首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The possibility of using a multi-stage pendulum mass damper (MSPMD) to control wind-induced vibration of a single column tower of a cable-stayed bridge during construction was studied theoretically in part I of this work. In this paper, the performance of the MSPMD for reducing bridge tower vibration is studied experimentally. A MSPMD model and a tower model of the bridge with geometry scaling of 1:100 were designed and manufactured. Calibration of the MSPMD model with different wire lengths is conducted to verify the analytical model of the damper. A series of tests for the uncontrolled freestanding tower, tower with cables, and tower with MSPMD model are then performed under harmonic and white noise excitations. The experimental results show that the responses of the tower model signif icantly decrease with the installation of the MSPMD model, which demonstrates the effectiveness of the MSPMD to mitigate the vibration of the bridge tower.  相似文献   

2.
In this paper, wind-induced vibration control of a single column tower of a cable-stayed bridge with a multi- stage pendulum mass damper (MSPMD) is investigated. Special attention is given to overcoming space limitations for installing the control device in the tower and the effect of varying natural frequency of the towers during construction. First, the finite element model of the bridge during its construction and the basic equation of motion of the MSPMD are introduced. The equation of motion of the bridge with the MSPMD under along-wind excitation is then established. Finally, a numerical simulation and parametric study are conducted to assess the effectiveness of the control system for reducing the wind-induced vibration of the bridge towers during construction. The numerical simulation results show that the MSPMD is practical and effective for reducing the along-wind response of the single column tower, can be installed in a small area of the tower, and complies with the time-variant characteristics of the bridge during its entire construction stage.  相似文献   

3.
As one of the main load-carrying components of cable-stayed bridges,bridge towers are typically required to remain elastic even when subjected to severe ground motions with a 2%-3%probability of exceedance in 50 years.To fulfill this special requirement imposed by current seismic design codes,reinforcement ratios in the bridge towers have to be kept significantly higher than if limited ductility behavior of the tower is allowed.In addition,since the foundation capacity is closely related to the moment and shear capacities of the bridge tower,a large increase in bridge construction cost for elastically designed cable-stayed bridge is inevitable.To further investigate the possibility of limited ductility bridge tower design strategies,a new 1/20-scale cable-stayed bridge model with H-shaped bridge towers designed according to strong strut-weak tower column design was tested.The shake table experimental results are compared with a previous strong tower column-weak strut designed full bridge model.A comparison of the results show that ductility design with plastic hinges located on tower columns,i.e.,strong strut-weak tower column design,is another effective seismic design strategy that results in only small residual displacement at the top of the tower column,even under very severe earthquake excitations.  相似文献   

4.
The rigid central buckle employed in the Runyang Suspension Bridge (RSB) was the first time it was used in a suspension bridge in China. By using a spectral representation method and FFT technique combined with measured data,a 3D fluctuating wind field considering the tower wind effect is simulated. A novel FE model for buffeting analysis is then presented,in which a specific user-defined Matrix27 element in ANSYS is employed to simulate the aeroelastic forces and its stiffness or damping matrices are parameterized by wind velocity and vibration frequency. A nonlinear time history analysis is carried out to study the influence of the rigid central buckle on the wind-induced buffeting response of a long-span suspension bridge. The results can be used as a reference for wind resistance design of long-span suspension bridges with a rigid central buckle in the future.  相似文献   

5.
A wind turbine system equipped with a tuned liquid column damper(TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting responseequivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs. Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane’s equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades’ rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed.  相似文献   

6.
The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper, studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described. First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these models are validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for further studies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed. Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmark earthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness and feasibility of using this type of innovative active control system for structural vibration control. In addition, the robustness of the EMD system is examined. The test results show that the EMD system is an effective and robust system for the control of structural vibrations.  相似文献   

7.
In this paper, a semiactive variable stiffness (SVS) device is used to decrease cable oscillations caused by parametric excitation, and the equation of motion of the parametric vibration of the cable with this SVS device is presented. The ON/OFF control algorithm is used to operate the SVS control device. The vibration response of the cable with the SVS device is numerically studied for a variety of additional stiffness combinations in both the frequency and time domains and for both parametric and classical resonance vibration conditions. The numerical studies further consider the cable sag effect. From the numerical results, it is shown that the SVS device effectively suppresses the cable resonance vibration response, and as the stiffness of the device increases, the device achieves greater suppression of vibration. Moreover, it was shown that the SVS device increases the critical axial displacement of the excitation under cable parametric vibration conditions.  相似文献   

