首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During the last decade, several rainfall-induced deep-seated large landslides with volumes of the order of 1 million m3 were triggered in various locations in Slovenia (central Europe), each representing a serious threat to the nearby villages and traffic infrastructure and urging to be mitigated. The Macesnik landslide, triggered in 1989, and the Slano blato landslide, triggered in 2000, were the first two large landslides in Slovenia, where a combination of drainage and retaining works consisting of deep reinforced concrete (RC) shafts/wells was successfully used as a mitigation measure. This paper presents the field conditions and a brief history of the two landslides with emphasis on the design approach and method used for the stability analysis and the design of deep RC shafts/wells. In addition, the paper gives an insight into the problems associated with the execution of works and provides data about the behavior of the two landslides after drainage and retaining works were completed. The monitoring data show that the undertaken mitigation measures were efficient to improve the stability of both landslides and significantly reduce the risk.  相似文献   

2.
Extreme heavy rainfall due to Typhoon Talas on September 2–4, 2011 in the Kii Peninsula, Japan, triggered numerous floods and landslides. This study investigates the mechanism and the entire process of rainfall-induced deep-seated landslides forming two massive dams in the Kuridaira and Akatani valleys, respectively. The mechanism of the rapid deep-seated landslides is examined through a series of laboratory experiments on samples from sliding surfaces by using undrained high-stress dynamic-loading ring-shear apparatus. The test results indicate that the failure of samples is triggered by excess pore water pressure generation under a shear displacement from 2 to 7 mm with a pore pressure ratio ranging from 0.33 to 0.37. The rapid movement of landslides is mainly attributed to high mobility due to the liquefaction behavior of both sandstone-rich and shale samples. Geomorphic settings and landslide mobility are major contributing factors to the dam formation. Additionally, shear displacement control tests show that a certain amount of shear displacement between 2 and 7 mm along the sliding surfaces of the gravitationally deformed slopes might have led to the failures. Importantly, computer simulation with LS-RAPID software using input parameters obtained from physical experiments is employed to interpret the entire formation process of the abovementioned two landslide dams. The simulation results are examined in accordance with the observed on-site geomorphic features and recorded data to explain the possibility of sliding processes. The results further point out that local failures are initiated from the lower middle part of the landslide bodies where the geological boundary exists. This condition most probably influences the landslide initiation in the two case studies. This research is therefore helpful for hazard assessment of slopes that are susceptible to deep-seated landslides and other sequential processes in areas with geology and geomorphology similar to that of the Kii Peninsula.  相似文献   

3.
In the last 20 years, major efforts have been made to investigate shallow flow-type landslides. Such phenomena are usually rainfall-induced and in the geological context of Campania (Southern Italy) occur in pyroclastic soils resting on steep slopes mainly constituted by carbonate or volcanic bedrock and by flysch deposits. They are generally complex landslides with an early soil slide and a subsequent flow evolution. In this paper, a database of flowslides occurring in recent years within the flysch deposits of Avellino (Campanian Apennines) is first discussed and then the case study of Bosco de’ Preti landslide on March 4, 2005, is described. The geological and geotechnical characteristics of the soils involved are described and the monitoring of the groundwater heads collected over 1 year from June 2005 to June 2006 is also shown. The last part of the paper illustrates the results of numerical modelling of the landslide triggering to gain insights into such phenomena. Slope stability analyses are preceded by hydrological modelling of the slope based on the monitoring data. Numerical analysis demonstrated that the rainfall during the 2 months preceding the event was able to fully saturate the pyroclastic cover and to establish positive pore water pressure at the depth of the surface of rupture, a soil condition never witnessed in carbonatic contexts. Hence, a combination of antecedent (predisposing factors) and single rainfall events (triggering factors) led to slope failure, as usually happens in pyroclastic soils in carbonatic and volcanic contexts. Finally, analysis of the historical landslides together with detailed investigation of the Bosco de’ Preti case study permitted comparison between flow-type landslides in pyroclastic soils on carbonatic/volcanic bedrock and those on flysch.  相似文献   

