首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents the results of eco-geochemical research on black rock series enriched in metallic elements in Pingli County,Shaanxi Province,which lies at the northern margin of the Yangtze Platform.There is a suite of bone coal-bearing black carbonaceous rocks in the Cambrian Donghe Formation throughout the region.Soils in Pingli contain high metallic elements derived from the bone coal and carbonaceous rocks.Edible plants growing in the soils contain high Se,Cu and Mo.Two case studies are documented.One is a black shale area with bone coal and Se enrichment,and the other is a black shale area with bone coal mine and copper mineralization.Eco-geochemical effects of metallic element-rich black shales on plants are reported in this paper.  相似文献   

2.
The Honggang member of the early Paleogene Buxin Formation is the main source rock in the Sanshui Basin, characterized by organic-rich black shales with the cyclic recurrence of organic- poor sediments. The geochemical characteristics of the Honggang member have been documented to determine the organic matter types and depositional environments in this paper. The organic matter of the black shales mainly consists of a mixture of land plant-derived and phytoplankton-derived organic matter. Total organic carbon content (TOC)–sulfur–iron (Fe) relationships suggest that the organic- rich black shales were deposited under dysoxic-to-euxinic water conditions. The time that iron minerals remained in contact with H2S in anoxic waters possibly influenced the formation of syngenetic pyrite, and organic carbon controlled the formation of diagenetic pyrite. Organic-poor intervals usually show pyrite sulfur enrichment and higher degree of pyritization values relative to low organic carbon contents. This resulted from HS– diffusing downward from overlying organic-rich sediments and formed Fe sulfides through reactions with sufficient Fe. Trace elements generally exhibit low concentrations and little TOC dependence, suggesting some degree of depletion in these elements in the early Paleogene sediments of the Sanshui Basin. This probably resulted from cyclic recurrences of oxic benthic conditions, which promoted the remobilization of trace elements and caused the low concentration of trace elements.  相似文献   

3.
Through a systematic study on trace elements and REE geochemistry of mudstone deposited in the basin and lower slope environments during Upper Proterozoic to Triassic in the Southwest Yangtze Mssif,three geochemical abnormal horizons of which the geochemical characteristics are quite different from those of other horizons have been established for the first time.They are the Lower Cambrian,the Upper Devonian and the Upper Permian,As compared with the crustal evolution in this area.these three geochemical abnormal horizons are corresponding to the pulling-apart periods of geotectonic cycles.which illustrates that uncommon depositional sources puring into the basin from the earth‘s interior may be one of the most important causes to originate the geochemical anomalies in these lhrizons.Thus it can be realized that the geochemistry of post-Archean sedimentary rocks has a great deal to do with the crustal evolution and it can be used as a tracer to analyze the crustal evolution.The elements in this area are mainly concentrated in these geochemical abnormal horizons,and the degree of enrichment and deficiency of trace elements in other horizons is very limited.A series of research on mineralization indicates that the main strata-bound ore deposits discovered in the Southwest Yangtze Massif occur in the Cambrian,Devonian and Permian-Trassic strata.The results of isotope tracer resarch have also proved that most of the metallogenic elements in these ore deposits came from the host strata.which illustrates that the geochemical abnormal horizons may have made great contributions to these ore-forming processes.Thus it can be concluded that it is only the particular horizons corresponding to the particular periode of earth‘s evolution that can they be the significant source beds because only in these uncommon horizons there can be highly enriched metallogeinc elements.which may be one of the most important reasons for explaining the time-bound nature of mineralization.  相似文献   

4.
A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province. The Longtan Formation contains abundant basalt, tuff and siliceous rocks. All rocks of the Long-tan Formation are enriched in gold, which were deposited in a limited platform environment in the transition zone from marine to continental. The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west, which led to the formation of a peculiar gold-bearing formation with coal series strata. This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province. In response to the remobilization of the Emei mantle plume during the Yanshanian period, As, Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams, thereafter forming ore-forming hydrothermal solutions. When these elements were transported in the coal seams, large amounts of As, Au and other elements were enriched in pyrite within the coal seams, thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata.  相似文献   

