首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to evaluate factors regulating groundwater quality in an area with agriculture as main use. Thirty groundwater samples have been collected from Razan area (Hamadan, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The chemical compositions of the groundwater are dominated by Na+, Ca2+, HCO3 , Cl and SO4 2−, which have been derived largely from natural chemical weathering of carbonate, gypsum and anthropogenic activities of fertilizer’s source. The production of SO4 2− has multiple origins, mainly from dissolution of sulphate minerals, oxidation of sulphide minerals and anthropogenic sources. The major anthropogenic components in the groundwater include Na+, Cl, SO4 2− and NO3 , with Cl and NO3 being the main contributors to groundwater pollution in Razan area.  相似文献   

2.
Hydraulic fracturing of shale deposits has greatly increased the productivity of the natural gas industry by allowing it to exploit previously inaccessible reservoirs. Previous research has demonstrated that this practice has the potential to contaminate shallow aquifers with methane (CH4) from deeper formations. This study compares concentrations and isotopic compositions of CH4 sampled from domestic groundwater wells in Letcher County, Eastern Kentucky in order to characterize its occurrence and origins in relation to both neighboring hydraulically fractured natural gas wells and surface coal mines. The studied groundwater showed concentrations of CH4 ranging from 0.05 mg/L to 10 mg/L, thus, no immediate remediation is required. The δ13C values of CH4 ranged from −66‰ to −16‰, and δ2H values ranged from −286‰ to −86‰, suggesting an immature thermogenic and mixed biogenic/thermogenic origin. The occurrence of CH4 was not correlated with proximity to hydraulically fractured natural gas wells. Generally, CH4 occurrence corresponded with groundwater abundant in Na+, Cl, and HCO3, and with low concentrations of SO42−. The CH4 and SO42−concentrations were best predicted by the oxidation/reduction potential of the studied groundwater. CH4 was abundant in more reducing waters, and SO42− was abundant in more oxidizing waters. Additionally, groundwater in greater proximity to surface mining was more likely to be oxidized. This, in turn, might have increased the likelihood of CH4 oxidation in shallow groundwater.  相似文献   

3.
Hydrogeochemical characteristics of groundwater in phreatic aquifers of Alleppey district were studied. Factor analysis has been applied to the chemical analysis data of 32 water samples collected from dug wells to extract the principal factors corresponding to the sources of variation in the hydrochemistry. 12 hydrochemical parameters were correlated and statistically examined. Varimax rotation was used to define the factor scores and percentage of variance in the hydrogeochemistry. A four-factor model is extracted and explains over 80.394% of the total groundwater quality variation. Factor-1 has high loading values of Electrical Conductivity (EC), Ca++, and Cl, and reflects the signature of saline water. Similarly strong correlation exists between F3 score and pH. The correlation coefficient matrix between EC and Na+, Cl, SO4−− is significant. The mineralogy of coastal aquifers and the marine aerosol are playing significant role in the hydrogeochemistry of groundwater in the phreatic aquifer system.  相似文献   

4.
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow (25–33 m) and deep (191–318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer. The elevated Cl and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl. Use of chemical fertilizers may cause higher concentrations of NH4+ and PO43− in shallow well samples. In general, most ions are positively correlated with Cl, with Na+ showing an especially strong correlation with Cl, indicating that these ions are derived from the same source of saline waters. The relationship between Cl/HCO3 ratios and Cl also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO3 reflect the degree of water–rock interaction in groundwater systems and integrated microbial degradation of organic matter. Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking water. Very low concentrations of SO42− and NO3 and high concentrations of dissolved Fe and PO43− and NH4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the concentrations of SO42− and NO3 but correlate weakly with Mo, Fe concentrations and positively with those of P, PO43− and NH4+ ions.  相似文献   

