首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sediment mineralogy, quartz-grain surface-textures, grain-size analysis, bore-hole logging and ground penetrating radar are combined to develop a three dimensional stratigraphic model of a back-barrier sand island in southeast Queensland, Australia. The island consists of an unconsolidated sedimentary pile above an erosional bounding surface at the top of the underlying bedrock. The stratigraphy is complex, recording the shift in depositional environments from fluvio-deltaic to strandplain, via estuarine stages of evolution. The back-barrier island deposits are correlated with the stratigraphy of the adjacent coastal plain to the west and the barrier island to the east. Extrapolation of optically stimulated luminescence dates obtained from the barrier island combined with direct dating of the back-barrier island sediments is used to constrain the depositional age and chronology of the back-barrier island stratigraphy. The modern depositional environment evolved from a chenier plain into a barrier island system by the flooding of an interdune swale and development of a shore-parallel back-barrier tidal lagoon. The lithological heterogeneity of the back-barrier island succession was controlled by the presence of a bedrock incised palaeovalley and changes in relative sea-level.Sedimentary facies associations constrain the spatial distribution of hydraulic properties controlled by lithological heterogeneity. Post-depositional alteration horizons are integrated with the facies model to account for the effects of weathering and diagenesis on hydraulic behaviour. The derived hydrostratigraphy describes a vertically stacked, dual aquifer, island groundwater system consisting of a semi-confined palaeovalley aquifer overlain by an unconfined strand-plain aquifer.Hydrostratigraphic analysis based on sedimentary facies associations, integrated with post-depositional alteration characteristics reveals great complexity of groundwater systems within small island settings. The facies modelling approach employed in this study more accurately estimates the distribution of lithological heterogeneity and the associated variations in hydraulic properties in the sedimentary pile.  相似文献   

2.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

3.
4.
Amorosi  Colalongo  Pasini  & Preti 《Sedimentology》1999,46(1):99-121
Data from 17 continuously cored boreholes, 40–170 m deep, reveal the subsurface stratigraphy of the Romagna coastal plain. Sedimentological and microfaunal data allow the distinction of eight facies associations of Late Pleistocene–Holocene age, including 18 lithofacies and 16 faunal associations. Ten 14C dates provide the basis to establish a sequence stratigraphic framework for the succession corresponding to the upper part 35 ky BP of the last glacio-eustatic cycle. The eight facies associations can be grouped into lowstand, transgressive and highstand systems tracts. The upper part of the lowstand systems tract consists of alluvial plain deposits. These accumulated during the Late Pleistocene when the shoreline was ≈250 km south of its present-day position. A pronounced stratigraphic hiatus (between 25 and 8·8 ky BP) is invariably recorded at the upper boundary (transgressive surface) of these Pleistocene, indurated and locally pedogenized alluvial deposits. The succeeding postglacial history is represented by a well developed transgressive–regressive cycle. Transgressive deposits, interpreted to reflect the rapid landward migration of a barrier–lagoon system, include two wedge-shaped, paralic and marine units. These thicken in opposite directions and are separated by a ravinement surface. Above the transgressive deposits, the maximum flooding surface (MFS) marks the change from a transgressive barrier–lagoon complex to a prograding, wave-dominated delta system (early Po delta). The MFS can be traced landwards, where it constitutes the base of lagoonal deposits. An aggradational to progradational stacking pattern of upper delta plain (marsh), lower delta plain (lagoon/bay), and delta front (beach ridge) deposits reflects the progressive increase in the sediment supply/accommodation ratio during the following highstand. The alluvial deposits capping the sequence accumulated by the 13th century AD, in response to an avulsion event that caused abandonment of the former Po delta lobe and the northward migration of the Po River towards its present position.  相似文献   

