首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在珠江口、广东沿岸及南海北部三个航次生物-光学数据的基础上,研究了色素打包效应和色素成分的变化对浮游植物吸收系数的影响,结果表明,两种因素对吸收系数都有较大的贡献,但在不同的水体它们的影响程度各有不同.对网采浮游植物含量较高的珠江口和广东沿岸的水体而言,色素打包效应较强,对675 nm处比吸收系数的贡献平均分别为40%和20%;对微型浮游植物占主导地位的南海北部航次的水体,打包效应较弱,对675 nm处比吸收系数的影响平均仅为6%.采用多元线性回归的方法对吸收光谱进行分析,发现除叶绿素a之外的辅助色素对吸收系数的贡献主要表现在蓝绿光波段,三个航次440 nm波长处对总吸收的贡献平均分别为44%,43%和53%,其中对珠江口和广东沿岸航次的水体主要是光合类胡萝卜素的吸收贡献,而对南海北部航次的水体除了光合类胡萝卜素以外还要受到光保护类胡萝卜素的影响.由于河口、近岸和外海水体藻类粒级结构和辅助色素成分对浮游植物吸收系数的贡献有明显的差异,在南海北部水体建立比较精确的生物光学模型时,需考虑藻类粒级结构及色素成分对浮游植物吸收系数的影响.  相似文献   

2.
Pigment patterns and associated absorption properties of phytoplankton were investigated in the euphotic zone along two meridional transects in the Atlantic Ocean, between the UK and the Falkland Islands, and between South Africa and the UK. Total chlorophyll a (TChla=MVChla+DVChla+chlorophyllide a) concentrations and the biomarker pigments for diatoms (fucoxanthin), nanoflagellates and cyanobacteria (zeaxanthin) appeared to have similar distribution patterns in the spring and in the autumn in the temperate NE Atlantic and the northern oligotrophic gyre. Divinyl chlorophyll a levels (prochlorophytes) were greater in spring at the deep chlorophyll maximum in the oligotrophic gyre, however. Marked seasonal differences were observed in the NW African upwelling region. TChla concentrations were twice as high in the upper mixed layer in the spring, with the community dominated by diatoms and prymnesiophytes (19′-hexanoyloxyfucoxanthin). A layered structure was prevalent in the autumn where cyanobacteria, diatoms and prymnesiophytes were located in the upper water column and diatoms and mixed nanoflagellates at the sub-surface maximum. In the South Atlantic, the Benguela upwelling ecosystem and the Brazil-Falklands Current Confluence Zone (BFCCZ) were the most productive regions with the TChla levels being twice as high in the Benguela. Diatoms dominated the Benguela system, while nanoflagellates were the most ubiquitous group in the BFCCZ. Pigment concentrations were greater along the eastern boundary of the southern oligotrophic gyre and distributed at shallower depths. Deep chlorophyll maxima were a feature of the western boundary oligotrophic waters, and cyanobacteria tended to dominate the upper water column along both transects with a mixed group of nanoflagellates at the chlorophyll maximum.Absorption coefficients were estimated from spectra reconstructed from pigment data. Although absorption was greater in the productive areas, the TChla-specific coefficients were higher in oligotrophic regions. In communities that were dominated by diatoms or nanoflagellates, pigment absorption was generally uniform with depth and attenuating irradiance, with TChla being the major absorbing pigment at 440 nm and photosynthetic carotenoids (PSC) at 490 nm. Absorption by chlorophyll c and photoprotective carotenoids (PPC) was much lower. Populations where cyanobacteria were prevalent were characterized by high PPC absorption, particularly at 490 nm, throughout most of the euphotic zone. The data suggested that the effect of pigments on the variability of phytoplankton absorption was due primarily to the variations in absorption by PPC.  相似文献   

3.
Pigment indices were used to characterise the seasonal succession of phytoplankton, and associated changes in chlorophyll a and accessory pigments, in subtropical waters of the three ocean basins in the southern hemisphere. Diagnostic indices revealed the dominance of small flagellates and elevated biomass during winter–spring in the Pacific, mixed flagellate–prokaryote communities and intermediate biomass during early summer in the Atlantic, and prokaryote dominance with low biomass in mid-summer in the Indian Ocean. Photo-pigment indices indicated only a small variation in the chlorophyll a proportion of total pigments across the ocean basins, but the accessory pigments varied considerably. Under low temperature and irradiance conditions, the photosynthetic carotenoids were prominent, but as temperatures and irradiance increased and nutrients declined, there was a significant increase in the proportion of photoprotective carotenoids. At high temperatures and irradiances, the photoprotective carotenoids were the largest component of the pigment pool, exceeding the proportion of chlorophyll a. These variations in phytoplankton composition, and their photoacclimation status, could be explained according to environmental changes and have implications for satellite estimations of biomass and primary production.  相似文献   