5.
About 24 samples from hand-dug wells and boreholes were used to characterize concentrations of the main inorganic ions in a laterite environment under semi-arid climatic conditions in Tikaré, northern Burkina Faso. It was found that the most represented groundwater anion in groundwater was HCO3 with average levels of 49.1 mg/L in the dry season and 33.5 mg/L in the rainy season. The most represented cation was Ca2+ with mean concentrations of 13.7 and 9.5 mg/L, respectively. The main processes, which influence the concentrations of these ions, are evaporation (dry season), local enrichment of recharge water in some elements, ion exchange and fixation by clay minerals (in case of K+). The best correlations were found between Ca2+ and Mg2+ (r = 0.95), Cl and Na+ (r = 0.95), HCO3 and Mg2+ (r = 0.89), HCO3 and Ca2+ (r = 0.89), and between HCO3 and Na+ (r = 0.80). In general, the quality of the groundwater from the different wells sampled for this study was good enough to serve as drinking water. However, there were situations where the quality of water was polluted because of anthropogenic contaminants (mainly NO3 , K+, Cl) from septic tanks and manure pits located in the vicinity of some sampled wells. In addition, application of fertilizers also represents a potential anthropogenic contamination source with regard to SO4 2−, Ca2+, K+, Na+, and Mg2+. Considering the high concentrations of SO4 2−, Mg2+, Na+ and Ca2+ found in one borehole, the deeper, fractured aquifers were also likely to be enriched in these elements. In contrast, the shallow aquifers are likely to be contaminated with Cl, NO3 and K+. Cl and K+ seem to be locally present in recharge water as shown by their relative higher mean concentrations in the rainy season samples.  相似文献   

6.
Urban and industrial development and the expansion of irrigated agriculture have led to a drastic increase in the exploitation of groundwater resources. The over-exploitation of coastal aquifers has caused a seawater intrusion and has seriously degraded groundwater quality. The shallow coastal aquifer of the Djeffara plain, southeastern Tunisia constitutes an example of water resource suffering an intensive and uncontrolled pumping for irrigation. Intensive exploitation of the aquifer and climate aridity caused a decrease in piezometric level and an increase in salinity. According to the hydrochemical data (Cl, SO4 2−, NO3 , HCO3 , Br, Ca2+, Mg2+, Na+, K+) and the stable isotope composition (oxygen-18 and deuterium content), groundwater salinization in the investigated system is caused by three main processes: (i) salts dissolution especially in the central part of Jerba and around Medenine plain; (ii) evaporation process; and (iii) seawater intrusion which caused the increase in salinity in the peninsula of El Jorf, in Jerba and in the North of Ben Gardane.  相似文献   

7.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

8.
The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO3, SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.  相似文献   

9.
Water resources are a key factor, particularly for the planning of the sustainable regional development of agriculture, as well as for socio-economic development in general. A hydrochemical investigation was conducted in the Friuli Venezia Giulia aquifer systems to identify groundwater evolution, recharge and extent of pollution. Temperature, pH, electric conductivity, total dissolved solids, alkalinity, total hardness, SAR, Ca2+, Na+, K+, Mg2+, Cl, SO4 2−, NO3 , HCO3 , water quality and type, saturation indexes and the environmental stable isotope δ18O were determined in 149 sampling stations. The pattern of geochemical and oxygen stable isotope variations suggests that the sub-surface groundwater (from phreatic and shallow confined aquifers) is being recharged by modern precipitations and local river infiltrations. Four hydrogeological provinces have been recognised and mapped in the Friuli Venezia Giulia Plain having similar geochemical signatures. These provinces have different degrees of vulnerability to contamination. The deep confined groundwater samples are significantly less impacted by surface activities; and it appears that these important water resources have very low recharge rates and would, therefore, be severely impacted by overabstraction.  相似文献   