5.
The Campanian Cliff House Formation represents a series of individually progradational shoreface tongues preserved in an overall landward-stepping system. In the Mancos Canyon area, the formation consists of four, 50- to 55-m-thick and 10- to 20-km-wide sandstone tongues, which pinch out landwards into lower coastal plain and lagoonal deposits of the Upper Menefee Formation and seawards into offshore shales of the Lewis Shale Formation. Photogrammetric mapping of lithofacies along the steep and well-exposed canyon walls was combined with sedimentary facies analysis and mapping of the detailed facies architecture. Two major facies associations have been identified, one comprising the mostly muddy and organic-rich facies of lagoonal and lower coastal plain origin and one comprising the sandstone-dominated facies of shoreface origin. Key stratigraphic surfaces were identified by combining the mapped geometry of the lithofacies units with the interpretation of depositional processes. The stratigraphic surfaces (master ravinement surface, shoreface/coastal plain contact, transgressive surface, maximum flooding surface and the sequence boundary) allow each major sandstone tongue to be divided into a simple sequence, consisting of a basal transgressive system tract (TST) overlain by a highstand system tract (HST). Within each sandstone tongue, a higher frequency cyclicity is evident. The high-frequency cycles show a complex stacking pattern development and are commonly truncated in the downdip direction by surfaces of regressive marine erosion. The complexities of the Cliff House sandstone tongues are believed to reflect changes in the rate of sea-level rise combined with the responses of the depositional system to these changes. Synsedimentary compaction, causing a thickness increase in the sandstone tongues above intervals of previously uncompacted lagoonal/coastal plain sediments, also played a role. This study of the facies architecture, geometry and sequence stratigraphy of the Cliff House Formation highlights the fact that there may be some problems in applying conventional sequence stratigraphical methods to landward-stepping systems in general. These difficulties stem from the fact that no single stratigraphic surface can easily be identified and followed from the non-marine to the fully marine realm (i.e. from the landward to the basinward pinch-out of the sandstone tongues). In addition, the effects of synsedimentary compaction and changes in the shoreface dynamics are not easily recognized in limited data sets such as from the subsurface.  相似文献   

6.
The stratigraphic architecture of shoal‐water deltaic systems developed in low‐accommodation settings is relatively well‐known. In contrast, the features of shoal‐water deltas developed in high‐accommodation settings remain relatively poorly documented, especially when compared with the available data sets for Gilbert‐type deltaic systems developed in the same settings. The lacustrine Valimi Formation (Gulf of Corinth, Greece) provides an opportunity to investigate the facies assemblage and architectural style of shoal‐water deltaic systems developed in high‐accommodation settings. The studied interval accumulated during the Pliocene and Pleistocene and represents part of the early syn‐rift Gulf of Corinth succession. Six facies associations, each described in terms of depositional processes and geometries, have been identified and interpreted to represent a range of proximal to distal deltaic sub‐environments: delta plain, distributary channel, mouth‐bar, delta front, prodelta and open lake. The facies associations and their architectural elements reveal characteristics which are not common in traditionally described shoal‐water deltas. Of note, different facies arrangements are observed in the distributary channels in different sectors of the delta, passing from thick single‐storey channel fills embedded within delta‐plain fines in landward positions, to thin, amalgamated and multi‐storey channels closer to the river mouth. This study proposes a new depositional model for shoal‐water deltas in high‐accommodation settings documenting, for the first time, that shoal‐water delta deposits can form a substantial part of stratigraphic successions that accumulate in these settings. The proposed depositional model provides new criteria for the recognition and interpretation of these deposits; the results of this study have applied significance for reservoir characterization.  相似文献   

