首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The historical biogeography of highland Mediterranean pines is explored based on Late Pleistocene and Holocene charcoal from Portugal (Iberian Peninsula, SW Europe). The earliest presence of Pinus type sylvestris (including P. nigra, P. sylvestris and P. uncinata) is recorded in archaeological layers dated at ca 23,900 BP, during the Full Glacial. The abundance of remains identified as Pinus type sylvestris suggests that this was a frequent taxon, at least at middle altitudes. Significant occurrences were recorded up until ca 11,000 BP, at the end of the Lateglacial warming period. From the early Holocene onwards the presence of Pinus type sylvestris is recorded only sporadically, but at least up to 2000 years ago. The competition with other tree and shrub species favoured by the Holocene warming may have triggered the decline of highland pines in Portugal. Eventual anthropogenic impact is also considered as playing a role in its regional decline, such as increasing fire frequency resulting from amplified land use since the Neolithic.  相似文献   

2.
Pollen, plant macrofossil, and charcoal records from Spruce Pond (41°14′22″N, 74°12′15″W), southeastern New York, USA dated by AMS provide details about late-glacial–early Holocene vegetation development in the Hudson Highlands from >12410 to 9750 14C yr BP. Prior to 12410 yr BP, vegetation was apparently open, dominated by herbs and shrubs (Cyperaceae, Gramineae, Tubuliflorae, Salix, Alnus, Betula), possibly with scattered trees (Picea and Pinus). However, Picea macrofossils are not found until 12410 yr BP. Development of a temperature deciduous–boreal-coniferous forest featuring Quercus, Fraxinus, Ostrya/Carpinus, Pinus, Picea, and Abies occurs between 12410 and 11140 yr BP. A return of predominantly boreal forest taxa between 11140 and 10230 yr BP is interpreted as an expression of the Younger Dryas cooling event. Holocene warming at 10230 yr BP is signalled by arrival of Pinus strobus, coincident with expansion of Quercus-dominated forest. Fire activity, as inferred from charcoal influx, appears to have increased as woodland developed after 12410 yr BP. Two charcoal influx peaks occur during Younger Dryas time. Early Holocene fire activity was relatively high but decreased for approximately 100 yr prior to the establishment of Tsuga canadensis in the forest at 9750 yr BP. © 1997 by John Wiley & Sons, Ltd.  相似文献   

3.
Macrofossil, pollen, lithostratigraphy, mineral magnetic measurements (SIRM and magnetic susceptibility), loss‐on‐ignition, and AMS radiocarbon dating on sediments from two former crater lakes, situated at moderate altitudes in the Gutaiului Mountains of northwest Romania, allow reconstruction of Late Quaternary climate and environment. Shrubs and herbs with steppe and montane affinities along with stands of Betula and Pinus, colonised the surroundings of the sites prior to 14 700 cal. yr BP and the inferred climatic conditions were cold and dry. The gradual transition to open PinusBetula forests, slightly higher lake water temperatures, and higher lake productivity, indicate more stable environmental conditions between 14 700 and 14 100 cal. yr BP. This development was interrupted by cooler and drier climatic conditions between 14 100 and 13 800 cal. yr BP, as inferred from a reduction of open forests to patches, or stands, of Pinus, Betula, Larix, Salix and Populus. The expansion of a denser boreal forest, dominated by Picea, but including Pinus, Larix, Betula, Salix, and Ulmus started at 13 800 cal. yr BP, although the forest density seems to have been reduced between 13 400 and 13 200 cal. yr BP. Air temperature and moisture availability gradually increased, but a change towards drier conditions is seen at 13 400 cal. yr BP. A distinct decrease in temperature and humidity between 12 900 and 11 500 cal. yr BP led to a return of open vegetation, with patches of Betula, Larix, Salix, Pinus and Alnus and individuals of Picea. Macrofossils and pollen of aquatic plants indicate rising lake water temperatures and increased aquatic productivity already by ca. 11 800 cal. yr BP, 300 years earlier than documented by the terrestrial plant communities. At the onset of the Holocene, 11 500 cal. yr BP, forests dominated by Betula, Pinus and Larix expanded and were followed by dense Ulmus forests with Picea, Betula and Pinus at 11 250 cal. yr BP. Larix pollen was not found, but macrofossil evidence indicates that Larix was an important forest constituent at the onset of the Holocene. Moister conditions were followed by a dry period starting about 10 600 cal. yr BP, which was more pronounced between 8600 and 8200 cal. yr BP, as inferred from aquatic macrofossils. The maximum expansion of Tilia, Quercus, Fraxinus and Acer between 10 700 and 8600 cal. yr BP may reflect a more continental climate. A drier and/or cooler climate could have been responsible for the late expansion (10 300 cal. yr BP) and late maximum (9300 cal. yr BP) of Corylus. Increased water stress, and possibly cooler conditions around 8600 cal. yr BP, may have caused a reduction of Ulmus, Tilia, Quercus and Fraxinus. After 8200 cal. yr BP moisture increased and the forests included Picea, Tilia, Quercus and Fraxinus. