首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
1990年5月23日0400—0451UT期间在遥隔两地的南大天文台与北师大天文台和北京天文台用时间分辨率1s和10ms分别在波长3.2cm、2cm和10.6cm上进行了太阳射电爆发的同时观测.发现了短厘米波爆发中的双重准周期脉动现象.本文根据这些观测资料连同S.G.D.发表的有关射电、光学和软X射线(SXR)耀斑等数据,提出了一个在耀(斑)环内非热与热辐射过程中由于相互作用而触发Alfven波和快磁声波的振荡模型,用来解释太阳短厘米波爆发中相关性很强的双重准周期脉动的起因和观测特征,并由此计算出爆发源区的平均物理参量T,N,B值。  相似文献   

2.
ARTEMIS IV Radio Observations of the 14 July 2000 Large Solar Event   总被引:1,自引:0,他引:1  
Caroubalos  C.  Alissandrakis  C.E.  Hillaris  A.  Nindos  A.  Tsitsipis  P.  Moussas  X.  Bougeret  J.-L.  Bouratzis  K.  Dumas  G.  Kanellakis  G.  Kontogeorgos  A.  Maroulis  D.  Patavalis  N.  Perche  C.  Polygiannakis  J.  Preka-Papadema  P. 《Solar physics》2001,204(1-2):165-177
In this report we present a complex metric burst, associated with the 14 July 2000 major solar event, recorded by the ARTEMIS-IV radio spectrograph at Thermopylae. Additional space-borne and Earth-bound observational data are used, in order to identify and analyze the diverse, yet associated, processes during this event. The emission at metric wavelengths consisted of broad-band continua including a moving and a stationary type IV, impulsive bursts and pulsating structures. The principal release of energetic electrons in the corona was 15–20 min after the start of the flare, in a period when the flare emission spread rapidly eastwards and a hard X-ray peak occurred. Backward extrapolation of the CME also puts its origin in the same time interval, however, the uncertainty of the extrapolation does not allow us to associate the CME with any particular radio or X-ray signature. Finally, we present high time and spectral resolution observations of pulsations and fiber bursts, together with a preliminary statistical analysis.  相似文献   

3.
We have proposed a mechanism of arise of transient magnetic disturbances from solar flare explosion which can lead to understanding of observed pulsations of type IV radio emission with period of 0.3–3.0 s. According to the proposed mechanism the pulsation activity of the radio emission results from MHD waves accompanying the expanding diamagnetic plasma produced by the explosive flare material.  相似文献   

4.
Observations on the pulsation pattern in the time profile of short duration solar radio bursts at decametre wavelengths are presented. The pulsations are found to be present predominantly in the saturation phase of the burst. A tentative physical model based on the non-linear development of the waves interacting in a turbulent medium is invoked to explain the origin of the pulsations.  相似文献   

5.
From simultaneous high-time-resolution observations of solar X-rays from Hinotori and the millimeter waves at Itapetinga Radio Observatory in Brazil during a solar flare on November 4, 1981 at 1827 UT, short period ( 300 ms) pulsations have been detected in five time intervals of 2 s each. Both a cross-correlation analysis between X-rays and microwaves and a Fourier analysis were made to verify the significance of the quasi-periodic pulsations. The cross-correlation is significant but the pulsations could not be periodic oscillation.on leave of absence from Physical Res. Lab., Ahmedabad, India  相似文献   

6.
In this paper a unique 2.3–4.2 GHz radio spectrum of the flare impulsive phase, showing fast positively drifting bursts superimposed on a slowly negatively drifting burst, is presented. Analyzing this radio spectrum it was found that the flare started somewhere near the transition region, where upward propagating MHD waves were generated during the whole impulsive phase. Moreover, it was found that behind a front of these ascending MHD waves the downward propagating electron beams, which bombarded dense layers of the solar atmosphere, were accelerated. It seems that, simultaneously with the increase of beam bombardment intensity, the intensity of MHD waves was increasing and thus the MHD shock wave generation and the electron beam acceleration and bombardment formed a self-consistently amplifying flare process. At higher coronal heights this process was followed by a type II radio burst, i.e. by the MHD flare shock. To verify this concept, the numerical modeling of the shock-wave generation and propagation in space from a flare site near the transition region up to 3 solar radii was made. Comparing the thermal and magnetic field disturbances, it was found that those of magnetic origin are more relevant in this case. Combining the results of interpretation and numerical simulation, a model of the February 27, 1992 flare is suggested and new aspects of this model are discussed.  相似文献   