7.
Accumulation of continental, deltaic and shallow‐marine sediments in the Po River coastal plain preserves a record of the Late Quaternary sea‐level changes and shoreline migrations. The palaeoenvironmental evolution of this area and the changes in composition and provenance of sediments have been investigated through integrated sedimentological, micropalaeontological (mainly foraminifers) and geochemical analyses of core S1, from the southern part of the Po River delta, within a chronological framework supported by radiocarbon dating and correlations with adjacent core sequences. Eleven lithofacies, grouped into five facies associations, and four palaeontological assemblages provide the basis to define the palaeoenvironmental reconstruction of this succession consisting, from the base to the top, of: (i) continental sediments accumulated during the Late Pleistocene; (ii) back‐barrier sediments marking the onset of Holocene sea‐level rise; (iii) transgressive sands deposited during the rapid landward migration of a barrier‐lagoon system; (iv) shallow‐marine and prodelta sediments with faunal associations indicating a gradual approach to the Po River mouth; and (v) sub‐recent delta front sands that form a considerable portion of the present coastal plain. Bulk chemical composition of sediments shows remarkable relationships with palaeoenvironments and locally improves facies characterizations. For example, they reveal carbonate leaching that emphasizes the occurrence of palaeosols in continental deposits or record enrichments in loss on ignition, S and Br, diagnostic of organic‐rich layers in back‐shore sediments. Selected geochemical elements (e.g. Mg and Ni) are particularly effective for the recognition of sediment provenances from the three main source areas observed in the subsurface deposits of the Po River coastal plain (e.g. Apenninic rivers, North Adriatic rivers and Po River). An Apenninic provenance is observed in continental and back‐barrier sediments. A North Adriatic provenance characterizes the transgressive sands and the shallow‐marine deposits; a significant Po River provenance is recorded in sediments related to the onset of the prodelta environment, confirmed by foraminiferal assemblages indicating remarkable increase in fluvial influxes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
The Tiber Delta lies on the passive continental margin of central western Italy. The Tiber Delta is a Late Pleistocene—Holocene sedimentary succession and constitutes an ‘incomplete’high-frequency depositional sequence (4th or 5th order), which developed from the last post-glacial rise in sea level to the present stillstand. It is bound by a type 1 basal unconformity which cuts Pleistocene deposits. Five depositional systems have been identified: (1) coastal barrier—lagoon; (2) shelf-transition; (3) fluvial braided; (4) Tiber lagoonal deltas (T1, T2, T3); and (5) Tiber wave-dominated delta. The first four systems constitute the transgressive system tract (TST) which is characterized by a retrogradational parasequences set, while the fifth system represents the highstand system tract (HST) characterized by only one parasequence (progradational). The evolution of these depositional systems has been mostly controlled by sea-level rise, which was not continuous, but punctuated by eight minor stillstands and rapid rises. This mechanism of sea-level change led to the formation of parasequences that developed within the depositional systems. From a palaeogeographical point of view the present Tiber Delta area was mainly characterized by a coastal barrier, lagoon and Tiber lagoonal deltas (T1, T2, T3), which migrated landwards during the sea-level rise. Throughout the time of the present stillstand, the T3 lagoonal delta prograded rapidly into the lagoon, reaching the coastal barrier, and the lagoon was replaced first by marshes and then by the alluvial plain. Finally, the Tiber River overcame the littoral barrier supplying the coast, giving rise to the present wave-dominated delta.  相似文献   

9.
Abstract The Kyokpori Formation (Cretaceous), south‐west Korea, represents a small‐scale lacustrine strike‐slip basin and consists of an ≈ 290 m thick siliciclastic succession with abundant volcaniclasts. The succession can be organized into eight facies associations representing distinctive depositional environments: (I) subaqueous talus; (II) delta plain; (III) steep‐gradient large‐scale delta slope; (IV) base of delta slope to prodelta; (V) small‐scale nested Gilbert‐type delta; (VI) small‐scale delta‐lobe system; (VII) subaqueous fan; and (VIII) basin plain. Facies associations I, III and IV together constitute a large‐scale steep‐sloped delta system. Correlation of the sedimentary succession indicates that the formation comprises two depositional sequences: the lower coarsening‐ to fining‐upward succession (up to 215 m thick) and the upper fining‐upward succession (up to 75 m thick). Based on facies distribution, architecture and correlation of depositional sequences, three stages of basin evolution are reconstructed. Stage 1 is represented by thick coarse‐grained deposits in the lower succession that form subaqueous breccia talus and steep‐sloped gravelly delta systems along the northern and southern basin margins, respectively, and a sandy subaqueous fan system inside the basin, abutting against a basement high. This asymmetric facies distribution suggests a half‐graben structure for the basin, and the thick accumulation of coarse‐grained deposits most likely reflects rapid subsidence of the basin floor during the transtensional opening of the basin. Stage 2 is marked by sandy black shale deposits in the upper part of the lower succession. The black shale is readily correlated across the basin margins, indicating a basinwide transgression probably resulting from large‐scale dip slip suppressing the lateral slip component on basin‐bounding faults. Stage 3 is characterized by gravelly delta‐lobe deposits in the upper succession that are smaller in dimension and located more basinward than the deposits of marginal systems of the lower succession. This lakeward shift of depocentre suggests a loss of accommodation in the basin margins and quiescence of fault movements. This basin evolution model suggests that the rate of dip‐slip displacement on basin‐margin faults can be regarded as the prime control for determining stacking patterns of such basin fills. The resultant basinwide fining‐upward sequences deviate from the coarsening‐upward cycles of other transtensional basins and reveal the variety of stratigraphic architecture in strike‐slip basins controlled by the changes in relative sense and magnitude of fault movements at the basin margins.  相似文献   

