ecosystem exchange rates attained typical values of about −0.23 mg m−2 s−1 at midday and max values of daily sums of −12 g CO2 m−2 d−1. Throughout the measured period the fen ecosystem acted as a net-sink of 130 g CO2 m−2. Modelling the ecosystem respiration during the season corresponded well with eddy correlation and chamber measurements. On the basis of the eddy correlation data and the predicted respiration effluxes, an estimate of the annual CO2 balance the calender year 1997 was calculated to be a net-sink of 20 g CO2 m−2 yr−1. Received October 6, 1999 Revised May 2, 2000  相似文献   

20.
The effects of below-cloud aerosol on the acidification process of rain   总被引:1,自引:0,他引:1  
Using a model of the acidification process of rain, we calculate and analyze the effects and contributions of a below-cloud aerosol in its different concentrations and acidities on the pH and ion components of rain (SO 4 2– , H+, NO 3 , NH 4 + , etc.) under the conditions of different concentrations of pollution gases. The results show that the aerosol has an acidification or alkalization effect on the rain which changes the pHs of rain and aerosol. As acidifying pollution gas concentrations (SO2, HNO3) are low, the acid aerosol has important effects on the pH and H+ of rain, but as the gas concentrations are high, the acid aerosol has very little effect. The alkalizing aerosol makes the pH of rain increase by between 0.3 and 0.5 and neutralizes about 60% of H+ in the rain. As alkalizing pollution gas NH3 exists, the acid aerosol has important effects on the pH and H+ of rain. But the alkalizing aerosol has very little effect, especially as the NH3 concentration is high. The percentage contribution of the aerosol to SO 4 2– in rain is generally 7–15%, the contribution of the aerosol to NO 3 is nearly the same as that of HNO3=1 ppb, and the contribution of the aerosol to NH 4 + is nearly the same as that of NH3, from 5 to 7 ppb, and is an important source of NH 4 + in rain. Finally, according to the actual conditions of typical regions in the south and north of China (Chongqing and Beijing), we analyze the effects of aerosol and pollution gases on the ion components of rain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号