首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
Expansion of fresh and sea‐ice loaded surface waters from the Arctic Ocean into the sub‐polar North Atlantic is suggested to modulate the northward heat transport within the North Atlantic Current (NAC). The Reykjanes Ridge south of Iceland is a suitable area to reconstruct changes in the mid‐ to late Holocene fresh and sea‐ice loaded surface water expansion, which is marked by the Subarctic Front (SAF). Here, shifts in the location of the SAF result from the interaction of freshwater expansion and inflow of warmer and saline (NAC) waters to the Ridge. Using planktic foraminiferal assemblage and concentration data from a marine sediment core on the eastern Reykjanes Ridge elucidates SAF location changes and thus, changes in the water‐mass composition (upper ˜200 m) during the last c. 5.8 ka BP. Our foraminifer data highlight a late Holocene shift (at c. 3.0 ka BP) in water‐mass composition at the Reykjanes Ridge, which reflects the occurrence of cooler and fresher surface waters when compared to the mid‐Holocene. We document two phases of SAF presence at the study site: from (i) c. 5.5 to 5.0 ka BP and (ii) c. 2.7 to 1.5 ka BP. Both phases are characterized by marked increases in the planktic foraminiferal concentration, which coincides with freshwater expansions and warm subsurface water conditions within the sub‐polar North Atlantic. We link the SAF changes, from c. 2.7 to 1.5 ka BP, to a strengthening of the East Greenland Current and a warming in the NAC, as identified by various studies underlying these two currents. From c. 1.5 ka BP onwards, we record a prominent subsurface cooling and continued occurrence of fresh and sea‐ice loaded surface waters at the study site. This implies that the SAF migrated to the southeast of our core site during the last millennium.  相似文献   

2.
High resolution cores from the upper continental slope, northern Norwegian Sea, document rapid climatic fluctuations during the latest deglaciation and the Holocene. Based on down-core analysis of planktic and benthic foraminifera, stable oxygen and carbon isotopes, carbonate and organic carbon and radiocarbon dating, the following evolution is proposed: sea-ice cover broke up, the surface ocean warmed and an in situ benthic foraminiferal fauna was established at 12 500 BP. The Younger Dryas was characterized by reduced sedimentaion and foraminiferal production, due to surface ocean cooling. At the end of the Younger Dryas there were major shifts in both surface and bottom water conditions. The surface ocean warmed to temperatures similar to modern levels within < 100 years, reaching a maximum at about 9200 BP when foraminiferal production was high. A benthic foraminiferal assemblage indicative of bottom water conditions similar to present conditions was established at 10 000 BP. This was followed by a gradual decline in nutrients or an increase in ventilation of the bottom water throughout the Holocene. A gradual surface ocean cooling of c . 2°C ended around 6500 BP followed by a second warming that culminated at 2000 BP. The warming at the end of the Younger Dryas and the succeeding older Holocene temperature maximum correlate to a June insolation maximum in the northern hemisphere. In addition, fluctuating surface temperatures in the Holocene may be driven by variations in inflow of Atlantic Water.  相似文献   

3.
Fossil ostracod assemblages were investigated in five AMS 14 C‐dated cores from various water depths of the Laptev and Kara seas ranging from the upper continental slope (270 m) to the present‐day shelf depth (40 m). Six fossil assemblages were distinguished. These represent the varying environmental conditions at the North Siberian continental margin since about 18 ka. In the cores from the shelf the ostracod assemblages reflect the gradual transition from an estuarine brackish‐water environment to modern marine conditions since 12.3 ka, as induced by the regional early Holocene transgression. The core from the upper continental slope dates back to c. 17.6 ka and contains assemblages that are absent in the shelf cores. The assemblage older than 10 ka stands out as a specific community dominated by relatively deep‐water Arctic and North Atlantic species that also contains euryhaline species. Such an assemblage provides evidence for past inflows of Atlantic‐derived waters from as early as c. 17.2 ka, probably facilitated by upwelling in coastal polynyas, and a considerable riverine freshwater influence with enhanced surface water stratification owing to the proximity of the palaeocoastline until early Holocene times. In all studied cores, relative increases in euryhaline species dominant in the inner‐shelf regions are recorded in the mid–late Holocene sediments (<7 ka), which otherwise already contain modern‐like ostracod assemblages with relatively deep‐water species. This observation suggests euryhaline species to be largely sea‐ice‐ and/or iceberg‐rafted and therefore may provide evidence for a climate cooling trend.  相似文献   