10.
南黄海西部日照海域晚更新世海侵沉积地层广泛出露。基于本区18个站位柱状岩芯的剖面观察、有孔虫和介形虫鉴定、粒度分析、腹足类纹沼螺(Parafossarulus striatulus (Benson))和钙质结核的AMS 14C年龄识别了沉积相,并探讨了MIS 3阶段的沉积历史和古环境特征,同时大致估算出末次海侵过程中水下平原的剥蚀厚度。结果表明,在日照外海、废黄河水下三角洲以北,表层覆盖着全新世早期海侵过程中所形成的砂质改造层,灰色,席状,无层理,厚度薄,通常在10~40 cm左右。海侵沙席之下为海陆过渡相沉积,可细分为滨岸潟湖相、沙坝相和滨海相等。底栖有孔虫组合几乎都以Ammonia beccarii (Linné) vars.为优势种,其他常见种为Elphidium magellanicum Heron?Allen et Earland、Cribrononion subincertum (Asano)、Textularia foliacea Heron?Allen & Earland、 Elphidium advenum (Cushman)、Protelphidium tuberculatum (d'Orbigny)、Cavarotalia annectens (Parker et Jones)和Pararotalia nipponica (Asano)等,指示滨岸浅水沉积环境。地层沉积年代为MIS 3阶段的中期或中早期,当时的海平面波动区间主要位于现今海平面以下20 m至31 m之间。这套地层为海进沉积,是海平面波动过程中所形成的沉积旋回,沉积过程中曾经历过反复的暴露和氧化,从下向上,其垂向层序可分为两个序列:1)滨岸潟湖—沙坝沉积或仅见沙坝沉积,为砂质沉积,分布在海侵沉积区的北部和西部;2)滨岸潟湖—滨海相沉积,为粉砂质沉积,分布在海侵沉积区的东南部。前者沿着古海岸线分布,后者距离古海岸线较远。表层钙质结核的大量富集,可能意味着末次海侵的强度已经剥露至土壤剖面下部的钙积层。据此估计,在末次海侵过程中,本区水下平原的平均剥蚀厚度约为50~70 cm。  相似文献   

11.
The Lower Ordovician Shirgesht Formation in central Iran is composed of siliciclastic and carbonate rocks deposited in diverse coastal and marine shelfal environments (tidal flat, lagoon, shoreface, offshore-shelf and carbonate ramp). Five facies associations contain diverse ichnofossil assemblages that show distinct proximal to distal trends formed in a wide range of physical-chemical conditions. The ethological groups of trace fossils in the Shirgesht Formation reflect a gradient of depositional stress conditions across a wave-influenced shoreline and shelf. Deposits of wave-influenced environments make up a significant component of the geological record of shallow marine settings, and the ability to determine paleoenvironments in detail in such successions is critical for reconstruction of depositional histories and sequence-stratigraphic interpretation.The Cruziana ichnofacies of the study shows highly diverse suites that record the establishment of a benthic community under stable conditions and a long-term colonization window. The Skolithos ichnofacies recognized is a low diversity opportunistic ichnocommunity suite that resulted from colonization after tempestite deposition in a stressed environment. The strata record an onshore to offshore replacement of the Cruziana ichnofacies (with abundant feeding traces of deposit-feeders) by the Skolithos ichnofacies (dominated by suspension-feeders and predators). A transitional zone between the two ichnofacies coincides with the offshore-transition/distal lower-surface deposits. The distribution of ichnofacies, the diversity and range of ethological characteristics reflected by the ichnogenera, and the wide range of wave-dominated coastal facies demonstrate the potential to use individual trace fossils and ichnofacies for significantly refined palaeoenvironmental analysis of wave-dominated coastal settings, particularly in Ordovician successions.  相似文献   