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A late glacial to early Holocene lacustrine and peat succession, rich in conifer remains and including some palaeolithic flint artefacts, has been investigated in the Palughetto intermorainic basin (Venetian Pre‐Alps). The geomorphological and stratigraphical relationships, 14C dates and pollen analyses allow a reconstruction of the environmental history of the basin and provide significant insights into the reforestation and peopling of the Pre‐Alps. The onset of peat accumulation is dated to 14.4–14.1 kyr cal. BP, coinciding with reforestation at middle altitudes that immediately post‐dates the immigration of Larix decidua and Picea abies subsp. europaea. Plant macrofossils point to the expansion of spruce about 14.3 kyr cal. BP, so far one of the earliest directly dated in the late glacial period of southern Europe. The previous hypothesis of an early Holocene spruce immigration in the Southern Alps from Slovenia needs reconsideration. Organic sedimentation stopped at the end of the Younger Dryas and was followed by the evolution of hydromorphic soils containing lithic artefacts, anthropic structures and wood charcoal. The typological features of the flint implements refer human occupation of the site to the end of the recent Epigravettian. Charcoals yielded dates either consistent with, or younger than, the archaeological chronology, in the early and middle Holocene. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Paleoenvironments of the Torrey Pines State Reserve were reconstructed from a 3600-yr core from Los Peñasquitos Lagoon using fossil pollen, spores, charcoal, chemical stratigraphy, particle size, and magnetic susceptibility. Late Holocene sediments were radiocarbon dated, while the historical sediments were dated using sediment chemistry, fossil pollen, and historical records. At 3600 yr B.P., the estuary was a brackish-water lagoon. By 2800 yr B.P., Poaceae (grass) pollen increased to high levels, suggesting that the rising level of the core site led to its colonization by Spartina foliosa (cord-grass), the lowest-elevation plant type within regional estuaries. An increase in pollen and spores of moisture-dependent species suggests a climate with more available moisture after 2600 yr B.P. This change is similar to that found 280 km to the north at 3250 yr B.P., implying that regional climate changes were time-transgressive from north to south. Increased postsettlement sediment input resulted from nineteenth-century land disturbances caused by grazing and fire. Sedimentation rates increased further in the twentieth century due to closure of the estuarine mouth. The endemic Pinus torreyana (Torrey pine) was present at the site throughout this 3600-yr interval but was less numerous prior to 2100 yr B.P. This history may have contributed to the low genetic diversity of this species.  相似文献   

6.
Sedimentary pollen, charcoal and plant macrofossil analyses with high resolution and precision suggest a strong shift in vegetation composition during the early to mid‐Holocene transition in the upper mountain belt. At Piano mire (1439 m above sea level (a.s.l.), Ticino, Switzerland) forests were dominated by Abies alba during the early Holocene (prior to ca. 8000 cal. a BP). Abrupt collapses of A. alba at ca. 7800–7400 cal. a BP enabled the expansion of the light‐demanding pioneer Betula. Afterwards A. alba populations regained their previous abundance in the forests. Within the dating uncertainties of our record we assume that a unique combination of wet and cold years between 8400 and 7500 cal. a BP led to repeated lethal disadvantages for Abies. Our record of Abies oscillations is in good biostratigraphic agreement with the record that has been used to define the Misox cold event (Pian di Signano, 1540 m a.s.l.), which has been previously correlated with the 8200 cal. a BP event. Given the age estimates of the Abies collapses in our well‐dated record, our results suggest that additional efforts are needed to understand the linkage between the Misox and the 8200 cal. a BP event. They imply a high sensitivity of mountain vegetation far below the tree line (~800 m) to Holocene climatic changes of about 2°C in annual air temperature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Analyses of pollen, charcoal and organic content in a lake sediment core from Wildwood Lake, Long Island, New York, provide insights into the ecological and environmental history of this region. The early Holocene interval of the record (ca. 9800–8800 cal. a BP) indicates the presence of Pinus rigidaQuercus ilicifolia woodlands with high fire activity. A layer of sandy sediment dating to 9200 cal. a BP may reflect a brief period of reduced water depth, consistent with widespread evidence for cold, dry conditions at that time. Two other sandy layers, bracketed by 14C dates, represent a sedimentary hiatus from ca. 8800 to 4500 cal. a BP. This discontinuity may reflect the removal of some sediment during brief periods of reduced water depth at 5300 and 4600 cal. a BP. In the upper portion of the record (<4500 cal. a BP), subtle changes at ca. 3000 cal. a BP indicate declining prevalence of QuercusFagusCarya forests and increasing abundance of Pinus rigida, perhaps due to reduced summer precipitation. Elevated percentages of herbaceous taxa in the uppermost sediments represent European agricultural activities. However, unlike charcoal records from southern New England, fire activity does not increase dramatically with European settlement. These findings indicate that present‐day Pinus rigidaQuercus ilicifolia woodlands on eastern Long Island are not a legacy of recent, anthropogenic disturbances. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates a detailed well‐dated Lateglacial floristic colonisation in the eastern Baltic area, ca. 14 000–9000 cal. a BP, using palynological, macrofossil, loss‐on‐ignition, and 14C data. During 14 000–13 400 cal. a BP, primarily treeless pioneer tundra vegetation existed. Tree birch (Betula sect. Albae) macro‐remains and a high tree pollen accumulation rate indicate the presence of forest‐tundra with birch and possibly pine (Pinus sylvestris L.) trees during 13 400–12 850 cal. a BP. Palaeobotanical data indicate that the colonisation and development of forested areas were very rapid, arising within a period of less than 50 years. Thus far, there are no indications of conifer macrofossils in Estonia to support the presence of coniferous forests in the Lateglacial period. Signs of Greenland Interstadial 1b cooling during 13 100 cal. a BP are distinguishable. Biostratigraphic evidence indicates that the vegetation was again mostly treeless tundra during the final colder episode of the Lateglacial period associated with Greenland Stadial 1, approximately 12 850–11 650 cal. a BP. This was followed by onset of the Holocene vegetation, with the expansion of boreal forests, in response to rapid climatic warming. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Climate models suggest that the global warming during the early to mid‐Holocene may have partly resulted from the northward advance of the northern treeline and subsequent reduction of the planetary albedo. We investigated the Holocene vegetation history of low arctic continental Nunavut, Canada, from a radiocarbon‐dated sediment core from TK‐2 Lake, a small‐lake ca. 200 km north of the limit of the forest‐tundra. The pollen and loss‐on‐ignition data indicate the presence of dwarf shrub tundra in the region since the beginning of organic sedimentation at ca. 9000 cal. yr BP with dominance of Betula, especially since 8700 cal. yr BP. At 8100–7900 cal. yr BP the dominance of the shrub tundra was punctuated by a transient decline of Betula and coincident increases of Ericaceae undiff., Vaccinium‐type, and Gramineae. This suggests an abrupt disturbance of the Betula glandulosa population, approximately simultaneously with the sudden 8200 cal. yr BP event in the North Atlantic. However, in the absence of other sites studied in the area, linkage to the 8200 cal. yr BP event remains tentative. The lack of any evidence of forest‐tundra in the region constrains the northern limit of the mid‐Holocene advance of the forest‐tundra boundary in central northern Canada. Consequently, our results show that the climate models imposing a mid‐Holocene advance of the limit of the forest‐tundra to the arctic coast of Canada may have overestimated the positive climatic feedback effects that can result from the replacement of tundra by the boreal forest. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A lacustrine record from a small lake, Lille Sneha Sø, in the Skallingen area indicates that the region was deglaciated in the early Holocene, prior to 8000 cal. a BP. Deglaciation was probably triggered by high temperatures, but it took more than 1000 years for the lake and the catchment to stabilize. Chironomids were amongst the first invertebrates to colonize the lake. The fossil chironomid assemblage is fairly rich and comparable to other records from further south in Greenland. The pioneer vegetation in the area consisted of mosses and herbaceous plants. The oldest remains of woody plants (Salix arctica) are dated to c. 7700 cal. a BP, and remains of Dryas integrifolia appear at around 6700 cal. a BP; these are the only woody plants recorded. Maximum concentrations of chironomids, maximum occurrence of ephippia of the water flea Daphnia pulex, highest organic matter contents and lowest minerogenic input from c. 7700 to 4400 cal. a BP probably reflect the Holocene thermal maximum (HTM). The highest temperatures during the HTM are indicated around 7000 cal. a BP, when Salix arctica, which is considered a warmth‐loving plant, had a maximum. Comparisons with Holocene records from East and North Greenland show similar immigration histories and similar trends, with the Little Ice Age as the coldest period during the Holocene, culminating about 150 years ago. Subsequent warming does not indicate environmental conditions comparable to the HTM yet at this stage. The occurrence of several warmth‐demanding species particularly in the early Holocene sediments indicates redeposition and implies that temperatures in the past, most likely during an interglacial period, were significantly higher than during the HTM.  相似文献   

11.