5.
REE ratios and patterns for massive pyrite ore and massive cuprous pyrite ore ofthe Baiyinchang orefield are quite similar to those for quartz keratophyritic tuff and quartzalbitophyre of the same orefield. However, massive cuprous pyrite ore of the Ashele Cu-Zn de-posit is similar to basalt-diabase of the same district in REE geochemistry. Comparison of theChinese VMS ores with those from Rio Tinto, Spain and Que River, Australia, in REEgeochemistry has been made. REE ratios and patterns of bedded-massive and massive ores ofthe Changba-Lijiagou Zn-Pb deposit, the second largest SEDEX deposit in China are similarto those of their host rocks, the Qinling shales of Devonian age and the Changba adamellite.The three types of ore and their host rocks of the Dongshengmiao pyrite (pyrrhotite)-Zn-Pbdeposit have parallel REE ratios and patterns.  相似文献   

6.
: Black shales are marine sediments with argillaceous, silty and siliceous compositions and high contents of organic materials, disseminated pyrite and uranium. Uraniferous black shale has uranium content of more than 20 ppm.Black shales are widely distributed in 17 provinces or autonomous regions in northwestern and southern-central China. Their sedimentary ages are from the Sinian to the Tertiary and uraniferous black shales are mainly exposed in Yunnan, Guizhou, Sichuan, Hunan, Hubei, Jiangxi, and Zhejiang provinces and Guangxi Zhuang Autonomous Region and the economically significant uranium deposits associated with black shale occur in Hunan and Jiangxi provinces and Guangxi Zhuang Autonomous Region.Uranium mineralization associated with black shale has the following main features: (1) forming stratabound deposits; (2) controlled by structures such as interlayer and intersected faults and fractures; (3) associated with different ore-forming processes such as leaching and hydrothermal reworking; (4)  相似文献   

7.
Trace elements and rare earth elements (REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry. The results indicate that V, Cu, Sn, Ga, Cd, In, and Se are concentrated in sphalerite, Sb, As, Ge, and Tl are concentrated in galena, and almost all trace elements in pyrite are low. The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites. The contents of Ge, Tl, In, and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites. It shows that REE concentrations are higher in pyrite than in sphalerite, and galena. In sphalerites, the REE concentration decreases from light-yellow sphalerites, brown sphalerites, to black sphalerites. The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites, respectively, indicating that the genesis of the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis. The relationship between LnGa and LnIn in sphalerite, and between LnBi and LnSb in galena, indicates that the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis. Based on the chondrite-normalized REE patterns, δEu is a negative anomaly (0.13–0.88), and δCe does not show obvious anomaly (0.88–1.31); all the samples have low total REE concentrations (<3 ppm) and a wide range of light rare earth element/high rare earth element ratios (1.12–12.35). These results indicate that the ore-forming fluids occur under a reducing environment. Comparison REE compositions and parameters of sphalerites, galenas, pyrites, ores, altered dolostone rocks, strata carbonates, and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems, that is, different chronostratigraphic units could make an important contribution to the ore-forming fluids. Combined with the tectonic setting and previous isotopic geochemistry evidence, we conclude that the ore-deposit genesis is hydrothermal, sedimentary reformed, with multisources characteristics of ore-forming fluids.  相似文献   

8.
The Jinjiazhuang gold deposit occurs in the Zhangjiakou gold field,Northwest Hebei.The ore bodies are mostly hosted in Xiaozhangjiakou ultrabasic rocks dominated by diopsidite.Electron microprobe analyses indicate that the deposit is characterized by the enrichment of some platinum group elements in principal metallic minerals such as chalcopyrite,galena,sphalerite and pyrite,and the presence of millerite,Stable isotope studies show that carbon,sulfur and most of the metallogenic elements were probably derived largely from the host Xiaozhangjiakou ultrabasic rocks and that it is possible that the ore-forming fluid was predominted by meteoric water.  相似文献   