12.
《Sedimentary Geology》2006,183(1-2):1-13
Integrated sedimentological and micropaleontological (foraminifers and ostracods) analyses of two 55 m long borehole cores (S3 and S4) drilled in the subsurface of Lesina lagoon (Gargano promontory—Italy) has yielded a facies distribution characteristic of alluvial, coastal and shallow-marine sediments. Stratigraphic correlation between the two cores, based on strong similarity in facies distribution and AMS radiocarbon dates, indicates a Late Pleistocene to Holocene age of the sedimentary succession.Two main depositional sequences were deposited during the last 60-ky. These sequences display poor preservation of lowstand deposits and record two major transgressive pulses and subsequent sea-level highstands. The older sequence, unconformably overlying a pedogenized alluvial unit, consists of paralic and marine units (dated by AMS radiocarbon at about 45–50,000 years BP) that represent the landward migration of a barrier-lagoon system. These units are separated by a ravinement surface (RS1). Above these tansgressive deposits, highstand deposition is characterised by progradation of the coastal sediments.The younger sequence, overlying an unconformity of tectonic origin, is a 10 m-thick sedimentary body, consisting of fluvial channel sediments overlain by transgressive–regressive deposits of Holocene age. A ravinement surface (RS2), truncating the transgressive (lagoonal and back-barrier) deposits in core S4, indicates shoreface retreat and landward migration of the barrier/lagoon system. The overlying beach, lagoon and alluvial deposits are the result of mid-Holocene highstand sedimentation and coastal progradation.  相似文献   

13.
High resolution stratigraphical analysis divides a rock succession into the basic genetic units of stratigraphy which are here termed small scale stratigraphical cycles. Each cycle records the sedimentological response to an episode of shallowing and deepening. Assuming that these changes in water depth reflect changes in the shoreline position, they can be considered as regressive/transgressive episodes. Each cycle comprises a regressive and transgressive facies tract which will be variably proportioned; in some examples a facies tract may only be represented by a hiatal surface of no deposition, erosion and/or bypass. In the Annot Sandstones of south-east France, variations in facies types, proportions and associations can be demonstrated both laterally and vertically through the succession. First, it is demonstrated that facies variations occur within regressive or transgressive facies tracts as a function of the stratigraphical stacking pattern of the cycles (i.e. landward, vertical or seaward stacked); this is termed ‘vertical facies differentiation’. Second, the proportions of facies tracts and their constituent facies types within an individual cycle vary between more landward and more seaward palaeogeographical locations; this is termed ‘lateral facies differentiation'. The upper Eocene/lower Oligocene Annot sandstones outcrop in the Maritime Alps of south-east France, within the thin skinned outer fold and thrust belt of the Alpine arc. The sandstones are well exposed in the area of the Col de la Cayolle on the north-west margin of the Argentera Massif, where lithostratigraphical correlations are possible over 3·5 km in a NNW/SSE direction, perpendicular to the edge of the depositional basin. Traditionally, these outcrops have been interpreted as deep marine turbidite lobe sediments; this study reflects a significant reinterpretation of this succession as having been deposited in a shallow marine environment. Seven sedimentary sections were measured through the succession, which is divided into 10 small scale stratigraphical cycles. These cycles are described in terms of eight facies which are separated into their transgressive or regressive facies tracts. In eight of the 10 cycles, the regressive facies tracts reflect the progradation of storm influenced braid deltas over shelf muds and silts. In two of the 10 cycles, the regressive facies tracts reflect barrier inlet and wash-over sands interfingering with back barrier deposits. These latter two cycles are located within landward stepping cycle sets; this is an example of vertical facies differentiation. Transgressive facies tracts locally reworked the upper surface of the regressive facies tract and also comprise barrier and back barrier deposits. The facies succession within each cycle varies according to its position with respect to the palaeoshoreline. The more landward portion of an individual cycle comprises a deltaic shoaling upward succession, culminating in coarse distributary channel conglomerates, overlain by a transgressive barrier/inlet system with extensive back barrier deposits. Beyond the delta front, the more seaward equivalent of individual cycles comprises an erosive base, with aggradational massive pebbly sandstones sitting directly upon offshore heterolithics; these sandstones are interpreted as hyperconcentrated fluvial efflux into the nearshore environment. This grades upward into offshore heterolithics and graded storm deposits representing the products of ravinement, which are then overlain by shelf mudstones. In summary, the more landward portions of cycles preserve predominantly regressive facies tracts, whereas the more seaward portions preserve aggradational to retrogradational strata of the transgressive facies tract; this is an example of lateral facies differentiation.  相似文献   