4.
本文以汶川地震强震区北川县典型研究区为例,利用高分辨率航片、SPOT5卫星图像对北川县典型研究区进行了512地震之后和924降雨之后诱发的滑坡解译,解译结果显示:512地震诱发滑坡1999个,924强降雨诱发滑坡828个,924强降雨导致原有地震滑坡面积扩大的滑坡150个。研究表明:地震和强降雨都是诱发滑坡的动力成因,924强降雨诱发的滑坡面积是512地震诱发滑坡面积的1/4倍,强降雨诱发滑坡的数量增加了41.4%; 强降雨不仅诱发新的滑坡,而且促使原来地震滑坡复活,并扩大其面积,强降雨导致地震诱发的滑坡面积扩大了原面积的68.7%。同时,在遥感解译数据基础之上,开展地震诱发滑坡与降雨诱发滑坡规模对比和控制因子耦合分析及地震与降雨耦合灾害链模式研究,为进一步分析研究地震灾区滑坡的产生、发展趋势、危险性和风险评价等预测预报提供科学依据,也为汶川震区恢复重建中的减灾防灾提供决策参考。  相似文献   

5.
The formation and evolution of a coastal fan in eastern Taiwan associated with a sequence of rainfall-induced landslides during the 2009–2013 period are explored in this study. The evolution of these landslides is mainly attributed to the head-cutting process initiated by Typhoon Parma in October 2009. During the attack of Typhoon Megi in October, 2010, a subaerial coastal fan with a surface slope of 8.9° was formed after the mobilization of the rainfall-induced landslides. The geomorphic features both in the steep gully and on the coastal fan were categorized as the sequence of granular debris flows and sheet floods. Severe fan toe erosion occurred thereafter due to the wind-wave forcing. Even if the variations of both the cumulative rainfalls and the drainage areas are one or two orders of magnitude among devastating fan-forming landslides worldwide, the mean annual precipitation and the basin ruggedness index (Melton ratio) are effective indicators to normalize the rainfall threshold and to characterize the fan surface slope, respectively. Severe catastrophic landslides generally occur when the normalized cumulative rainfalls with respect to mean annual precipitation are greater than 0.1. The fan slope generally increases with the increasing Melton ratio for the catchment. Uchiogi’s empirical model is applicable for predicting the rainfall-induced area ratio of newly generated landslides. In this case study, the relationship of the fan area to the total landslide area follows a linear regressive curve when the ratio of landslide area with respect to the drainage area exceeds 0.0056.  相似文献   

6.
Rainfall thresholds for rainfall-induced landslides in Slovenia   总被引:3,自引:1,他引:2  
In Slovenia, rainfall-induced landslides lead to considerable damages, even causing human losses. In order to reduce the impact of this kind of landslide, several researchers analyzed rainfall-induced landslides in this country, but to date, no rainfall thresholds have been developed for a landslide warning system at national scale. In this paper, the definition of rainfall thresholds for rainfall-induced landslides in Slovenia is presented. The thresholds have been calculated by collecting approximately 900 landslide data and the relative rainfall amounts, which have been collected from 41 rain gauges. To define the thresholds, an existing procedure characterized by a high degree of objectiveness has been used. This approach is based on a software that was developed for a test site with very different characteristics (Tuscany, central Italy). At first, a single national threshold has been defined; subsequently, the country was divided into four zones, on the basis of the major river basins. The effectiveness of the thresholds has been verified by the use of several statistical parameters and it resulted in quite good performances, even if with some uncertainties, probably due to the quality of the available data. Besides the setting of a threshold system, usable for civil protection purposes at national scale, an additional outcome of this work was the possibility of applying, with good results, a methodology defined for another region, therefore testing its degree of exportability in different settings.  相似文献   