4.
The absorption spectrum of phytoplankton is an important bio-optical parameter for ocean color hyperspectral remote sensing;its magnitude and shape can be aff ected considerably by pigment composition and concentration. We conducted Gaussian decomposition to the absorption spectra of phytoplankton pigment and studied the spectral components of the phytoplankton, in which the package effect was investigated using pigment concentration data and phytoplankton absorption spectra. The decomposition results were compared with the corresponding concentrations of the five main pigment groups (chlorophylls a , b , and c , photo-synthetic carotenoids (PSC), and photo-protective carotenoids (PPC)). The results indicate that the majority of residual errors in the Gaussian decomposition are <0.001 m^-1 , and R 2 of the power regression between characteristic bands and HPLC pigment concentrations (except for chlorophyll b) was 0.65 or greater for surface water samples at autumn cruise. In addition, we determined a strong predictive capability for chlorophylls a , c , PPC, and PSC. We also tested the estimation of pigment concentrations from the empirical specific absorption coeffi cient of pigment composition. The empirical decomposition showed that the Ficek model was the closest to the original spectra with the smallest residual errors.The pigment decomposition results and HPLC measurements of pigment concentration are in a high consistency as the scatter plots are distributed largely near the 1:1 line in spite of prominent seasonal variations. The Wozniak model showed a better fit than the Ficek model for Ch1 a , and the median relative error was small. The pigment component information estimated from the phytoplankton absorption spectra can help better remote sensing of hyperspectral ocean color that related to the changes in phytoplankton communities and varieties.  相似文献   

5.
用多层感知器模型由吸收光谱反演浮游植物色素   总被引:1,自引:0,他引:1       下载免费PDF全文
浮游植物吸收光谱已逐渐成为高光谱水色遥感的可获取参量。文章采用了多层感知器模型, 由珠江口担杆群岛附近水体的浮游植物吸收光谱进行了色素浓度的反演, 感知器的输入量是浮游植物吸收光谱, 输出量分别对应叶绿素a、叶绿素b、叶绿素c、光保护类胡萝卜素和非光保护类胡萝卜素五大类主要色素的浓度。分析结果表明, 叶绿素a和叶绿素c估算结果的平均相对偏差比较低, 在测试数据集中两者的偏差分别为19.06%和15.90%; 光保护类胡萝卜素和非光保护类胡萝卜素的估算浓度的相对偏差比较高, 对于测试数据而言, 分别为37.62%和36.96%; 叶绿素b浓度在测试数据集中的估算相对偏差约为27.47%。五大类色素在测试数据集和训练数据集的估算偏差比较接近, 已训练好的多层感知器可用于担杆岛水体中色素信息的反演。同时, 此色素反演方法也为遥感监测水体浮游植物种群动态提供了重要的手段。  相似文献   

6.
An investigation of pigments, phytoplankton types and absorption characteristics was conducted in the Delagoa and Natal Bights during late winter and spring in the southwest Indian Ocean. The study demonstrated that small flagellates dominated the phytoplankton communities in both bights and were ubiquitous across a temperature range of 18–24 °C. Diatoms were dominant in patches of cool water (<22 °C) related to upwelling processes and were associated with elevated levels of phytoplankton biomass, while prokaryotes were observed to increase in warm waters >22 °C. Absorption coefficients varied closely with variations in chlorophyll a and specific coefficients were lower for diatoms compared to flagellates. Chlorophyll-specific coefficients also provided useful information on the level of pigment packaging and were related to the proportion of chlorophylls and carotenoids in the pigment pool.  相似文献   