14.
德国北部盆地上侏罗统广泛发育,但野外露头地层普遍出露不全。Hildesheimer Wald地区Wendhausen 6井和Süntel山地区Eulenflucht 1井完整钻遇了上侏罗统牛津阶和启莫里阶地层,为分析该区晚侏罗世沉积演化过程及其所反映的古环境变化规律提供了丰富的资料。通过岩心描述和岩石薄片镜下观察,根据不同层段的颗粒成分、生物组合特征、沉积结构和构造等特征,在2口井的岩心中共划分出14个岩石类型,分别形成于碳酸盐岩斜坡和三角洲环境。建立了该区牛津阶和启莫里阶垂向沉积演化序列,垂向上由Heersum组到Süntel组,沉积环境逐步由外陆棚、内陆棚、临滨过渡到了开阔台地、潮坪环境,表现出了相对海平面降低的进积过程。同时对不同沉积相中保存较好的以低镁方解石为主要成分的牡蛎壳进行原位Mg/Ca值(古温度指标)测试,得出该区牛津期至启莫里期总体表现出了古气候变暖的趋势,且共有3次气候变暖过程。这一古气候变化与由沉积相分析得出的古气候变化一致,且同苏格兰、俄罗斯台地古温度变化趋势有很好的对应关系,表明古气候是控制该区沉积演化的一个重要因素,且牡蛎壳Mg/Ca值可以做为一个古气候指示指标应用于其他地区的古气候分析中。  相似文献   

15.
Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.  相似文献   

16.
织金地区位于黔西晚二叠世陆源碎屑沉积的东北缘,为龙谭型含煤沉积,属障壁—泻湖体系。该区煤系上部2煤段的沉积特征代表了一种低能、小规模的障壁—泻湖体系,沉积相由潮坪、淡化泻湖、泥炭沼泽和低能障壁相组成,可称为低能障壁—泻湖含煤沉积体系。  相似文献   

17.
The Late Cenomanian–Mid Turonian succession in central Spain is composed of siliciclastic and carbonate rocks deposited in a variety of coastal and marine shelf environments (alluvial plain–estuarine, lagoon, shoreface, offshore‐hemipelagic and carbonate ramp). Three depositional sequences (third order) are recognized: the Atienza, Patones and El Molar sequences. The Patones sequence contains five fourth‐order parasequence sets, while a single parasequence set is recognized in the Atienza and El Molar sequences. Systems tracts can be recognized both in the sequences and parasequence sets. The lowstand systems tracts (only recognized for Atienza and Patones sequences) are related to erosion and sequence boundary formation. Transgressive systems tracts are related to marine transgression and shoreface retreat. The highstand systems tracts are related to shoreface extension and progradation, and to carbonate production and ramp progradation. Sequences are bounded by erosion or emergence surfaces, whose locations are supported by mineralogical analyses and suggest source area reactivation probably due to a fall in relative sea‐level. Transgressive surfaces are subordinate erosion and/or omission surfaces with a landward facies shift, interpreted as parasequence set boundaries. The co‐existence of siliciclastic and carbonate sediments and environments occurred as facies mixing or as distinct facies belts along the basin. Mixed facies of coastal areas are composed of detrital quartz and clays derived from the hinterland, and dolomite probably derived from bioclastic material. Siliciclastic flux to coastal areas is highly variable, the maximum flux postdates relative sea‐level falls. Carbonate production in these areas may be constant, but the final content is a function of changing inputs in terrigenous sediments and carbonate content diminishes through a dilution effect. Carbonate ramps were detached from the coastal system and separated by a fringe of offshore, fine‐grained muds and silts as distinct facies belts. The growth of carbonate ramp deposits was related to the highstand systems tracts of the fourth‐order parasequence sets. During the growth of these ramps, some sediment starvation occurred basinwards. Progradation and retrogradation of the different belts occur simultaneously, suggesting a sea‐level control on sedimentation. In the study area, the co‐existence of carbonate and siliciclastic facies belts depended on the superimposition of different orders of relative sea‐level cycles, and occurred mainly when the second‐order, third‐order and fourth‐order cycles showed highstand conditions.  相似文献   