9.
Based on investigation of the characteristics of solid waste of two different mines, the Fenghuangshan copper mine and the Xinqiao pyrite mine in Tongling, Anhui province in central-east China, the possibility and the differences of acid mine drainage (AMD) of the railings and the waste rocks are discussed, and the modes of occurrence of heavy metal elements in the mine solid waste are also studied. The Fenghuangshan copper mine hardly produces AMD, whereas the Xinqiao pyrite mine does and there are also differences in the modes of occurrence of heavy metal elements in the railings. For the former, toxic heavy metals such as Cu, Pb, Zn, Cd, As and Hg exist mostly in the slag mode, as compared to the latter, where the deoxidization mode has a much higher content, indicating that large amounts minerals in the waste rocks have begun to oxidize at the earth surface. AMD is proved to promote the migration and spread of the heavy metals in mining waste rocks and lead to environmental pollution of the surroundings of the mine area.  相似文献   

10.
斑岩铜(钼)矿成矿作用的地球化学特征   总被引:1,自引:0,他引:1  
Dealt with in this paper are some geochemical characteristics of mineralization of porphyry copper deposits, especially those observed in intrusive bodies, wa11 rocks, alteration zones, ores and individual pyrites. Productive intrusions have been correlated with barre nones from such aspects as major and trace elements, copper contents of biotite and pyrite,and distribution pattern of copper. In the mineralized rocks, trace elements show apparent zoning surrounding ore bodies; major and trace dements seem to show some reguIarity of variation in the process of alteration, and as a result each alteration zone displays its own peculiar element combination. Trace dements in ores can provide information on the genesis of ore deposits, thus of great help in distinguishing ore types while those in pyrites may be indicative of mineralization, provide dues for distinguishing orebearing from barren rocks,and reflect the degree of erosion of ore bodies.  相似文献   

11.
Abstract: The black shales of the Lower Cambrian Niutitang Formation in Weng’an, on the Yangtze platform of south China, contain voluminous polymetallic sulfide deposits. A comprehensive geochemical investigation of trace, rare earth, and platinum group elements (PGE) has been undertaken in order to discuss its ore genesis and correlation with the tectono-depositional setting. The ore-bearing layers enrich molybdenum (Mo), nickel (Ni), vanadium (V), lead (Pb), strontium (Sr), barium (Ba) , uranium (U) , arsenic (As), and rare earth elements (REE) in abundance. High uranium/thorium (U/Th) ratios (U/Th>1) indicated that mineralization was mainly influenced by the hydrothermal process. The dU value was above 1.9, showing a reducing sedimentary condition. The REE patterns showed high enrichment in light rare earth elements (LREE) (heavy rare earth elements (HREE) (LREE/HREE=5–17), slightly negative europium (Eu) and cerium (Ce) anomalies (dEu=0.81–0.93), and positive Ce anomalies (dCe=0.76–1.12). PGE abundance was characterized by the PGE-type distribution patterns, enriching platinum (Pt), palladium (Pd), ruthenium (Ru) and osmium (Os). The Pt/Pd ratio was 0.8, which is close to the ratios of seawater and ultramafic rocks. All of these geochemical features suggest that the mineralization was triggered by hydrothermal activity in an extensional setting in the context of break-up of the Rodinian supercontinent.  相似文献   