4.
A new centennial scale benthic foraminiferal record of late Holocene climate variability and oceanographic changes off West Greenland (Disko Bugt) highlights substantial subsurface water mass changes (e.g. temperature and salinity) of the West Greenland Current (WGC) over the past 3.6 ka BP. Benthic foraminifera reveal a long-term late Holocene cooling trend, which may be attributed to increased advection of cold, low-salinity water masses derived from the East Greenland Current (EGC). Cooling becomes most pronounced from c. 1.7 ka BP onwards. At this point the calcareous Atlantic benthic foraminiferal fauna decrease significantly and is replaced by an agglutinated Arctic fauna. Superimposed on this cooling trend, centennial scale variability in the WGC reveals a marked cold phase at c. 2.5 ka BP, which may correspond to the 2.7 ka BP cooling-event recorded in marine and terrestrial archives elsewhere in the North Atlantic region. A warm phase recognized at c. 1.8 ka BP is likely to correspond to the ‘Roman Warm Period’ and represents the warmest bottom water conditions. During the time period of the ‘Medieval Climate Anomaly’ we observe only a slight warming of the WGC. A progressively more dominant cold water contribution from the EGC on the WGC is documented by the prominent rise in abundance of agglutinated Arctic water species from 0.9 ka BP onwards. This cooling event culminates at c. 0.3 ka BP and represents the coldest episode of the ‘Little Ice Age’.Gradually increased influence of cold, low-salinity water masses derived from the EGC may be linked to enhanced advection of Polar and Arctic water by the EGC. These changes are possibly associated with a reported shift in the large-scale North Atlantic Oscillation atmospheric circulation pattern towards a more frequent negative North Atlantic Oscillation mode during the late Holocene.  相似文献   

5.
The transition from the Last Glacial Maximum to the Holocene was an internal of climate variability that was characterised by large spatial and temporal variations. Here we show that deglaciation warming in the northern Indian Ocean was initiated ca. 19 ka, which is contemporary with deglaciation warming in the Antarctica and Southern Ocean. A gradual warming occurred during the glacial/Holocene transition in the northern Indian Ocean, unlike the two‐step warming seen in Greenland and the North Atlantic. Synchronous deglacial warming ca. 19 ka in Antarctica and the northern Indian Ocean suggests a strong connection in the propagation of climate signals between Antarctica and the Indian Ocean, probably through the Indonesian Throughflow and/or Subantarctic Mode Water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Stable carbon and oxygen isotopes of the polar planktic foraminifera Neogloboquadrina pachyderma sinistral from sediment cores of the Norwegian Sea reveal several anomalous 13C and δ18O depletions in the surface water during the last glacial to interglacial transition and during the later Holocene. The depletions that are observed between the Last Glacial Maximum (LGM) and the end of the main deglacial phase were caused by massive releases of freshwater from thawing icebergs, which consequently resulted in a stratification of the uppermost surface water layer and a non-equilibrium between the water below and the atmosphere. At ~8.5 ka (14C BP) this strong iceberg melting activity ceased as defined by the cessation of the deposition of ice-rafted detritus. After this time, the dominant polar and subpolar planktic foraminiferal species rapidly increased in numbers. However, this post-deglacial evolution towards a modern-type oceanographic environment was interupted by a hitherto undescribed isotopic event (~7–8 ka) which, on a regional scale, is only identified in eastern Norwegian Sea surface water. This event may be associated with the final pulse of glacier meltwater release from Fennoscandia, which affected the onset of intensified coastal surface water circulation off Norway during a time of regional sea-level rise. All these data indicate that surface water changes are an integral part of deglacial processes in general. Yet, the youngest observed change noted around 3 ka gives evidence that such events with similar effects occur even during the later Holocene when from a climatic point of view relativelystable conditions prevailed.  相似文献   