18.
The Lockhart Formation from a major carbonate unit of the Paleocene Charrat Group in Upper Indus Basin, Pakistan represents a larger foraminiferal–algal build up deposited in a cyclic sequence of the carbonate ramp. The foraminiferal–algal assemblages of the Lockhart Formation are correlated here to larger foraminiferal biostratigraphic zone, i.e. Shallow Benthic Zone (SBZ3) of the Thanetian Age. Inner ramp lagoon, shoal and fore shoal open marine are three main facies associations represented by wackstone and packstone foraminiferal–algal deposits. These facies are present in a cyclic order and displayed a retrograding carbonate ramp indicating the Thanetian transgressive deposits associated with eustatic sea level rise. The correlation of the microfacies of the Lockhart Formation (Upper Indus Basin) and facies of the Dungan Formation (Lower Indus Basin) provide detailed configuration of the depositional setting of the Indus Basin during the time interval represented by the Thanetian Zone SBZ3.  相似文献   

19.
Sedimentological and stratigraphical analysis of the Sokoto Basin has resulted in recognition of four lithostratigraphic units. They are Unit A—siltstone and fine-grained sandstone; Unit B—shale and marl; Unit C—limestone and calcareous shale; and Unit D—red sandstone. Unit A represents a wadi plain system composed of desert-alluvial beds; Unit B, a mud-rich sabkha system; and Unit C, an inner-shelf carbonate system. A marine transgression from the northwest began in the Maastrichtian and reached its peak in the Palaeocene. After regression in the late Palaeocene, the area was subjected to erosion, followed by fluvial sedimentation of Unit D. Wadi plain beds and mud-rich sabkha facies of Sokoto Basin are similar to alluvial and coastal mud-flat deposits in the northwestern Gulf of California and ephemeral stream and tidal-flat sediments in Gladstone Embayment, Australia.  相似文献   

20.
The Hazad Member (Middle Eocene) of the Ankleswar Formation in Cambay Basin, India, is traditionally reported as deltaic system. Present work documents three major facies associations, namely, (i) sandstone-rich upper delta plain (FA-1) deposits, (ii) sandstone-mudstone heterolithic lower delta plain–delta front (FA-2) deposits, and (iii) shale-dominated prodelta (FA-3) deposits, in an overall coarsening-up to fining-up succession. Tidalites are well preserved in FA-2 and are represented by laterally accreted tidal bundles, tidal beddings and vertically accreted tidal rhythmites, described from drill core samples in this communication. Laterally accreted tidal bundles with reactivation surfaces in sand-dominated heterolithic units indicate time-velocity asymmetry in subtidal condition. Tidal beddings and tidal rhythmites in mud-dominated heterolithic units, associated with asymmetric/symmetric ripple forms and desiccation cracks, indicate periodic subaerial emergence in intertidal flat depositional setting. Systematic analysis of the architecture of the tidalites in different parts of the basin signifies rapid shift in sedimentation from subtidal to intertidal flat within the lower delta plain. Transitions from prodeltaic to tidally (subtidal-intertidal) affected delta front to lower delta plain and fluvial-dominated upper delta plain depositional systems attest to high frequency transgressive-regressive cycles in response to changing accommodation, as a result of sea level fluctuations and basinal tectonisms in the Cambay Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号