7.
On July 22, 2013, an earthquake of Ms. 6.6 occurred at the junction area of Minxian and Zhangxian counties, Gansu Province, China. This earthquake triggered many landslides of various types, dominated by small-scale soil falls, slides, and topples on loess scarps. There were also a few deep-seated landslides, large-scale soil avalanches, and fissure-developing slopes. In this paper, an inventory of landslides triggered by this event is prepared based on field investigations and visual interpretation of high-resolution satellite images. The spatial distribution of the landslides is then analyzed. The inventory indicates that at least 2330 landslides were triggered by the earthquake. A correlation statistics of the landslides with topographic, geologic, and earthquake factors is performed based on the GIS platform. The results show that the largest number of landslides and the highest landslide density are at 2400 m–2600 m of absolute elevation, and 200 m–300 m of relative elevation, respectively. The landslide density does not always increase with slope gradient as previously suggested. The slopes most prone to landslides are in S, SW, W, and NW directions. Concave slopes register higher landslide density and larger number of landslides than convex slopes. The largest number of landslides occurs on topographic position with middle slopes, whereas the highest landslide density corresponds to valleys and lower slopes. The underlying bedrocks consisting of conglomerate and sandstone of Lower Paleogene (Eb) register both the largest number and area of landslides and the highest landslide number and area density values. Correlations of landslide number and landslide density with perpendicular- and along-strike distance from the epicenter show an obvious spatial intensifying character of the co-seismic landslides. The spatial pattern of the co-seismic landslides is strongly controlled by a branch of the Lintan-Dangchang fault, which indicates the effect of seismogenic fault on co-seismic landslides. In addition, the area affected by landslides related to the earthquake is compared to the relationship of “area affected by landslides vs. earthquake magnitude” constructed based on earthquakes worldwide, and it is shown that the area affected by landslides triggered by the Minxian–Zhangxian earthquake is larger than that of almost all other events with similar magnitudes.  相似文献   

8.
Retrogressive landslides are common geological phenomena in mountainous areas and on onshore and offshore slopes. The impact of retrogressive landslides is different from that of other landslide types due to the phenomenon of retrogression. The hazards caused by retrogressive landslides may be increased because retrogressive landslides usually affect housing, facilities, and infrastructure located far from the original slopes. Additionally, substantial geomorphic evidence shows that the abundant supply of loose sediment in the source area of a debris flow is usually provided by retrogressive landslides that are triggered by the undercutting of water. Moreover, according to historic case studies, some large landslides are the evolution result of retrogressive landslides. Hence the ability to understand and predict the evolution of retrogressive landslides is crucial for the purpose of hazard mitigation. This paper discusses the phenomenon of a retrogressive landslide by using a model experiment and suggests a reasonably simplified numerical approach for the prediction of rainfall-induced retrogressive landslides. The simplified numerical approach, which combines the finite element method for seepage analysis, the shear strength reduction finite element method, and the analysis criterion for the retrogression and accumulation effect, is presented and used to predict the characteristics of a retrogressive landslide. The results show that this numerical approach is capable of reasonably predicting the characteristics of retrogressive landslides under rainfall infiltration, particularly the magnitude of each landslide, the position of the slip surface, and the development processes of the retrogressive landslide. Therefore, this approach is expected to be a practical method for the mitigation of damage caused by rainfall-induced retrogressive landslides.  相似文献   

9.
Rainfall-induced landslides in Hulu Kelang area, Malaysia   总被引:5,自引:2,他引:3  
Hulu Kelang is known as one of the most landslide-prone areas in Malaysia. The area has been constantly hit by landslide hazards since 1990s. This paper provides an insight into the mechanism of rainfall-induced landslide in the Hulu Kelang area. Rainfall patterns prior to the occurrences of five selected case studies were first analyzed. The results showed that daily rainfall information is insufficient for predicting landslides in the area. Rainfalls of longer durations, i.e., 3–30 days prior to the landslides should be incorporated into the prediction model. Numerical simulations on a selected case study demonstrated that both matric suction and factor of safety decreased steadily over time until they reached the lowest values on the day of landslide occurrence. Redistribution of infiltrated rainwater in the soil mass could be a reason for the slow response of failure mechanism to rainfall. Based on 21 rainfall-induced landslides that had occurred in the area, three rainfall thresholds were developed as attempts to predict the occurrence of rainfall-induced landslide. The rainfall intensity–duration threshold developed based on the local rainfall conditions provided a reasonably good prediction to the landslide occurrence. The cumulative 3- versus 30-day antecedent precipitation index threshold chart was capable of giving the most reliable prediction with the limiting threshold line for major landslide yielded a reliability of 97.6 %.  相似文献   