12.
The Ni-Mo-PGE polymetallic mineralization of the Lower Cambrian black shales locate in Zunyi, South China and contain abundant noble metals such as Ag, Au and PGE, and especially Ag with average concentration of 64×10-6. The occurrence modes of Ag have been investigated using methods of selective chemical dissolution and transmission electron microscopy. The results demonstrate that the occurrence modes of Ag are complex and diversiform. It might be associated with clay minerals, organic matter, sulfides and also occurred as native silver and sulfides with nanometer in size. Combined with results of previous studies, we suggest that the sulfides, clay minerals and organic matter which hosted in the Ni-Mo-PGE polymetallic ores of black shales can play the roles of important reduction and adsorption geochemical barriers for the enrichment and distribution of silver. This study further implies that the selective chemical dissolution and transmission electron microscopy may pave the way to study the occurrence modes of other noble metals in black shales.  相似文献   

13.
Organic geochemistry and comparisons of characteristics of the organic matter in wall rocks of the ore-controlling strata and ores of the Lower Jurassic Songling black shale formation and the related Songxi silver-antimony deposit of northeastern Guangdong have been studied in this paper.The results show that the Lower Jurassic Songling shale formation is a suite of biologic-rich and organic-rich ore-bearing marine sedimentary rocks.Micro-components of the organic matter in the Songling black shale formation consists primarily of algae,amorphous marine kerogen,solid bitument,and pyrobitument.The thermal evolution of organic matter is at the over-maturity stage.There is a general positive correlation between total organic carbon(CO)and metallogenetic elements such as Ag and Sb in the black shale formation.Organic matter in the host rocks in the Songxi ore deposit played a role in controlling the silver-antimony depositing environment during the forming process of the black shale ore-bearing formation.In the absence of vitrinite,the relative level of thermal maturity calculated by solid bitument reflectance indicates that the ore-forming temperatute of the Songxi silver-antimony deposit was about 150-170℃,which was considered as an epithermally reworked ore deposit.The roles of organic matter in the formation of the Sonxi ore deposit are a primitive accumulation of the metallogenetic elements(Ag,Sb) in the sea-water cycle system for ore source and a concentration of metals by ion exchange of chelation as well as reductionn of the oxidzed metals.  相似文献   

14.
Gld deposits occurring in metamorphosed microcelastic rocks are distributed extensively at home and abroad.Some deposits of this type are of superlarge tonnage.The formation of gold deposits in metamorphosed microclastic rocks involves three stages:the sedimentary stage,the regionally metamorphic stage,and the ore-forming stage.At the first stage,microclastic sedimentary source rocks were developed in a relatively semi-enclosed reducing sea basin and were enriched in carbon,sulfur and gold.At the second stage,the gold adsorbed on organic matter and clay minerals was relesed and poorly concentrated during the destruction of organic matter and the depletion of clay minerals by regional metamorphism with increase temperature and pressure.At the third stage,a tectono-hydrothermal event took place.As a result,gold was leached from metamorphosed microclastic rocks,transported to ore depositional locus and/or mixed with gold of other sources in the course of migration,and finally precipitared as ores.Gold deposits of this type were eventually formed at the third stage,and they also can be classified as the orogenic belt type and the activation zone type.The gold deposits occurring in metamorphosed microcalastic rocks are the products of reworking processes and the influence of magmatism should be taken into consideration in some cases.  相似文献   