7.
The East China Sea (ECS),one of the largest continental seas,has dynamic hydrology and complex optical characteristics that make ocean color remote-sensing retrieval difficult.The distributions and proportions of the light absorption coefficients of major ocean color components based on two large-scale investigations in the ECS are presented,showing these features in typical summer and winter seasons.The absorption coefficient a CDOM,a NAP and a phy of colored dissolved organic matter,non-algal particle,and pigment of phytoplankton show a decreasing trend from the coast to the outer shelf.According to the a CDOM distribution at 440 nm,the Changjiang River plume shows an abnormal southeastward transport.An extremely high a NAP value patch at 440 nm is present in the middle coast.The chlorophyll-a-specific phytoplankton pigment absorption (a phy) is much higher in winter than in summer,which may cause serious underestimated results when applying the averaged a phy into remote-sensing algorithms for chlorophyll concentration retrieval.The importance of phytoplankton size was evident in outer shelf waters.The absorption of a CDOM (440) is a dominant component accounting for over half of the total seawater absorption in summer.The a NAP (440) accounts for 64% of the absorption of the ECS coastal area in winter.  相似文献   

8.
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.  相似文献   

9.
We present an overview of the spatial distributions of phytoplankton pigments along transects between the UK and the Falkland Islands. These studies, undertaken as a component of the UK Atlantic Meridional Transect (AMT) programme, provided the first post-launch validation data for the NASA SeaWiFS satellite. Pigment data are used to characterise basin-scale variations in phytoplankton biomass and community composition over 100° of latitude, and to compliment the definition of hydrographic oceanic provinces. A summary of the key pigment characteristics of each province is presented.Concentrations of total chlorophyll a (totCHLa = chlorophyll a, CHLa + divinyl CHLa, dvCHLa) were greatest in high latitude temperate waters (>37°N and >35°S), and in the Canary Current Upwelling system. In these regions, the total carotenoid (totCAR) budget was dominated by photosynthetic carotenoids (PSCs). High accessory pigment diversity was observed of which fucoxanthin (FUC), 19'–hexanoyloxyfucoxanthin (HEX), and diadinoxanthin (DIAD) were most abundant, indicating proliferation of large eukaryotes and nanoflagellates. In contrast, tropical and sub-tropical waters exhibited concentrations of totCHLa below 500 ng l−1, with the North Atlantic Sub-tropical East gyre (NASE, 26.7–35°N), South Equatorial Current (SeqC, 7–14.6°S) and South Atlantic tropical Gyre (SATG, 14.6–26°S) characterised by totCHLa of <100 ng−1. These waters exhibited relatively limited pigment diversity, and the totCAR budget was dominated by photoprotecting pigments (PPCs) of which zeaxanthin (ZEA), a marker of prokaryotes (cyanobacteria and prochlorophytes), was most abundant. DvCHLa, a marker of prochlorophytes was detected in waters at temperatures >15°C, and between the extremes of 48°N and 42°S. DvCHLa accounted for up to two-thirds of totCHLa in oligotrophic provinces demonstrating the importance of prochlorophytes to oceanic biomass.Overall, HEX was the dominant PSC, contributing up to 75% of totCAR. HEX always represented >2% of totCAR and was the only truly ubiquitous carotenoid. Since HEX is a chemotaxonomic marker of prymnesiophytes, this observation reflects the truly cosmopolitan distribution of this algal class. ZEA was found to be the most abundant PPC contributing more than one third of the total carotenoid budget in each transect.Greatest seasonality was observed in highly productive waters at high latitudes and in shallow continental shelf waters and attributed to proliferation of large eukaryotes during spring. Concentrations of the prokaryote pigments (ZEA + dvCHLa) also exhibited some seasonality, with elevated concentrations throughout most of the transect during Northern Hemisphere spring.  相似文献   

10.
Satellite image studies and recent in situ sampling have identified conspicuous phytoplankton blooms during spring and summer along the Patagonia shelf-break front. The magnitudes and spectral characteristics of light absorption by total particulate matter (phytoplankton and detritus) and colored dissolved organic matter (CDOM) have been determined by spectrophotometry in that region for spring 2006 and late summer 2007 seasons. In spring, phytoplankton absorption was the dominant optical component of light absorption (60–85%), and CDOM showed variable and important contributions in summer (10–90%). However, there was a lack of correlation between phytoplankton biomass (chlorophyll-a concentration or [chl a]) and the non-algal compartment in both periods. A statistically significant difference was found between the two periods with respect to the CDOM spectral shape parameter (Scdom), with means of 0.015 (spring) and 0.012 nm?1 (summer). Nonetheless, the mean Scdm values, which describe the slope of detritus plus CDOM spectra, did not differ between the periods (average of 0.013 nm?1). Phytoplankton absorption values in this work showed deviations from mean parameterizations in previous studies, with respect to [chl a], as well as between the two study periods. In spring, despite the microplankton dominance, high specific absorption values and large dispersion were found (a*ph(440)=0.04±0.03 m2 mg [chl a]?1), which could be attributed to an important influence of photo-protector accessory pigments. In summer, deviations from general trends, with values of a*ph(440) even higher (0.09±0.02 m2 mg [chl a]?1), were due to the dominance of small cell sizes and also to accessory pigments. These results highlight the difficulty in deriving robust relationships between chlorophyll concentration and phytoplankton absorption coefficients regardless of the season period. The validity of a size parameter (Sf) derived from the absorption spectra has been demonstrated and was shown to describe the size structure of phytoplankton populations, independently of pigment concentration, with mean values of 0.41 in spring and 0.72 in summer. Our results emphasize the need for specific parameterization for the study region and seasonal sampling approach in order to model the inherent optical properties from water reflectance signatures.  相似文献   