10.
More than 150 landslides originated in the eastern part of the Czech Republic (region of the Flysch Outer Western Carpathians—hereinafter, OWC) due to soil saturation caused by antecedent precipitation and long lasting and intensive rainfalls on 16–18 May 2010 (>300 mm as measured by some stations). As a consequence, a multitude of small failures originated 88% of which was smaller than 104 m2. Most landslides are characterised as shallow (<10 m) or middle–deep (10–30 m) incipient (rather short travel) landslides, debris slides and soil slips spatially clustered to a geological domain underlain by rather weak thin-bedded flysch and unconsolidated Quaternary deposits. An exception to this is represented by a kilometre-long rockslide (∼2–3 mil m3) affecting tectonically weakened and weathered claystone/mudstone-dominated flysch on the southern slope of Mt. Girová (the Beskydy Mountains). The rockslide is one of the largest long runout landslides in the territory of the Czech Republic activated over the past few decades as it reaches the dimensions of the largest documented Holocene long runout landslides in the Czech part of the OWC. A majority of the May 2010 landslide events developed inside older (Holocene or historic) landslide terrains, which points to their spatial persistency and recurrent nature. In spite of the fact that the May 2010 landslide event was not as destructive as some previous landslide activisation in the OWC region (e.g. July 1997 event), it left many slope failures at the initial stage of their potential future reactivation.  相似文献   

11.
As landslides are very common in Greece, causing serious problems to the social and economic welfare of many communities, the implementation of a proper hazard analysis system will help the creation of a reliable susceptibility map. Τhis will help local communities to define a safe land use and urban development. The purpose of this study is to compare the implementation of two semi-quantitative landslide assessment approaches, using landslide susceptibility maps compiled in a GIS environment. The compared methods are rock engineering system (RES) and the analytic hierarchy process (AHP). For the landslide susceptibility analysis, the Northeastern part of the Achaia County was examined. This area suffers from many landslides, because of its neighborhood with the tectonically active Corinthian Gulf and its geological setting (Neogene sediments, flysch and other bedrock formations, with local overthrusts). Ten parameters were used in both methodologies, and each one was separated into five categories ranging from 0 to 4, representing their specific conditions derived from the investigation of the landslides in the western part of the study area (ranking area). A layer map was generated for each parameter, using GIS, while the weighting coefficients of each methodology were used for the compilation of RES and AHP final maps of the eastern part of the study area (validating area). By examining these two maps, it is revealed that even though both correctly show the landslide status of the second site, the RES map reveals a better behavior in the spatial distribution of the various landslide susceptibility zones.  相似文献   

12.
The 2007 Chuetsu Oki earthquake (MJMA = 6.6) triggered more than one hundred slope failures in the northwest part of Niigata prefecture, Japan. A reconnaissance survey conducted by the authors revealed that although most of the failures were only a few meters deep, they still caused significant damage to roads, railways, and houses. It was also found that a vast number of shallow slides were concentrated along the coastal line of the Japan Sea, while only few, but relatively larger failures occurred in a mountainous part of the study area, which is located in a considerable distance from the earthquake’s epicenter. This paper summarizes the reconnaissance observations, describes the geologic characteristics of the area covered by landslides, provides characterization of major types of the landslides, and examines the causes and mechanisms of typical failures. In addition, this paper seeks to investigate the mechanism of the Ohzumi landslide, the largest slide triggered by the Chuetsu Oki earthquake. For this purpose, a comprehensive analysis that included field investigation and laboratory testing of soils samples was performed. Results of field investigation suggested that the failure plane of the Ohzumi landslide formed in a saturated layer of sandy soil near a boundary with bedrock. Data from undrained cyclic loading triaxial compression tests indicated that the sandy material was highly susceptible to generation of high excess pore-water pressures during earthquake loading. On the basis of the obtained results and the outcome of seismic response and slope stability analyses, the authors posited an explanation on the mechanism of the Ohzumi landslide.  相似文献   