15.
The Taojiang Mn ore deposit was exploited in the early 1960s, and waste rocks were developed since then. Because the Mn ores were hosted within the metal-enriched black shales (Peng et al., 2004), the continuous mining has led to the exposure of an immense quality of black shales, which might cause serious impacts on environments. The present study deals with this environmental issue with samples from the waste rocks, and from the surrounding soils and surface water. The mineralogy of the waste rock was studied using EMPA, then a large number of elements in all waste rock, soil, and water samples were analyzed at a wide range of concentrations with high accuracy using an Elan6000 ICP-MS machine at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. The waste rock is composed mostly of black shales, with minor Mn carbonates. Both black shales and Mn carbonates of the waste rock contain many sulfide minerals, mainly pyrite, with minor galena, sphalerite, chalcopyrite, and others. The waste rocks are enriched in many metals including Sc, V, Cr, Co, Ni, Fe, Mn, Cu, Zn, Pb, Th, U, Mo, Sb, Sn, Tl, and others, and the metals are mostly hosted within the sulfides. Weathering of waste rocks might cause emission of the following metals: V, Cd, Ni, Th, U, Mo, Sb, Tl, Sc, Cr, Cu, Zn, Sn, and minor Co, and Pb. The surrounding soils are highly enriched in Cr, Co, Cu, Zn, Mn, Mo, Cd, Tl, and Pb, with the enrichment factors of 2.67.3.8, 7.26, 7.27, 8.2, 5.7, 13, and 5.4, respectively. The element ratios (Rb/Cs, Fe/Mn, Nb/Zr, Hf/Zr, and Ba/Sr) and REE distribution patterns of the soils are similar to those of the waste rocks and bedrocks.  相似文献   

16.
Bituminous rocks in the Ozankoey (Ankara) field are different from those of the Paleocene- Eocene Mengen and Giineytepe (Bolu) regions in metal enrichment levels. Organic carbon (Corg) content of organic material-rich rocks in the Ozankoey (Ankara) field is 3.66-40.72% wt averaging 14.34%. The dominant organic materials are algae/amorphous accompanied by minor amount of herbaceous material (The dominant kerogen type is Type-I with a limited amount of Type-Ⅱ kerogen.). The bituminous rocks in the Ozankoey field are enriched in heavy metals such as Ni, Mn, As and Cr. In comparison with the average enrichment values of dements, Ni, Mn, As and Cr in bituminous shales of the Ozankoey field are as about 4.38, 14.93, 10.90 and 5.58 times as average values. The average concentrations of these heavy metals are also as high as 215× 10^-6, 828 × 10^-6, 58.54 × 10^-6, and 148 × 10^-6 respectively. In addition, sorption properties of day and organic materials are also important for metal enrichments in the bituminous shales.  相似文献   

17.
The Jiujiang-Ruichang area in northwestern Jiangxi extends along the western part of the minerogenic belt of the middle-lower Yangtze Valley in a terrain of sediments ranging from Ordovician to Triassic in age with NEE-folda,and NW-compressive,NNW-tensile and NEE-compressive-shearing faults as the major structures .Igneous rocks are mostly intermediate-acid epizonal intrusive bodies.Typical copper mineralizations in this area include the skarn-type and stratiform Cu-bearing pyrite-type deposits at Wushan and the porphyry and breccia-pipe type copper-molybdenum deposits at Chengmenshan.Silurian strata,with a great thickness and an average copper content of 51 ppm,are considered to be the source bed of copper mineralization,as is evidenced,among other things,by the presence of an envelope which is notably impoverished in Cu aroud most of the deposits.Magmatic rocks which intruded into the Silurian strata often have relatively high alkali contents and K2O/Na2O ratios ,with extensive potash alteration.Magmatic rocks in the area are of co-melting type or mixed type.The magma assimilated a large quanity of country rocks while ascending.They are characterized by high REE contents,absence of Eu anomalies and high LREE/HREE ratios.Ancient lead and strontium isotopes were detected in feldspar megaphenocrysts from the granodiorite porphyry.Hydrothermal convective circulation systems of magmatic water of magmatic water and supergenic water was extensively developed in the magmatic and country rocks,in which copper,potassium and other ore-forming components were extracted from the country rocks and concentrated through heating,boiling and evaporating.When the ore-forming fluids found their way into the skarn zone or the unconformity between the Wutong Formation and the Huanglong Formation,ore precipitation would have occurred as a result of changing media,If the concentration of KCl exceeded 9%,copper and other ore-forming components might have been deposited in magmatic rocks,forming the porphyry-type ore deposits.  相似文献   