11.
Phytoplankton absorption and pigment characteristics of a red tide were investigated in coastal waters of the southern Benguela. Diagnostic indices indicated that dinoflagellates were the dominant phytoplankton group, with diatoms and small flagellates being of secondary importance. Very high biomass was observed close to the coast where chlorophyll a concentrations of up to 117 mg m–3 were measured. Both measured (a ph) and reconstructed pigment absorption (a pig) displayed an increasing trend with chlorophyll a, while the package effect index (Q* a) decreased, indicating increased packaging with an increase in biomass. Proportioning of the total pigment absorption between 400 and 700 nm revealed that chlorophyll a accounted for 39–65% of the absorption, while photosynthetic carotenoids (15–30%) and chlorophyll cs (15–30%) were also prominent in absorbing light for photosynthesis.  相似文献   

12.
Phytoplankton production and physiology were investigated at six selected locations during a research cruise in early October 2007 in Tanzanian coastal waters. The dataset included photosynthesis– irradiance and active fluorescence parameters, phytoplankton absorption coefficients, and pigment concentrations. Primary production was estimated to vary over the range 0.79–1.89 g C m?2 d?1. Diagnostic pigments indicated that micro–nanophytoplankton comprised the communities at three stations and nano–picoplankton at the other three stations. At all stations, the populations maximised their photosynthesis in the upper water column under elevated irradiance and low nutrient conditions. Significant photosynthetic activity was also observed at depth under very low light where the communities increased their quantum yield of photochemistry and the proportion of accessory chlorophylls b and c and photosynthetic carotenoids.  相似文献   

13.
We have estimated the spatial variability of phytoplankton specific absorption coefficients (a* ph ) in the water column of the California Current System during November 2002, taking into account the variability in pigment composition and phytoplankton community structure and size. Oligotrophic conditions (surface Chl < 0.2 mg m−3) dominated offshore, while mesotrophic conditions (surface Chl 0.2 to 2.0 mg m−3) where found inshore. The specific absorption coefficient at 440 [a* ph (440)] ranged from 0.025–0.281 m2mg−1 while at 675 nm [a* ph (675)] it varied between 0.014 and 0.087 m2mg−1. The implementation of a size index based on HPLC data showed the community structure was dominated by picoplankton. This would reduce the package effect in the variability of a* ph (675). Normalized a ph curves were classified in two groups according to their shape, separating all spectra with peaks between 440 and 550 nm as the second group. Most samples in the first group were from surface layers, while the second group were from the deep chlorophyll maximum or deeper. Accessory photoprotective pigments (APP) tended to decrease with depth and accessory photosynthetic pigments (APS) to increase, indicating the importance of photoprotective mechanisms in surface layers and adaptation to low light at depth. Samples with higher ratios of APP:APS (>0.4) were considered as phytoplankton adapted to high irradiances, and lower ratios (<0.26) as adapted to low irradiances. We found a good relationship between APP:APS and a* ph (440) for the deeper layer (DCM and below), but no clear evidence of the factors causing the variability of a* ph (440) in the upper layer.  相似文献   

14.
The phytoplankton pigment composition (chlorophylls and carotenoids) from 17 Atlantic Meridional Transect (AMT) cruises over the period 1995–2005 was analysed to determine the distributions of pigments and plankton in the Atlantic Ocean between 50°N and 50°S. Data were quality assured by statistical methods, including regression of total chlorophyll a (TChla) versus accessory pigments (AP) and comparison of the AMT-TChla with contemporary SeaWiFS-TChla (cruises AMT-05 to -17). Comparisons of province-mean TChla (±SD) for in situ and satellite data showed good agreement for each cruise. ‘Taxa-specific’ pigments were used to define phytoplankton functional types (PFTs) for each of the biogeochemical provinces along the AMT. Pigment ratios (e.g. TChla/AP) were analysed for each cruise and for each province as indices (characteristic properties) of particular PFTs. Mostly robust positive correlations were observed between TChla and pigment ratios for different PFTs, for some provinces and most cruises. These were consistent with previous observations. Generally there were no significant trends of mean TChla or pigment ratios within provinces over the period 1995–2005, although the previously reported perturbation due to the 1997–1998 ENSO was evident.  相似文献   