7.
With modern imaging and spectral instruments observing in the visible, EUV, X-ray, and radio wavelengths, the detection of oscillations in the solar outer atmosphere has become a routine event. These oscillations are considered to be the signatures of a wave phenomenon and are generally interpreted in terms of magnetohydrodynamic (MHD) waves. With multiwavelength observations from ground- and space-based instruments, it has been possible to detect waves in a number of different wavelengths simultaneously and, consequently, to study their propagation properties. Observed MHD waves propagating from the lower solar atmosphere into the higher regions of the magnetized corona have the potential to provide excellent insight into the physical processes at work at the coupling point between these different regions of the Sun. High-resolution wave observations combined with forward MHD modeling can give an unprecedented insight into the connectivity of the magnetized solar atmosphere, which further provides us with a realistic chance to reconstruct the structure of the magnetic field in the solar atmosphere. This type of solar exploration has been termed atmospheric magnetoseismology. In this review we will summarize some new trends in the observational study of waves and oscillations, discussing their origin and their propagation through the atmosphere. In particular, we will focus on waves and oscillations in open magnetic structures (e.g., solar plumes) and closed magnetic structures (e.g., loops and prominences), where there have been a number of observational highlights in the past few years. Furthermore, we will address observations of waves in filament fibrils allied with a better characterization of their propagating and damping properties, the detection of prominence oscillations in UV lines, and the renewed interest in large-amplitude, quickly attenuated, prominence oscillations, caused by flare or explosive phenomena.  相似文献   

8.
On 6 September, 1982 very regular, narrow-band radio pulsations of solar origin were observed on the 410 MHz solar radiometer at the Learmonth Solar Observatory. Initial low-amplitude pulsations with a period of about 3 min gave way to large-amplitude pulsations with a period of about 5 min following a 1B solar flare. Position measurements at 327 MHz with the Culgoora Radioheliograph indicated two sources: a strong, extended source located above a unipolar magnetic region near the centre of the disk and a much weaker source near the west limb. Polarisation measurements indicate the burst to be plasma emission.The radio pulsations were unique in their association with both sympathetic radio emission and optical flares at widely different locations. Interpretation of the observations in terms of sausage mode standing oscillations in a coronal flux tube leads to an estimate of the magnetic flux density B = 45 G at the 400 MHz plasma level. Also a 2.8-fold density increase in the loop after the 1B flare is inferred.  相似文献   

9.
The solar burst event of 1992-06-07 is analyzed in this paper using HXR material of the Yohkoh satellite and radio data at 2840 MHz observed at Beijing Astronomical Observatory. The results show that during the impulsive phase, the pulsational component had two time scales, a longer one of about 30 s, and a shorter one of 1–4 s. The pulsations on the longer scale are found to be correlated with a series of variations in the HXR images of the source region. A physical picture comprising loop-loop interaction and MHD oscillation modulation is presented.  相似文献   

10.
A type of pulsation in a time scale of seconds superimposed on microwave burst at 9.375 GHz has been found during the twenty-second solar active maximum period by us. This phenomenon is quite different from radio spike emission at decimeter and long centimeter wavelengths. The flux level of the bursts rises as the repetition rate of pulsations increases, following an approximate linear relationship. This feature resembles that at mm wavelength, but some other features are different. Some mechanisms for interpretation have been proposed.  相似文献   

11.
Using TRACE EUV 171 Å line, Hα line, Zürich radio, RHESSI, and HXRS observations the 29 September 2002 flare (M2.6), which occurred in AR NOAA 0134, was analyzed. Flaring structures were compared with a potential magnetic field model (field lines and quasi-separatrix layers) made from SOHO/MDI full-disk magnetogram. Series of high-resolution SOHO/MDI magnetograms and TRACE white-light images were used to find changes in the active region at the photosphere during the flare. The flare began with a rising of a small dark loop followed by the flare brightening observed in 171 Å with TRACE and Hα lines. In radio wavelengths, first type III bursts were observed 5 min prior to the start of hard X-ray emission, indicating a pre-flare coronal activity. The main hard X-ray emission peak (at 06:36 UT) was associated with the second type III burst activity and several slowly negatively drifting features, all starting from one point on the radio spectrum (probably a shock propagating through structures with different plasma parameters). After this time a huge loop formed and three minutes later it became visible in absorption both in Hα and 171 Å EUV lines. The phase of huge dark loop formation was characterized by long-lasting, slowly negatively drifting pulsations and drifting continuum. Finally, considering this huge loop as a surge an evolution of the event under study is discussed.  相似文献   