7.
The Qarun Lake in the Faiyum Oasis (Egypt) provides a unique record of Holocene environmental and climate change in an arid area largely devoid of fossil proxy records. Multiple lithological, palaeontological and geochemical proxies and 32 radiocarbon dates from the 26‐m‐long core FA‐1 provide a time series of the lake's transformation. Our results confirm that a permanent lake appeared in the Holocene at c. 10 cal. ka BP. The finely laminated lake sediments consist of diatomite, in which diatoms and ostracods together with lower concentrations of ions indicate a freshwater environment at the end of the early and middle Holocene. This freshwater supply was closely associated with regular inflows of the Nile water during flood seasons, when the Intertropical Convergence Zone (ITCZ) migrated northwards in Africa, although it has probably never reached the Faiyum Oasis. Local rainfall, possibly connected with a northern atmospheric circulation, may have been important during winter. Several phases in the lake's evolution are recognized, represented by oscillations between deep open freshwater conditions during more humid climate and shallow fresh to brackish water during drier episodes. After a long freshwater phase, the lake setting has become more brackish since c. 6.2 cal. ka BP as indicated by diatoms and increasing contents of evaporite ions in the sediment. This clearly shows that since that time the lake has occasionally become partly desiccated. This is a result of reduced discharge of the Nile. In the late Holocene the lake was mostly brackish and then gradually turned into a saline lake. This natural process was interrupted about 2.3 cal. ka BP when a man‐made canal facilitated water inflow from the Nile. The examined FA‐1 core can be used as a reference age model of climate change in the Holocene and its impact on the development and decline of ancient civilizations in northeastern Africa.  相似文献   

8.
The Last Interglacial (Marine Isotopic Stage or MIS 5e) surface ocean heat flux from the Rockall Basin (NE Atlantic) towards the Arctic Ocean was reconstructed by analysing dinoflagellate cyst (dinocyst) assemblages in four sediment cores. Together with records of stable isotopes and ice-rafted detritus, the assemblage data reflect the northward retreat of ice(berg)-laden waters and the gradual development towards interglacial conditions at the transition from the Saalian deglaciation (Termination II) into MIS 5e. At the Rockall Basin, this onset of the Last Interglacial is soon followed by the appearance of the thermophilic dinocyst species Spiniferites mirabilis, with relative abundances higher than those observed at present in the area. North of the Iceland-Scotland Ridge, however, S. mirabilis only appears in significant numbers during late MIS 5e, between ~118 and 116.5 ka. Hence, fully marine Last Interglacial conditions with most intense Atlantic surface water influence occurred during late MIS 5e in the Nordic seas, and consequently also farther north in the Arctic Ocean, and at times when northern hemisphere summer insolation was already significantly decreased. The stratigraphic position of this Late Interglacial optimum is supported by planktic foraminifers and contrasts with the timing of the early Holocene climatic optimum in this area. We interpret the delayed northward expansion of Atlantic waters towards the polar latitudes as a result of the Saalian ice sheet deglaciation and its specific impact on the subsequent water mass evolution in this region.  相似文献   

9.
Planktic foraminiferal census data, faunal sea surface temperatures (SSTs) and oxygen isotopic and lithic records from a site in the northeast Atlantic were analyzed to study the interglacial dynamics of Marine Isotope Stage (MIS) 11, a period thought to closely resemble the Holocene on the basis of orbital forcing. Interglacial conditions during MIS 11 persisted for approximately 26 ka. After the main deglacial meltwater processes ceased, a 10- to 12-ka-long transitional period marked by significant water mass circulation changes occurred before surface waters finally reached their thermal maximum. This SST peak occurred between 400 and 397 ka, inferred from the abundance of the most thermophilic foraminiferal species and was coincident with lowest sea level according to benthic isotope values. The ensuing stepwise SST decrease characterizes the overall climate deterioration preceding the increase in global ice volume by  3 ka. This cooling trend was followed by a more pronounced cold event that began at 388 ka, and that terminated in the recurrence of icebergs at the site around 382 ka. Because the water mass configuration of early MIS 11 evolved quite differently from that of the early Holocene, there is little evidence that MIS 11 can serve as an appropriate analogue for a future Holocene climate, despite the similarity in some orbital parameters.  相似文献   