8.
The increasing strength of new structural materials and the span of new structures,accompanied by aesthetic requirements for greater slenderness,are resulting in more applications of long-span structures.In this paper,serviceability control technology and its design theory are studied.First,a novel tuned mass damper(TMD)with controllable stiffness is developed.Second,methods for modeling human-induced loads are proposed,including standing up,walking,jumping and running,and an analysis method for long-span floor response is proposed based on a finite element model.Third,a design method for long-span floors installed with a multiple TMD(MTMD)system considering human comfort is introduced, largely based on a study of existing literature.Finally,a design,analysis and field test is conducted using several large scale buildings in China including the Beijing Olympic Park National Conference Center,Changsha New Railway Station and the Xi’an Northern Railway Station.The analytical and field test results show that the MTMD system designed using the proposed method is capable of effectively mitigating the vertical vibration of long-span floor structures.The study presented in this paper provides an important reference for the analysis of vibration serviceability of similar long-span floors and design of control system for these structures.  相似文献   

9.
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the external excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.  相似文献   

10.
Bridge seismic isolation strategy is based on the reduction of shear forces transmitted from the superstructure to the piers by two means: shifting natural period and earthquake input energy reduction by dissipation concentrated in protection devices. In this paper, a stochastic analysis of a simple isolated bridge model for different bridge and device parameters is conducted to assess the efficiency of this seismic protection strategy. To achieve this aim, a simple nonlinear softening constitutive law is adopted to model a wide range of isolation devices, characterized by only three essential mechanical parameters. As a consequence of the random nature of seismic motion, a probabilistic analysis is carried out and the time modulated Kanai-Tajimi stochastic process is adopted to represent the seismic action. The response covariance in the state space is obtained by solving the Lyapunov equation for a stochastic linearized system. After a sensitivity analysis, the failure probability referred to extreme displacement and the mean value of dissipated energy are assessed by using the introduced stochastic indices of seismic bridge protection efficiency. A parametric analysis for protective devices with different mechanical parameters is developed for a proper selection of parameters of isolation devices under different situations.  相似文献   

11.
Combining the computational fluid dynamics-based numerical simulation with the forced vibration technique for extraction of aerodynamic derivatives, an approach for calculating the aerodynamic derivatives and the critical flutter wind speed for long-span bridges is presented in this paper. The RNG k-ε turbulent model is introduced to establish the governing equations, including the continuity equation and the Navier-Stokes equations, for solving the wind flow field around a two-dimensional bridge section. To illustrate the effectiveness and accuracy of the proposed approach, a simple application to the Hume Bridge in China is provided, and the numerical results show that the aerodynamic derivatives and the critical flutter wind speed obtained agree well with the wind tunnel test results.  相似文献   

12.
The problem of robust active vibration control for a class of electro-hydraulic actuated structural systems with time-delay in the control input channel and parameter uncertainties appearing in all the mass,damping and stiffness matrices is investigated in this paper.First,by introducing a linear varying parameter,the nonlinear system is described as a linear parameter varying(LPV)model.Second,based on this LPV model,an LMI-based condition for the system to be asymptotically stabilized is deduced.By solving these LMIs,a parameter-dependent controller is established for the closedloop system to be stable with a prescribed level of disturbance attenuation.The condition is also extended to the uncertain case.Finally,some numerical simulations demonstrate the satisfying performance of the proposed controller.  相似文献   

13.
In this paper, a full-scale 3-D finite element model of the Jundushan cable-stayed aqueduct bridge is established with ANSYS Code. The shell, fluid, tension-only spar and beam elements are used for modeling the aqueduct deck, filled water, cables and support towers, respectively. A multi-element cable formulation is introduced to simulate the cable vibration. The dry (without water) and wet (with water) modes of the aqueduct bridge are both extracted and investigated in detail. The dry modes of the aqueduct bridge are basically similar to those of highway cable-stayed bridges. A dry mode may correspond to two types of wet modes, which are called the in-phase (with lower frequency) and out-of-phase (with higher frequency) modes. When the water-structure system vibrates in the in-phase/out-of-phase modes, the aqueduct deck moves and water sloshes in the same/opposite phase-angle, and the sloshing water may take different surface-wave modes. The wet modes of the system reflect the properties of interaction among the deck, towers, cables and water. The in-phase wet frequency generally decreases as the water depth increases, and the out-of-phase wet frequency may increase or decrease as the water depth increases.  相似文献   