15.
Spectral absorption coefficients of total particulate material and detritus were measured throughout the euphotic zone along the equator between 165°E and 150°W and during time-series for each of these two longitudes in October 1994 (JGOFS-FLUPAC cruise). The sum of pigments obtained by spectrofluorometry (tChla=DV−chla+Chla) was used for normalization (and was also compared to fluorometric and HPLC measurements as an intercalibration study). In order to assess the specific absorption coefficient of photosynthetically active pigments (aps) from the pigment-specific absorption coefficient for phytoplankton (aph*), we made a multiple regression analysis of measured phytoplankton absorption spectra onto publishedin vivo spectra of pure pigments. This made it possible to calculate the concentrations of photoprotective carotenoids (tPPC) when HPLC measurements were not available and thus to subtract their contribution to absorption from the total phytoplanktonic absorption coefficient (aph). Methodological uncertainties in both coefficients used for calculating absorption coefficients and in pigment measurements are discussed. Pigments and absorption measurements made during the cruise enabled us to describe two typical trophic regimes in the equatorial Pacific ocean: oligotrophic waters of the ”warm pool“ west of 170°W and high-nutrient, low-chlorophyll waters (HNLC) of the upwelling east of 170°W. The vertical decreasing gradient of aph* from the surface to the deep chlorophyll maximum (DCM) was due to a high tPPC/tChla ratio at the surface and was higher in the oligotrophic (0.14-0.065 m2 mg (tChla)−1 biomass dominated byProchlorococcus, rich in zeaxanthin) than in the mesotrophic area (0.07-0.06 m2 mg (tChl a)-' biomass dominated by picoeucaryotes). Below the DCM,aph* reached a similar minimum value in both oligotrophic and mesotrophic areas.a*ps varied less than a*ph from the surface layer to the DCM in both oligotrophic and mesotrophic areas. The difference in a*ph and a*ps from west to east of the transect could be interpreted as a shift in the phytoplankton composition, with a dominance of procaryotes in the west and a dominance of eucaryotes in the upwelling area. Higher aps in well-lit typical oligotrophic waters indicated that phytoplankton communities dominated byProclorococcus might be more efficient for capturing light usable for photosynthesis than those present in the HNLC situation.  相似文献   

16.
Phytoplankton pigments and size-fractionated biomass in the Chukchi and Beaufort Seas showed spatial and temporal variation during the spring and summer of 2002. Cluster analysis of pigment ratios revealed different assemblages over the shelf, slope and basin regions. In spring, phytoplankton with particle sizes greater than 5 μm, identified as diatoms and/or haptophytes, dominated over the shelf. Smaller (<5 μm) phytoplankton containing chlorophyll b, most likely prasinophytes, were more abundant over the slope and basin. Due to extensive ice cover at this time, phytoplankton experienced low irradiance, but nutrients were near maximal for the year. By summer, small prasinophytes and larger haptophytes and diatoms co-dominated in near-surface assemblages in largely ice-free waters when nitrate was mostly depleted. Deeper in the water column at 1–15% of the surface irradiance larger sized diatoms were still abundant in the upper nutricline. Phytoplankton from the shelf appeared to be advected through Barrow Canyon to the adjacent basin, explaining similar composition between the two areas in spring and summer. Off-shelf advection was much less pronounced for other slope and basin areas, which are influenced by the low-nutrient Beaufort gyre circulation, leading to a dominance of smaller prasinophytes and chlorophytes. The correlation of large-sized fucoxanthin containing phytoplankton with the higher primary production measurements shows promise for trophic status to be estimated using accessory pigment ratios.  相似文献   