10.
Hydrochemical investigations were carried out in Damagh area, Hamadan, western Iran, to assess chemical composition of groundwater. Forty representative groundwater samples were collected from different wells to monitor the water chemistry of various ions. Chemical analysis of the groundwater showed that the mean concentration of the cations is in the order Na+ > Ca2+ > Mg2+ > K+, while that for anions was HCO3 > Cl > SO42 − > NO3. All of the investigated groundwaters present two different chemical facies (Ca–HCO3 and Na–HCO3) which is in relation with their interaction with the geological formations of the basin, cation exchange between groundwater and clay minerals and anthropogenic activities. The principal component analysis (PCA) performed on groundwater identified three principal components controlling their variability in groundwater. Electrical conductivity, Mg2+, Na+, SO42−, and Cl content were associated in the same component (PC1) (salinity), determined principally by anthropogenic activities. The pH, CO32 −, HCO3, and Ca2+ (PC2) content were related to the geogenic factor. Finally, the NO3, Cl and K+ (PC3) were controlled by anthropogenic activity as a consequence of inorganic fertilizers.  相似文献   

11.
Hydrogeochemical investigations are carried out in the different blocks of Burdwan district, West Bengal, India in order to assess its suitability for drinking as well as irrigation water purpose. Altogether 49 representative groundwater samples are collected from bore wells and the water chemistry of various ions viz. Ca2+, Mg2+, Na+, K+, CO32−, HCO3, Cl, SO42− and NO3 are carried out. The chemical relationships in Piper and Gibbs diagram suggest that the groundwater mainly belongs to alkali type and Cl group and are controlled by rock dominance. A comparison of groundwater quality in relation to drinking water quality standards proves that most of the water samples are suitable for drinking water purpose whereas groundwater in some areas of the district has high salinity and high sodium adsorption ratio (SAR), indicating unsuitability for irrigation water and needs adequate drainage.  相似文献   

12.
The alluvial aquifer of the Alto Guadalquivir River is one of the most important shallow aquifers in Jaén, Spain. It is located in the central-eastern part of the province, and its groundwater resources are used mainly for crop irrigation in an agriculture-dominated area. Hydrochemical and water-quality data obtained through a 2-year sampling (2004–2006) and analysis program indicate that nitrate pollution is a serious problem affecting groundwater due to the use of nitrogen (N)-fertilizers in agriculture. During the study, 231 water samples were collected from wells and springs to determine water chemistry and the extent of nitrate pollution. The concentration of nitrate in groundwater ranged from 1.25 to 320.88 mg/l. Considerable seasonal fluctuations in groundwater quality were observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Guadalquivir River flow regime. The chemical composition of the water is not only influenced by agricultural practices, but also by interaction with the alluvial sediments. The dissolution of evaporites accounts for part of the Na+, K+, Cl, SO4 2−, Mg2+, and Ca2+, but other processes, such as calcite precipitation and dedolomitization, also contribute to groundwater chemistry.  相似文献   

13.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

14.
Water samples collected from dug wells and tube wells from the Kurunegala District of Sri Lanka have been studied for their major hydrogeochemical parameters to understand the chemical quality of water in the terrain. The region is composed of Precambrian metamorphic rocks where groundwater is only available in the regolith and along weak structural discontinuities. The study of the major chemical constituents of groundwater revealed several relationships with the aquifer lithology. Groundwater from mafic rocks have high dissolved solids, while quartzose metaclastic rocks yield water with low dissolved solids. The study area displays very low SO4 2− contents of the groundwater. The chloride content is higher in the dry regions and in terrains underlain by pink granite and marble/calc gneiss while areas with marble, as expected, show high concentrations of Ca and Mg ions. The waters in the region can be classified into non-dominant cations to Na + K dominant and Cl and HCO3 dominant types. Water from charnockite-bearing areas tends to have non-dominant cations and more CO3 2− + HCO3 types. Effects such as soluble salts in the regolith, fracture intensity and climatic variations play a significant role in the behavior of the hydrogeochemistry in the area.  相似文献   