We present here the results of pollen analysis of two sequences of about 8.06 m and 11.90 m length, originating from two adjacent peat bogs in the southern part of Transylvania province, Romania (155 and 122 pollen spectra). The vegetation record, which is supported by 17 14C dates, begins in the Late Glacial interstadial when forest recolonisation began with the development of Pinus, without a pioneer Betula phase. Picea began to expand from regional refuges. After a well‐defined Younger Dryas, the Holocene opens with the expansion of Betula, Ulmus and Picea, followed, at about 10 400 cal. yr BP, by Fraxinus, Quercus and Tilia. The Corylus optimum is correlated with the Atlantic chronozone (after 8600 cal. yr BP). The local establishment of Carpinus occurred at about 6500 cal. yr BP, with a maximum at about 5700 cal. yr BP. Fagus pollen is regularly recorded after 8200 cal. yr BP. This taxon became dominant at about 3700 cal. yr BP. The first indications of human activities appear at around 7200 cal. yr BP. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The postglacial tree line and climate history in the Swedish Scandes have been inferred from megafossil tree remains. Investigated species are mountain birch (Betula pubescens ssp. czerepanovii), Scots pine (Pinus sylvestris) and grey alder (Alnus incana). Betula and Pinus first appeared on early deglaciated nunataks during the Lateglacial. Their tree lines peaked between 9600 and 9000 cal. a BP, almost 600 m higher than present‐day elevations. This implies (adjusted for land uplift) that early Holocene summer temperatures may have been 2.3°C above modern ones. Elevational tree line retreat characterized the Holocene tree line evolution. For short periods, excursions from this trend have occurred. Between c. 12 000 and 10 000 cal. a BP, a pine‐dominated subalpine belt prevailed. A first major episode of descent occurred c. 8200 cal. a BP, possibly forced by cooling and an associated shift to a deeper and more persistent snow pack. Thereafter, the subalpine birch forest belt gradually evolved at the expense of the prior pine‐dominated tree line ecotone. A second episode of pine descent took place c. 4800 cal. a BP. Historical tree line positions are viewed in relation to early 21st century equivalents, and indicate that tree line elevations attained during the past century and in association with modern climate warming are highly unusual, but not unique, phenomena from the perspective of the past 4800 years. Prior to that, the pine tree line (and summer temperatures) was consistently higher than present, as it was also during the Roman and Medieval periods, c. 1900 and 1000 cal. a BP, respectively.  相似文献   

13.