18.
Presented in this paper is an approach to the analysis of “series-stage“division.The processes of hydrothermal evolution involved in ore deposition,the factors affecting the enrichment of uranium and the source of ore forming elements in uranium deposit 720 are also discussed .In addition,the ore-forming tem-perature and pressure as well as the pH,Eh and chemical composition of ore-forming medium are studied with reference to the fluid inclusion data available.A double solution-mixing model has been proposed to explain the genesis of the uranium deposit studied.  相似文献   

19.
Abstract: The Fengshan porphyry-skarn copper–molybdenum (Cu–Mo) deposit is located in the south-eastern Hubei Province in east China. Cu–Mo mineralization is hosted in the Fengshan granodiorite porphyry stock that intruded the Triassic Daye Formation carbonate rocks in the early Cretaceous (~140 Ma), as well as the contact zone between granodiorite porphyry stock and carbonate rocks, forming the porphyry-type and skarn-type association. The Fengshan granodiorite stock and the immediate country rocks are strongly fractured and intensely altered by hydrothermal fluids. In addition to intense skarn alteration, the prominent alteration types are potassic, phyllic, and propylitic, whereas argillation is less common. Mineralization occurs as veins, stock works, and disseminations, and the main ore minerals are chalcopyrite, pyrite, molybdenite, bornite, and magnetite. The contents of palladium, platinum and gold (Pd, Pt and Au) are determined in nine samples from fresh and mineralized granodiorite and different types of altered rocks. The results show that the Pd content is systematically higher than Pt, which is typical for porphyry ore deposits worldwide. The Pt content ranges from 0.037 to1.765 ppb, and the Pd content ranges between 0.165 and 17.979 ppb. Pd and Pt are more concentrated in porphyry mineralization than skarn mineralization, and have negative correlations with Au. The reconnaissance study presented here confirms the existence of Pd and Pt in the Fengshan porphyry-skarn Cu–Mo deposit. When compared with intracontinent and island arc geotectonic settings, the Pd, Pt, and Au contents in the Fengshan porphyry Cu–Mo deposit in the intracontinent is lower than the continental margin types and island are types. A combination of available data indicates that Pd and Pt were derived from oxidized alkaline magmas generated by the partial melting of an enriched mantle source.  相似文献   

20.
Carbonate concretions are conspicuous in organic-rich shales and are generally related to decomposition of organic matter.The black shales from the Chang 7 Member of the Upper Triassic Yanchang Formation of the southern Ordos Basin host abundant carbonate concretions,which provide a unique record of depositional and early diagenetic conditions of the paleo-lake sediments.However,little attention has been given to the genesis and growth processes of the concretions in these lacustrine petroleum source rocks.New petrographic observations and geochemical analysis show that the concretions are composed of calcite,phosphate fossil fragments,K-NH_4-feldspar,quartz,bitumen,and minor Fedolomite.Phosphate minerals,mainly carbonate fluorapatite (CFA),show pervasive replacement by calcite,most of which contains phosphorus,ranging in concentration from 0.26 to 2.35 wt%.This suggests that the phosphate minerals are the precursors for concretion growth.Positiveδ~(13)C (+5.6 to+12.4‰V-PDB) signatures and the absence of pyrite indicate that microbial methanogenesis was the dominant driver for concretion growth,rather than bacterial sulfate reduction.Quartz,bitumen,and Fe-dolomite are the last cements that occurred,at deep burial depths and high temperatures.The formation of phosphate minerals might have been induced by upwelling of phosphate-enriched deep water in the Late Triassic paleolake,which promoted phytoplankton blooms and further enrichment of organic matter.Extremely slow sedimentation rates of fine-grained detrital minerals,relative to dead organism accumulation,led to the high permeabilities of the organic-rich sediments and rapid concretion growth during shallow burial.The close association of phosphate-bearing carbonate concretions and organic-rich shales reflects that upwelling played a critical role in the formation of the high-quality petroleum source rocks in the Triassic paleo-Ordos lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号