15.
Pollution of groundwater by seawater intrusion poses a threat to sustainable agriculture in the coastal areas of Korea. Therefore, seawater intrusion monitoring stations were installed in eastern, western, and southern coastal areas and have been operated since 1998. In this study, groundwater chemistry data obtained from the seawater intrusion monitoring stations during the period from 2007 to 2009 were analyzed and evaluated. Groundwater was classified into fresh (<1,500 μS/cm), brackish (1,500–3,000 μS/cm), and saline (>3,000 μS/cm) according to EC levels. Among groundwater samples (n = 233), 56, 7, and 37% were classified as the fresh, brackish, and saline, respectively. The major dissolved components of the brackish and saline groundwaters were enriched compared with those of the fresh groundwater. The enrichment of Na+ and Cl was especially noticeable due to seawater intrusion. Thus, the brackish and saline groundwaters were classified as Ca–Cl and Na–Cl types, while the fresh groundwater was classified as Na–HCO3 and Ca–HCO3 types. The groundwater included in the Na–Cl types indicated the effects of seawater mixing. Ca2+, Mg2+, Na+, K+, SO4 2−, and Br showed good correlations with Cl of over r = 0.624. Of these components, the strong correlations of Mg2+, SO4 2−, and Br with Cl (r ≥ 0.823) indicated a distinct mixing between fresh groundwater and seawater. The Ca/Cl and HCO3/Cl ratios of the groundwaters gradually decreased and approached those of seawater. The Mg/Cl, Na/Cl, K/Cl, SO4/Cl, and Br/Cl ratios of the groundwaters gradually decreased, and were similar to or lower than those of seawater, indicating that Mg2+, Na+, K+, SO4 2−, and Br, as well as Cl in the saline groundwater can be enriched by seawater mixing, while Ca2+ and HCO3 are mainly released by weathering processes. The influence of seawater intrusion was evaluated using threshold values of Cl and Br, which were estimated as 80.5 and 0.54 mg/L, respectively. According to these criteria, 41–50% of the groundwaters were affected by seawater mixing.  相似文献   

16.
The forest ecosystem in the Maolan karst forest, southwest China is the only concentrated, intact, and relatively stable karst forest ecosystem which has survived in the area at the same latitude in the world, and is a valuable karst forest plant resource as well. Groundwater samples from Maolan karst forest were collected from wells and springs during summer; and concentrations of major ions and dissolved inorganic carbon (DIC) isotopic compositions were measured. The pH values range from 7.2 to 8.3 results from the dissolution of carbonate, HCO3 is the dominant species of DIC in groundwater. Calcium and HCO3 , followed by Mg2+ and SO4 2− dominate the chemical composition of major ions in the groundwaters. Groundwater samples have δ13C values in the range from −8.1‰ to −16.6‰, which are lower than that of the other karst city groundwaters in the southwest China. Combining δ13CDIC ratios with measurements of HCO3 and pH clearly distinguishes the principal processes underlying the geochemical evolution of groundwater in Carboniferous carbonate aquifers, where processes can be both degradation of organic matters in the soil and the carbonate dissolution.  相似文献   

17.
Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF2, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl–Na or SO4–Na type water).  相似文献   

18.
Environmental geochemistry of high arsenic groundwater at Hetao plain was studied on the basis of geochemical survey of the groundwater and a core sediment. Arsenic concentration in groundwater samples varies from 76 to 1093 μg/L. The high arsenic groundwater mostly appears to be weakly alkaline. The concentrations of NO3 and SO42− are relatively low, while the concentrations of DOC, NH4+, dissolved Fe and sulfide are relatively great. Analysis of arsenic speciation in 21 samples shows that arsenic is present in the solution predominantly as As(III), while particulate arsenic constitutes about 10% of the total arsenic. Methane is detected in five samples with the greatest content being 5107 μg/L. The shallow aquifer in Hangjinhouqi of western Hetao plain is of strongly reducing condition. The arsenic content in 23 core sediment samples varies from 7.7 to 34.6 mg/kg, with great value in clay and mild clay layer. The obvious positive relationship in content between Fe2O3, Mn, Sb, B, V and As indicates that the distribution of arsenic in the sediments may be related to Fe and Mn oxides, and the mobilization of Sb, B and V may be affected by similar geochemical processes as that of As.  相似文献   