Terraces of different age in the Zackenberg delta, located at 74°N in northeast Greenland, have provided the opportunity for an interdisciplinary approach to the investigation of Holocene glacial, periglacial, pedological, biological and archaeological conditions that existed during and after delta deposition. The raised Zackenberg delta accumulated mainly during the Holocene Climatic Optimum, starting slightly prior to 9500 cal. yr BP (30 m a.s.l.) and continued until at least 6300 cal. yr BP (0.5 m a.s.l.). Evidence of sea‐level change is based on conventional 14C dates of shells from the marine delta bottomsets, 14C AMS dating of macroscopic plant material from the foresets and of fluvial deposits. Arthropod and plant remains from 7960 cal. yr BP in the delta foresets include the oldest evidence of the arctic hare in Greenland and evidence of a rich herb flora slightly different from the modern flora. Empetrum nigrum and Salix herbacea remains indicate a summer temperature at least as high as today during delta deposition. Post‐depositional nivation activity, dated by luminescence, lichenometry and Schmidt Hammer measurements indicate mainly late Holocene activity, at least since 2900 yr BP, including Little Ice Age (LIA) avalanche activity. Pedological analyses of fossil podsols in the Zackenberg delta, including 14C AMS dating of selected organic rich B‐horizons, show continued podsol development during the Holocene Climatic Optimum and into the subsequent colder period of the late Holocene, until 3000–2400 yr BP. A Neo‐Eskimo house ruin found on the lower part of the delta, presently being eroded by the sea, is dated to AD 1800. It presumably was abandoned prior to AD 1869, and suggests that some of the last Eskimos that lived in northeast Greenland might have occupied the Zackenberg delta. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
High‐resolution pollen, macrofossil and charcoal data, combined with accelerator mass spectrometry 14C dating and multivariate analysis, were used to reconstruct Holocene vegetation and fire dynamics at Urio Quattrocchi, a small lake in the supra‐mediterranean belt in the Nebrodi Mountains of Sicily (Italy). The data suggest that after 10 000 cal a BP increasing moisture availability supported closed forests with deciduous (Quercus cerris, Fagus sylvatica and Fraxinus spp.) and evergreen (Quercus ilex) species. Species‐rich closed forest persisted until 6850 cal a BP, when Neolithic activities caused a forest decline and affected plant diversity. Secondary forest with abundant Ilex aquifolium recovered between 6650 and 6000 cal a BP, indicating moist conditions. From 5000 cal a BP, agriculture and pastoralism led to the currently fragmented landscape with sparse deciduous forests (Quercus cerris). The study suggests that evergreen broadleaved species were more important at elevations above 1000 m a.s.l. before ca. 5000 cal a BP than subsequently, which might reflect less human impact or warmer‐than‐today climatic conditions between 10 000 and 5000 cal a BP. Despite land use since Neolithic times, deciduous supra‐mediterranean forests were never completely displaced from the Nebrodi Mountains, because of favourable moist conditions that persisted throughout the Holocene. Reconstructed vegetation dynamics document the absence of any pronounced mid‐ or late‐Holocene ‘aridification’ trend at the site, an issue which is controversially debated in Italy and the Mediterranean region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Climate change with respect to summer temperature throughout the Holocene is inferred from oscillations in the local Pinus sylvestris, Alnus incana and Betula pubescens forest‐lines, as recorded by fossil pollen and plant macrofossils in lake sediments at four altitudinal levels. Mt Skrubben (848 m a.s.l.), in Dividalen, was deglaciated down to below 280 m a.s.l. during 10 800–10 300 cal. yr BP. Betula pubescens established 10100 cal. yr BP at 280 m a.s.l. and expanded up to near the summit during the next 700 years. Birch woodland prevailed on the mountain plateau until 3300 cal. yr BP. Local Pinus sylvestris stands are recorded up to 400 m a.s.l. at 8450 cal. yr BP and >548 m a.s.l. about 8160 cal. yr BP. Alnus incana expanded from 400 to nearly 790 m a.s.l. during the period 7900–7600 cal. yr BP. The maximum forest distribution lasted until ca. 6000 cal. yr BP. Marked climatic deteriorations caused lowering of the forest‐lines around 4600 and 3000 cal. yr BP. Reconstruction of the summer temperature indicated mean July temperatures at 400 m a.s.l. of 1.5–3°C above the present during the period of maximum forest expansion, whereas >3°C above the present temperature at 548 m a.s.l. This is in accordance with other regional temperature reconstructions from northern Europe. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Plant macrofossils from 38 packrat middens spanning the last ~ 33,000 cal yr BP record vegetation between ~ 650 and 900 m elevation along the eastern escarpment of the Sierra San Pedro Mártir, northern Baja California. The middens span most of the Holocene, with a gap between ~ 4600 and 1800 cal yr BP, but coverage in the Pleistocene is uneven with a larger hiatus between 23,100 and 14,400 cal yr BP. The midden flora is relatively stable from the Pleistocene to Holocene. Exceptions include Pinus californiarum, Juniperus californica and other chaparral elements that were most abundant > 23,100 cal yr BP and declined after 14,400 cal yr BP. Despite being near the chaparral/woodland-desertscrub ecotone during glacial times, the midden assemblages reflect none of the climatic reversals evident in the glacial or marine record, and this is corroborated by a nearby semi-continuous pollen stratigraphy from lake sediments. Regular appearance of C4 grasses and summer-flowering annuals since 13,600 cal yr BP indicates occurrence of summer rainfall equivalent to modern (JAS average of ~ 80–90 mm). This casts doubt on the claim, based on temperature proxies from marine sediments in the Guaymas Basin, that monsoonal development in the northern Gulf and Arizona was delayed until after 6200 cal yr BP.  相似文献   

17.