14.
A novel distributed tuned liquid damper (DTLD) for reducing vibration in structures is proposed in this paper. The basic working principle of the DTLDs is to fill the empty space inside the pipes or boxes of cast-in-situ hollow reinforced concrete (RC) floor slabs with water or other liquid. The pipes or boxes then work as a series of small TLDs inside the structure, to increase the damping ratio of the entire structural system. Numerical simulation that accounts for the fluid- structure conpling effect is carried out to evaluate the vibration-reduction efficiency of the DTLDs. The results show that the DTLDs are able to considerably increase the damping of the structure and thus reduce its vibration. An additional benefit is that the DTLDs do not require architectural space to be added to the structure.  相似文献   

15.
The spatial variability of input ground motion at supporting foundations plays a key role in the structural response of cable-stayed bridges (CSBs); therefore, spatial variation effects should be included in the analysis and design of effective vibration control systems. The control of CSBs represents a challenging and unique problem, with many complexities in modeling, control design and implementation, since the control system should be designed not only to mitigate the dynamic component of the structural response but also to counteract the effects of the pseudo-static component of the response. The spatial variability effects on the feasibility and efficiency of seismic control systems for the vibration control of CSBs are investigated in this paper. The assumption of uniform earthquake motion along the entire bridge may result in quantitative and qualitative differences in seismic response as compared with those produced by uniform motion at all supports. A systematic comparison of passive and active system performance in reducing the structural responses is performed, focusing on the effect of the spatially varying earthquake ground motion on the seismic response of a benchmark CSB model with different control strategies, and demonstrates the importance of accounting for the spatial variability of excitations.  相似文献   

16.
Model updating issues with high-dimensional and strong-nonlinear optimization processes are still unsolved by most optimization methods.In this study,a hybrid methodology that combines the Gaussian-white-noise-mutation particle swarm optimization(GMPSO),back-propagation neural network(BPNN)and Latin hypercube sampling(LHS)technique is proposed.In this approach,as a meta-heuristic algorithm with the least modification to the standard PSO,GMPSO simultaneously offers convenient programming and good performance in optimization.The BPNN with LHS establishes the meta-models for FEM to accelerate efficiency during the updating process.A case study of the model updating of an actual bridge with no distribution but bounded parameters was carried out using this methodology with two different objective functions.One considers only the frequencies of the main girder and the other considers both the frequencies and vertical displacements of typical points.The updating results show that the methodology is a sound approach to solve an actual complex bridge structure and offers good agreement in the frequencies and mode shapes of the updated model and test data.Based on the shape comparison of the main girder at the finished state with different objective functions,it is emphasized that both the dynamic and static responses should be taken into consideration during the model updating process.  相似文献   

17.
In this paper, the effect of pulse-type motions caused by forward directivity that can release huge amounts of energy in a short time period is studied on a telecommunication tower. Since telecommunication towers have longer periods, they are not as affected by seismic forces. Nevertheless, near source earthquakes characterized by high velocity and velocity pulses can change the behavior of these structures. For this reason, a telecommunication tower located near active faults was selected in this study. Considering the probable earthquake magnitude at the site and the distance of the tower from adjacent faults, nine simulated pulses and three near-fault earthquake records with forward directivity are selected and applied to a 3D fi nite element model of the tower. The results of nonlinear dynamic analysis, i.e., displacements and damage in the tower, indicate that the maximum displacement and drift ratio of the tower under the pulses are obviously affected by the ratio of the structure period to pulse period. When this ratio is decreased and close to 1.0, the maximum displacement and drift ratio are sharply increased and cause large displacements in the tower.  相似文献   

18.
In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to determine the statistical characteristics of failure modes and the correlation between them. The sensitivity of correlation between failure modes with respect to random parameters characterizing the uncertainty of the hysteretic loop is discussed. In a numerical example, a two-DOF shear structure with uncertain hysteretic restoring force is considered. The statistical characteristics of response, failure modes and the sensitivity of random hysteretic loop parameters are provided, and also compared with a Monte Carlo simulation.  相似文献   

19.
In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.  相似文献   

20.
A relevance vector machine(RVM)based demand prediction model is explored for efficient seismic fragility analysis(SFA)of a bridge structure.The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model.For efficient fragility computation,ground motion intensity is included as an added dimension to the demand prediction model.To incorporate different sources of uncertainty,random realizations of different structural parameters are generated using Latin hypercube sampling technique.Mean fragility,along with its dispersions,is estimated based on the log-normal fragility model for different critical components of a bridge.The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches,while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark.The proposed RVM model provides a more accurate estimate of fragility than conventional approaches,with significantly less computational effort.In addition,the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号