19.
Sources of deep groundwater salinity in the southwestern zone of Bangladesh   总被引:2,自引:2,他引:0  
Twenty groundwater samples were collected from two different areas in Satkhira Sadar Upazila to identify the source of salinity in deep groundwater aquifer. Most of the analyzed groundwater is of Na–Cl–HCO3 type water. The trends of anion and cation are Cl > HCO3  > NO3  > SO4 2− and Na+ > Ca2+ > Mg2+ > K+, respectively. Groundwater chemistry in the study area is mainly governed by rock dissolution and ion exchange. The dissolved minerals in groundwater mainly come from silicate weathering. The salinity of groundwater samples varies from ~1 to ~5%, and its source is possibly the paleo-brackish water which may be entrapped during past geologic periods.  相似文献   

20.
Natural gas reservoirs in organic-rich shales in the Appalachian and Michigan basins in the United States are currently being produced via hydraulic fracturing. Stratigraphically-equivalent shales occur in the Canadian portion of the basins in southwestern Ontario with anecdotal evidence of gas shows, yet there has been no commercial shale gas production to date. To provide baseline data in the case of future environmental issues related to hydraulic fracturing and shale gas production, such as leakage of natural gas, saline water, and/or hydraulic fracturing fluids, and to evaluate hydrogeochemical controls on natural gas accumulations in shallow groundwater in general, this study investigates the origin and distribution of natural gas and brine in shallow aquifers across southwestern Ontario. An extensive geochemical database of major ion and trace metal chemistry and methane concentrations of 1010 groundwater samples from shallow, domestic wells in bedrock and overburden aquifers throughout southwestern Ontario was utilized. In addition, select wells (n = 36) were resampled for detailed dissolved gas composition, δ13C of CH4, C2, C3, and CO2, and δD of CH4. Dissolved gases in groundwater from bedrock and overburden wells were composed primarily of CH4 (29.7–98.6 mol% of total gas volume), N2 (0.8–66.2 mol%), Ar + O2 (0.2–3.4 mol%), and CO2 (0–1.2 mol%). Ethane was detected, but only in low concentrations (<0.041 mol%), and no other higher chain hydrocarbons were present, except for one well in overburden overlying the Dundee Formation, which contained 0.81 mol% ethane and 0.21 mol% propane. The highest methane concentrations (30 to >100 in situ % saturation) were found in bedrock wells completed in the Upper Devonian Kettle Point Formation, Middle Devonian Hamilton Group and Dundee Formation, and in surficial aquifers overlying these organic-rich shale-bearing formations, indicating that bedrock geology is the primary control on methane occurrences. A few (n = 40) samples showed Na–Cl–Br evidence of brine mixing with dilute groundwater, however only one of these samples contained high (>60 in situ % saturation) CH4. The relatively low δ13C values of CH4 (−89.9‰ to −57.3‰), covariance of δD values of CH4 and H2O, positive correlation between δ13C values of CH4 and CO2, and lack of higher chain hydrocarbons (C3+) in all but one dissolved gas sample indicates that the methane in groundwater throughout the study area is primarily microbial in origin. The presence or absence of alternative electron acceptors (e.g. dissolved oxygen, Fe, NO3, SO4), in addition to organic substrates, controls the occurrence of microbial CH4 in shallow aquifers. Microbial methane has likely been accumulating in the study area, since at least the Late Pleistocene to the present, as indicated by the co-variance and range of δD values of CH4 (−314‰ to −263‰) and associated groundwater (−19‰ to −6‰ δD-H2O).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号