13.
The Post-Forum Study Tour following the 4th World Landslide Forum 2017 in Ljubljana (Slovenia) focuses on the variety of landslide forms in Slovenia and its immediate NW surroundings, and the best-known examples of devastating landslides induced by rainfall or earthquakes. They differ in complexity of the both surrounding area and of the particular geological, structural and geotechnical features. Many of the landslides of the Study Tour are characterized by huge volumes and high velocity at the time of activation or development in the debris flow. In addition, to the damage to buildings, the lives of hundreds of people are also endangered; human casualties occur. On the first day, we will observe complex Pleistocene to recent landslides related to the Mesozoic carbonates thrust over folded and tectonically fractured Tertiary siliciclastic flysch in the Vipava Valley (SW Slovenia), serving as the main passage between the Friulian lowland and central Slovenia, and thus also an important corridor connecting Northern Italy to Central Europe. A combination of unfavourable geological conditions and intense short or prolonged rainfall periods leads to the formation of different types of complex landslides, from large-scale deep-seated rotational and translational slides to shallow landslides, slumps and sediment gravity flows in the form of debris or mudflows. The second day of the study tour will be held in the So?a River Valley located in NW Slovenia close to the border with Italy, where the most catastrophic Sto?e landslide in Slovenia recently caused the deaths of seven people, and the nearby Strug landslide, which is a combination of rockfall, landslide and debris flow. The final day of the Post-Forum Study Tour will start in the Valcanale Valley located across the border between Slovenia and Italy, severely affected by a debris flow in August 2003. The flow caused the deaths of two people, damaged 260 buildings; large amounts of deposits blocked the A23 Highway, covering both lanes. In Carinthia (Austria), about 25 km west of Villach, the Dobra?/Dobratsch multiple scarps of prehistoric and historic rockslides will be observed. Dobratsch is a massive mountain ridge with a length of 17 km and a width of 6 km, characterized by steep rocky walls. The 3-day study tour will conclude with a presentation of the Poto?ka planina landslide, a slide whose lower part may eventually generate a debris flow and therefore represents a hazard for the inhabitants and for the infrastructure within or near the village of Koro?ka Bela.  相似文献   

14.
In February 2005, a landslide of significant dimensions occurred at Bol on the Island of Brač, in Croatia. The location of the landslide was in a geological structure of weakly bounded conglomerates lying above a flysch, in an area where numerous slides have been previously reported. In the paper the results of a geological engineering investigation of the Bol landslide are presented. The investigation results show that the landslide was triggered by a combination of improperly started earthworks, an increase in air temperature in days preceding landslide that caused snow melt, and abundant rainfall, but the primary cause of the landslide was weathering of the flysch. In other words, despite the fact that contact between the flysch and the conglomerates slopes is in approximate correspondence with the slope of the hillside, the landslide surface was not in contact between the conglomerates and marl, but deeper in the flysch, provoked by the penetration of the weathering front into the flysch. Numerical modelling results were able to reproduce this mechanism by incorporating strength degradation into the weathered zone, determined by field investigation. The results of the research can be used to predict potential slides not only in the area under study.  相似文献   