Pollen analysis from a peat core 7.0 m in length, taken from a bog near Bisoca, in a mid-altitude area of the Buzăului Subcarpathian mountains, is used to reconstruct the postglacial vegetation history of the region. The vegetation record, which is supported by twelve 14C dates, starts at the end of the Late Glacial period. At the Late Glacial/Holocene transition, open vegetation was replaced by forest, suggesting a fast response to climatic warming. The Holocene began with the expansion of Betula, Pinus and Ulmus, followed, after 11,000 cal yr BP, by Fraxinus, Quercus, Tilia and Picea. The rapid expansion of these taxa may be due to their existence in the area during the Late Glacial period. At ca. 9200 cal yr BP, Corylus expanded, reaching a maximum after 7600 cal yr BP. The establishment of Carpinus occurred at ca. 7200 cal yr BP, with a maximum at ca. 5700 cal yr BP. Fagus pollen is regularly recorded after 7800 cal yr BP and became dominant at ca. 2000 cal yr BP. The first indications of human activities appear around 3800 cal yr BP.  相似文献   

18.
High-resolution macroscopic charcoal analysis was used to reconstruct a 14,300-year-long fire history record from the lower Columbia River Valley in southwestern Washington, which was compared to a previous vegetation reconstruction for the site. In the late-glacial period (ca. 14,300-13,100 cal yr BP), Pinus/Picea-dominated parkland supported little to no fire activity. From the late-glacial to the early Holocene (ca. 13,100-10,800 cal yr BP), Pseudotsuga/Abies-dominated forest featured more frequent fire episodes that burned mostly woody vegetation. In the early to middle Holocene (ca. 10,800-5200 cal yr BP), Quercus-dominated savanna was associated with frequent fire episodes of low-to-moderate severity, with an increased herbaceous (i.e., grass) charcoal content. From the middle to late Holocene (ca. 5200 cal yr BP to present), forest dominated by Pseudotsuga, Thuja-type, and Tsuga heterophylla supported less frequent, but mostly large or high-severity fire episodes. Fire episodes were least frequent, but were largest or most severe, after ca. 2500 cal yr BP. The fire history at Battle Ground Lake was apparently driven by climate, directly through the length and severity of the fire season, and indirectly through climate-driven vegetation shifts, which affected available fuel biomass.  相似文献   

19.
A combined pollen, charcoal and climatic record is presented from Cranes Moor, southern England, covering the period c. 10 500–5850 cal a BP. It is shown that the occurrence of burning is closely related to natural processes, including prevailing climatic conditions and vegetation composition. These burning events are often linked to an increase in the summer moisture deficit, implying that the timing of burning events is linked to periods of warmer/drier climate during the Holocene Thermal Maximum (c. 11 000–5000 cal a BP). These events play an important role in the vegetation composition and succession around the site. The nature of the burning recorded at the site shows strong similarities with other records from northern Europe. This study throws caution on suggestions that fire in the Holocene record from areas such as the British Isles is linked only to human activity, and enhances the possibility that natural fire incidence played an important role in natural woodland structure dynamics.  相似文献   

20.
We reconstructed a 10,500-yr fire and vegetation history of a montane site in the North Cascade Range, Washington State based on lake sediment charcoal, macrofossil and pollen records. High-resolution sampling and abundant macrofossils made it possible to analyze relationships between fire and vegetation. During the early Holocene (> 10,500 to ca. 8000 cal yr BP) forests were subalpine woodlands dominated by Pinus contorta. Around 8000 cal yr BP, P. contorta sharply declined in the macrofossil record. Shade tolerant, mesic species first appeared ca. 4500 cal yr BP. Cupressus nootkatensis appeared most recently at 2000 cal yr BP. Fire frequency varies throughout the record, with significantly shorter mean fire return intervals in the early Holocene than the mid and late Holocene. Charcoal peaks are significantly correlated with an initial increase in macrofossil accumulation rates followed by a decrease, likely corresponding to tree mortality following fire. Climate appears to be a key driver in vegetation and fire regimes over millennial time scales. Fire and other disturbances altered forest vegetation at shorter time scales, and vegetation may have mediated local fire regimes. For example, dominance of P. contorta in the early Holocene forests may have been reinforced by its susceptibility to frequent, stand-replacing fire events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号