17.
利用高光谱监测数据反演浮游植物种群组成是当前海洋光学和水色遥感的研究热点。文章采用大西洋经向断面航次中走航式观测系统测量的海水总颗粒物吸收光谱数据, 尝试建立了两种模型对浮游植物粒级结构(Phytoplankton size class, 简称PSC)进行反演和比较讨论。一类模型是基于总颗粒物吸收光谱高斯分解获得的典型波段高斯带强度与色素浓度之间的关系, 建立了偏最小二乘回归模型(Partial Least Squares regression model, 简称PLS回归模型); 另一类模型是采用长波波段吸收基线高度推算海水总叶绿素a浓度, 进而根据Brewin等(2010)生物量算法推算PSC的三组分模型(简称三组分模型)。模型比较验证结果显示, 两类模型对海水总叶绿素浓度的反演都有较高的精度, 相对偏差ME在15%左右; 对于三个粒级浮游植物对应的叶绿素浓度(Pico级Cp, Nano级Cn, Micro级Cm)的反演效果也相当, PLS回归模型反演的ME分别为28.4%、31.9%和41%, 三组分模型反演的ME分别为31%、35.9%、37.7%。研究结果初步表明了采用高光谱吸收系数反演浮游植物种群结构的潜在优势, 可为不同海域走航式高光谱观测系统的推广应用提供思路。  相似文献   

18.
Vertical changes of phytoplankton absorption spectra along 175°E from 48°N to 15°S were examined during spring 1994. The absorption spectra were analyzed using three different approaches; averaging the spectra within same oceanic areas, EOF analysis, and multiple regression analysis. Average spectra showed differences in five oceanic areas; subarctic, Kuroshio, subtropical surface, equatorial surface, and subtropical and equatorial subsurface areas. The distributions of the EOF mode of the variance of absorption spectra and of the pigments estimated by the multiple regression analysis indicated consistent differences of the spectra between those areas. Kuroshio water contains highest chlorophyll a concentrations and low chlorophyll-a-specific absorption spectra, and this may be caused by the package effect with large phytoplankton cell and by low concentrations of photo-protected carotenoids. Subtropical and equatorial subsurface water showed high absorption at 480 nm and indicated the effects of chlorophyll b. Absorption of the subsurface phytoplankton also showed a shift of the blue peak, possibly caused by the presence of divinyl-chlorophyll a. The consistency of the three different analytical methods indicates that the phytoplankton absorption includes significant information on pigment composition along a north-south vertical section of the central North Pacific.  相似文献   

19.
浮游植物的粒级结构是一个重要的生物参数。基于南海北部海区不同水体环境下测量的生物光学数据, 作者深入研究了粒级结构对浮游植物吸收光谱的影响。结果表明, 选择443和510nm波段计算得到的浮游植物光谱斜率S对粒级结构的变化具有较高的敏感性, 其随着小型浮游植物比例的增大呈不断增加的趋势。S与水体叶绿素a浓度、浮游植物吸收系数(aph(443))之间表现出明显的正相关特征。以40%为界对不同粒级浮游植物的优势进行定义, 发现在S与叶绿素a浓度、aph(443)的关系分布中小型(Micro)和微微型(Pico)浮游植物占据优势的水体表现出较为明显的分界, 叶绿素a浓度和aph(443)分别在0.70mg•m-3和0.05m-1附近, 相应的S在0.0004(m•nm)-1左右。基于实测数据建立的遥感反射率蓝绿波段比值与S之间的统计关系, 决定系数高达0.91, 为从水色遥感数据反演浮游植物粒级结构提供了重要手段。  相似文献   

20.
利用反相高效液相色谱(RP-HPLC)对厦门西海域2001年2~6月的浮游植物色素进行了测定,并首次运用CHEMTAX软件对该海域进行了浮游植物群落组成的分析,同时分析了环境因子对群落组成的作用.我们首先改进了RP-HPLC分离方案,分离的时间缩短了近1/3,达到了提高分离效率的目的.利用改进后的RP-HPLC方案进行色素分析显示,厦门西海域2001年2~6月期间,主要的特征色素是岩藻黄素(fucoxanthin)、19’-丁酰基氧化岩藻黄素(19’-butanoyloxyfucoxanthin)、19’-己酰基氧化岩藻黄素(19’-hexanoyloxyfucoxanthin)和多甲藻素(peridinin),月平均含量分别在267.824~655.076、20.118~126.764、65.693~214.115、26.955~203.927μg/m3的范围变动.CHEMTAX计算的结果进一步表明:硅藻是主要优势类群,其次是定鞭金藻和甲藻,分别占总生物量的36.14%~79.27%、4.50%~37.40%和4.83%~21.37%.总生物量从2月到6月呈增长趋势,温度是主要的决定因子.硅藻和定鞭金藻所占生物量的份额呈相反趋势变化,表明种间竞争也是重要的因素之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号