15.
A catastrophic earthquake with a Richter magnitude of 7.3 occurred in the Chi-Chi area of Nantou County on 21 September 1999. Large-scale landslides were generated in the Chiufenershan area of Nantou County in central Taiwan. This study used a neural network-based classifier and the proposed NDVI-based quantitative index coupled with multitemporal SPOT images and digital elevation models (DEMs) for the assessment of long-term landscape changes and vegetation recovery conditions at the sites of these landslides. The analyzed results indicate that high accuracy of landslide mapping can be extracted using a neural network-based classifier, and the areas affected by these landslides have gradually been restored from 211.52 ha on 27 September 1999 to 113.71 ha on 11 March 2006, a reduction of 46.24%, after six and a half years of assessment. In accordance with topographic analysis at the sites of the landslides, the collapsed and deposited areas of the landslide were 100.54 and 110.98 ha, with corresponding debris volumes of 31,983,800 and 39,339,500 m3. Under natural vegetation succession, average vegetation recovery rate at the sites of the landslides reached 36.68% on 11 March 2006. The vegetation recovery conditions at the collapsed area (29.17%) are shown to be worse than at the deposited area (57.13%) due to topsoil removal and the steep slope, which can be verified based on the field survey. From 1999 to 2006, even though the landslide areas frequently suffered from the interference of typhoon strikes, the vegetation succession process at the sites of the landslides was still ongoing, which indicates that nature, itself, has the capability for strong vegetation recovery for the denudation sites. The analyzed results provide very useful information for decision-making and policy-planning in the landslide area.  相似文献   

16.
提高降雨型滑坡危险性预警精度和空间辨识度具有重要意义.以江西宁都县1980—2001年156个降雨型滑坡为例,首先基于传统的EE-D(early effective rainfall-rainfall duration)阈值法计算不同降雨诱发滑坡的时间概率级别;然后以各级别临界降雨阈值曲线对应的时间概率为因变量,并以对应的前期有效降雨量(early effective rainfall,EE)和降雨历时(D)为自变量,采用逻辑回归拟合出上述因变量与自变量之间的非线性关系,得到降雨诱发滑坡的连续概率值;之后对比C5.0决策树和多层感知器的滑坡易发性预测性能;最后利用降雨诱发滑坡的连续概率值与易发性图相耦合以实现连续概率滑坡危险性预警.结果显示:(1)宁都降雨型滑坡连续概率值的逻辑回归方程为1/P=1+e4.062+0.747 4×D-0.079 44×EE,其拟合优度为0.983;(2)2002—2003年的20处用于连续概率阈值测试的降雨型滑坡大都落在连续概率值大于0.7的区域,只有4处落在小于0.7的区域;(3)C5.0决策树预测滑坡易发性的精度显著高于多层感知器;(4)近5年的4次降雨型滑坡的连续概率危险性值都在0.8以上,且高和极高预警区的面积较传统滑坡危险性分区更小.可见连续概率滑坡危险性预警法相较于传统危险性分区法具有更高的预警精度和空间辨识度,且通过叠加滑坡易发性图及其临界降雨阈值可开展实时滑坡危险性预警制图.   相似文献   

17.
Zhao  Bo  Yuan  Lei  Geng  Xueyu  Su  Lijun  Qian  Jiangpeng  Wu  Huanheng  Liu  Mao  Li  Jia 《Landslides》2022,19(5):1131-1141

With the rapid urbanization, an increasing number of landslides have been induced by human activities. In this study, a typical human-induced landslide known as the Maobazi landslide, which was triggered by foundation pit excavation in Sichuan Province, China, was analyzed. An emergency investigation was carried out to detect the basic deformation characteristics, followed by implementations of multiple monitoring schemes and emergency control measures to monitor and control reactivated deposits. The reactivated deposits depicted rapid deformations with a maximum deformation exceeding 140 mm from July to September before the emergency control measures were completed. The reactivated deposits gradually settled and were finally controlled in 2019. The results showed that the 2019 Maobazi landslide was a large; reactivated landslide with a scale reached to 520 Mm3, which could result in catastrophic consequences if it slipped down to nearby residential areas.