12.
High sensitivity, high time resolution recordings of microwave radio bursts show a number of periodic and quasi-periodic bursts which exhibit intervals of the order of 10–20 s. Some of the bursts are accompanied by simultaneous pulsations of the same interval detected in X-rays, type III-m, and extreme ultraviolet emissions. Mechanisms to explain solar radio pulsations are reviewed to see which can explain or be extended to explain these observations.Supported by a company-financed research program of The Aerospace Corporation.  相似文献   

13.
Willson  Robert F. 《Solar physics》2002,211(1-2):289-313
Very-Large-Array (VLA) observations of the Sun at 20, 91 and 400 cm have been combined with data from the SOHO, TRACE and Wind solar missions to study the properties of long-lasting Type I noise storms and impulsive metric and decimetric bursts during solar flares and associated coronal mass ejections. These radio observations provide information about the acceleration and propagation of energetic electrons in the low and middle corona as well as their interactions with large-scale magnetic structures where energy release and transport takes place. For one flare and its associated CME, the VLA detected impulsive 20 and 91 cm bursts that were followed about ten minutes later by 400 cm burst emission that appeared to move outward into the corona. This event was also detected by the Waves experiment on Wind which showed intense, fast-drifting interplanetary Type III bursts following the metric and decimetric bursts detected by the VLA. For another event, impulsive 91 cm emission was detected about a few minutes prior to impulsive bursts at 20.7 cm, suggesting an inwardly propagating beam of electrons that excited burst emission at lower levels and shorter wavelengths. We also find evidence for significant changes in the intensity of Type I noise storms in the same or nearby active region during impulsive decimetric bursts and CMEs. These changes might be attributed to flare-initiated heating of the Type I radio source plasma by outwardly-propagating flare ejecta or to the disruption of ambient magnetic fields by the passage of a CME.  相似文献   

14.
The analysis of observational data has shown that the duration of a pulse train in type IV radio bursts decreases with increasing hardness of the spectrum of high-energy protons and increases with decreasing proton fluxes from the Sun. It is shown that such a correlation corresponds to a magnetohydrodynamic (MHD) model of pulsations and is inexplicacable within the framework of a nonlinear periodical regime of plasma instabilities. The pulse train duration is determined by proton pitch-angle diffusion caused by Alfvén waves in coronal magnetic loops. A method of predicting solar proton hardness and proton fluxes using type IV radio burst pulsations is proposed.  相似文献   

15.
We describe solar observations carried out for the first time jointly with Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Aalto University Metshovi Radio Observatory (MRO). KAIRA is new radio antenna array observing the decimeter and meter wavelength range. It is located near Kilpisjärvi, Finland, and operated by the SodankyläGeophysical Observatory, University of Oulu. We investigate the feasibility of KAIRA for solar observations, and the additional benefits of carrying out multi‐instrument solar observations with KAIRA and the MRO facilities, which are already used for regular solar observations. The data measured with three instruments at MRO, and with KAIRA during time period 2014 April–October were analyzed. One solar radio event, measured on 2014 April 18, was studied in detail. Seven solar flares were recorded with at least two of the three instruments at MRO, and with KAIRA during the chosen time period. KAIRA is a great versatile asset as a new Finnish instrument that can also be used for solar observations. Collaboration observations with MRO instruments and KAIRA enable detailed multi‐frequency solar flare analysis. Flare pulsations, flare statistics and radio spectra of single flares can be investigated due to the broad frequency range observations. The Northern locations of both MRO and KAIRA make as long as 15‐hour unique solar observations possible during summer time. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
We have performed a spectral analysis of the quasi-periodic low-frequency modulation of microwave emission from a flare on the star AD Leo. We used the observations of the May 19, 1997 flare in the frequency range 4.5–5.1 GHz with a total duration of the burst phase of about 50 s obtained in Effelsberg with a time resolution of 1 ms. The time profile of the radio emission was analyzed by using the Wigner-Ville transformation, which yielded the dynamic spectrum of low-frequency pulsations with a satisfactory frequency-time resolution. In addition to the noise component, two regular components were found to be present in the low-frequency modulation spectrum of the stellar radio emission: a quasi-periodic component whose frequency smoothly decreased during the flare from ~2 to ~0.2 Hz and a periodic sequence of pulses with a repetition rate of about 2 Hz, which was approximately constant during the flare. We consider the possibility of the combined effect of MHD and LCR oscillations of the radio source on the particle acceleration in the stellar atmosphere and give estimates of the source’s parameters that follow from an analysis of the low-frequency modulation spectra.  相似文献   

17.
We present a multi-wavelength study of a solar eruption event on 20 July 2004, comprising observations in H??, EUV, soft X-rays, and in radio waves with a wide frequency range. The analyzed data show both oscillatory patterns and shock wave signatures during the impulsive phase of the flare. At the same time, large-scale EUV loops located above the active region were observed to contract. Quasi-periodic pulsations with ???10 and ???15 s oscillation periods were detected both in microwave??C?millimeter waves and in decimeter??C?meter waves. Our calculations show that MHD oscillations in the large EUV loops ?C but not likely in the largest contracting loops ?C could have produced the observed periodicity in radio emission, by triggering periodic magnetic reconnection and accelerating particles. As the plasma emission in decimeter??C?meter waves traces the accelerated particle beams and the microwave emission shows a typical gyrosynchrotron flux spectrum (emission created by trapped electrons within the flare loop), we find that the particles responsible for the two different types of emission could have been accelerated in the same process. Radio imaging of the pulsed decimetric??C?metric emission and the shock-generated radio type II burst in the same wavelength range suggest a rather complex scenario for the emission processes and locations. The observed locations cannot be explained by the standard model of flare loops with an erupting plasmoid located above them, driving a shock wave at the CME front.  相似文献   

18.
The analysis of narrowband drifting of type III-like structures in radio bursts dynamic spectra allows one to obtain unique information about the primary energy release mechanisms in solar flares. The SSRT (Siberian Solar Radio Telescope) spatially resolved images and its high spectral and temporal resolution allow for direct determination not only of the source positions but also of the exciter velocities along the flare loop. Practically, such measurements are possible during some special time intervals when SSRT is observing the flare region in two high-order fringes near 5.7?GHz; thus, two 1D brightness distributions are recorded simultaneously at two frequency bands. The analysis of type III-like bursts recorded during the flare 14?April 2002 is presented. Using multiwavelength radio observations recorded by the SSRT, the Huairou Solar Broadband Radio Spectrometer (SBRS), the Nobeyama Radio Polarimeters (NoRP), and the Radio Solar Telescope Network (RSTN), we study an event with series of several tens of drifting microwave pulses with drift rates in the range from ?7 to 13?GHz?s?1. The sources of the fast-drifting bursts were located near the top of a flare loop in a volume of a few Mm in size. The slow drift of the exciters along the flare loop suggests a high pitch anisotropy of the emitting electrons.  相似文献   

19.
Fiber – or intermediate drift – bursts are a continuum fine structure in some complex solar radio events. We present the analysis of such bursts in the X17 flare on 28 Oct. 2003. Based on the whistler wave model of fiber bursts we derive the 3D magnetic field structures that carry the radio sources in different stages of the event and obtain insight into the energy release evolution in the main flare phase, the related paths of nonthermal particle propagation in the corona, and the involved magnetic field structures. Additionally, we test the whistler wave model of fiber bursts for the meter and the decimeter wave range. Radio spectral data (Astrophysikalisches Institut Potsdam, Astronomical Observatory Ond?ejov) show a continuum with fibers for ≈?6 min during the main flare phase. Radio imaging data (Nançay Radio Heliograph) yield source centroid positions of the fibers at three frequencies in the spectrometer band. We compare the radio positions with the potential coronal magnetic field extrapolated from SOHO/MDI data. Given the detected source site configuration and evolution, and the change of the fiber burst frequency range with time, we can also extract those coronal flux tubes where the high-frequency fiber bursts are situated even without decimeter imaging data. To this aim we use a kinetic simulation of whistler wave growth in sample flux tubes modeled by selected potential field lines and a barometric density model. The whistler wave model of fiber bursts accurately explains the observations on 28 Oct. 2003. A laterally extended system of low coronal loops is found to guide the whistler waves. It connects several neighboring active regions including the flaring AR 10486. For varying source sites the fiber bursts are emitted at the fundamental mode of the plasma frequency over the whole range (1200?–?300 MHz). The present event can be understood without assuming two different generation mechanisms for meter and decimeter wave fiber bursts. It gives new insight into particle acceleration and propagation in the low flare and post-CME corona.  相似文献   

20.
The 2.60–3.80 GHz spectrometer at the Beijing Astronomical Observatory (BAO) recorded a ‘decimetric pulsation’ event (DCIM) around the time 1999 0216 0300. At the beginning and end of this DCIM, two groups of reverse slope type III bursts (RS-III) are also detected; meanwhile, metric type II bursts are recorded by CULG and HIRA during the same time. These solar radio bursts on that day might be caused by the same active region 8458 and a same flare. We present a plausible qualitative model for all of them. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号