  相似文献   

18.
Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China   总被引:35,自引:16,他引:19  
The 2008 Wenchuan earthquake (M s = 8.0; epicenter located at 31.0° N, 103.4° E), with a focal depth of 19.0 km was triggered by the reactivation of the Longmenshan fault in Wenchuan County, Sichuan Province, China on 12 May 2008. This earthquake directly caused more than 15,000 geohazards in the form of landslides, rockfalls, and debris flows which resulted in about 20,000 deaths. It also caused more than 10,000 potential geohazard sites, especially for rockfalls, reflecting the susceptibility of high and steep slopes in mountainous areas affected by the earthquake. Landslide occurrence on mountain ridges and peaks indicated that seismic shaking was amplified by mountainous topography. Thirty-three of the high-risk landslide lakes with landslide dam heights greater than 10 m were classified into four levels: extremely high risk, high risk, medium risk, and low risk. The levels were created by comprehensively analyzing the capacity of landslide lakes, the height of landslide dams, and the composition and structure of materials that blocked rivers. In the epicenter area which was 300 km long and 10 km wide along the main seismic fault, there were lots of landslides triggered by the earthquake, and these landslides have a common characteristic of a discontinuous but flat sliding surface. The failure surfaces can be classified into the following three types based on their overall shape: concave, convex, and terraced. Field evidences illustrated that the vertical component of ground shaking had a significant effect on both building collapse and landslide generation. The ground motion records show that the vertical acceleration is greater than the horizontal, and the acceleration must be larger than 1.0 g in some parts along the main seismic fault. Two landslides are discussed as high speed and long runout cases. One is the Chengxi landslide in Beichuan County, and the other is the Donghekou landslide in Qingchuan County. In each case, the runout process and its impact on people and property were analyzed. The Chengxi landslide killed 1,600 people and destroyed numerous houses. The Donghekou landslide is a complex landslide–debris flow with a long runout. The debris flow scoured the bank of the Qingjiang River for a length of 2,400 m and subsequently formed a landslide dam. This landslide buried seven villages and killed more than 400 people.  相似文献   

19.
Very intensive rainfall in August 2005 (>300 mm/3 days) triggered moderately deep (2–10 m) landslides of about 50'000 m3 volume each in two mountain torrent catchments above the village of Brienz (Berner Oberland, Switzerland). These landslides – originating in Trachtbach and Glyssibach catchments – transformed into extremely rapid (>5 m/s) debris flows, which caused significant damage in inhabited areas; two persons lost their lives and about twenty-five families became homeless. The Brienz case was the most damaging one among many landslide disasters occurring during those rainy days in the Swiss Alps. In this paper we study in detail the predisposition and causes of the 2005 landslides in the Brienz area, based on field mapping, analysis of high resolution images and digital terrain models, derived from LIDAR and infrared measurements taken before and after the event. The features of these landslides are compared with past and dormant landslides in the mid-slope portion of the mountain chain north of Brienz, which has been the source of many catastrophic mass wasting events during the last centuries. Detailed field mapping shows that highly weathered series of strongly overconsolidated Mesozoic marls (Diphyoides Limestone & Vitznau Marls of Valanginian age) and their residual soils form the primary source for the sliding materials. The rupture surfaces of the moderately deep landslides often run at the transition from saprolite to weathered bedrock, with a dip angle of about 40o in the landslide depletion area. These landslides transform into debris flows, where debris slides into strongly convergent hillslopes or directly into headwater channels.  相似文献   

20.
降雨滑坡预警的概率分析方法   总被引:3,自引:1,他引:2  
滑坡启动的降雨临界值是滑坡预警的关键,由于研究区资料数据有限,关键值难以确定,降雨滑坡预警效果受影响。所以应该对预警结果进行概率分析。本文利用作者在已开发的降雨滑坡预警系统,提出采用降雨滑坡预警概率分析方法进行预警。通过对滑坡与雨量相关性、降雨滑坡启动值等对滑坡预警的时间概率、空间概率及预警概率进行分析,计算危险区内已发生滑坡频率和降雨滑坡发生频率,得到降雨滑坡预警概率使得预警系统更加可靠。并以沐川县为例对模型进行了算例检验,为更科学的对降雨滑坡进行预警提供方法借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号