10.
Nordaustlandet is located in the northeastern part of the Svalbard archipelago, within the northernmost reach of the West Spitsbergen Current. This current transports Atlantic water to the Arctic Ocean along the western and northern Svalbard margins. This region is well-suited for reconstructing the history of changing Atlantic water inflow to the Arctic Ocean. We studied the marine sediment core HH12-04-GC from Rijpfjorden. Benthic foraminiferal assemblages and sedimentological data are combined to reconstruct the palaeoenvironment of the fjord from the end of the last local deglaciation to the late Holocene. The local deglaciation, between 11.3 and 10.6 cal ka bp , was dominated by active glacier calving processes, associated with a strong inflow of Atlantic water. This led to the establishment of glaciomarine conditions. The Holocene was initially characterised by a relatively stable and warm environment associated with a strong contribution of Atlantic water. Glaciomarine influence progressively decreases after 9.7 cal ka bp and the Atlantic water contribution increases. The late Holocene displayed a similar environment to today, with the influence of glaciomarine conditions and limited Atlantic water inflow. These results confirm that Atlantic water inflows made a continuous contribution to northern Nordaustlandet throughout the postglacial period.  相似文献   

11.
New records of planktonic foraminiferal δ18O and lithic and foraminiferal counts from Eirik Drift are combined with published data from the Nordic Seas and the “Ice Rafted Debris (IRD) belt”, to portray a sequence of events through Heinrich event 1 (H1). These events progressed from an onset of meltwater release at ~19 ka BP, through the ‘conventional’ H1 IRD deposition phase in the IRD belt starting from ~17.5 ka BP, to a final phase between 16.5 and ~15 ka BP that was characterised by a pooling of freshwater in the Nordic Seas, which we suggest was hyperpycnally injected into that basin. After ~15 ka BP, this freshwater was purged from the Nordic Seas into the North Atlantic, which preconditioned the Nordic Seas for convective deep-water formation. This allowed an abrupt re-start of North Atlantic Deep Water (NADW) formation in the Nordic Seas at the Bølling warming (14.6 ka BP). In contrast to previous estimates for the duration of H1 (i.e., 1000 years to only a century or two), the total, combined composite H1 signal presented here had a duration of over 4000 yrs (~19–14.6 ka BP), which spanned the entire period of NADW collapse. It appears that deep-water formation and climate are not simply controlled by the magnitude or rate of meltwater addition. Instead the location of meltwater injections may be more important, with NADW formation being particularly sensitive to surface freshening in the Arctic/Nordic Seas.  相似文献   

12.
Foraminifera, sedimentology, and tephra geochemistry in core 93030-006 LCF from the southwestern Iceland shelf were used to reconstruct paleoenvironments between 12.7 and 9.4 14C ka BP. Seismic-reflection profiles place the core in glacial-marine and marine sediments within one meter of the underlying glacial till. Foraminifers in the earliest glacial-marine sediments provide a record of ice-distal conditions and immigration of slope species onto the shelf in association with warm Atlantic water. Meltwater increased during the Allerød under a weakened Atlantic water influence. Arctic conditions began by 11.14 14C ka BP with an abrupt increase in meltwater and near exclusion of boreal fauna from the shelf. Meltwater diminished in the early Younger Dryas, coinciding with sea-surface cooling between 11.14 and 10.5 14C ka BP. A slight warming recorded in the uppermost glacial-marine sediments was interrupted by an inferred jökulhlaup event emanating from glacier ice on the Western Volcanic Zone. Retreat of the ice margin from the sea sometime between c. 10.3 and 9.94 14C ka BP coincided with this event. The onset of postglacial marine sedimentation occurred along with increasing evidence of Atlantic water c. 9.94 14C ka BP and was interrupted by a short-lived Pre-boreal cooling of the Irminger Current c. 9.91 14C ka BP. Conditions similar to those today were established by 9.7 14C ka BP.  相似文献   

13.
Exceptionally high sedimentation rates in Arctic fjords provide the possibility to reconstruct environmental conditions in high temporal resolution during the (pre‐)Holocene. The unique geographical location of Svalbard at the intersection of Arctic and Atlantic waters offers the opportunity to estimate local (mainly glacier‐related) vs. regional (hydrographic) variabilities. Sedimentological, micropalaeontological and geochemical data from the very remote, glacier‐surrounded Wahlenbergfjord in eastern Svalbard provides information on glacier dynamics, palaeoceanographic and sea‐ice conditions during the Holocene. The present study illustrates a high meltwater discharge during the summer insolation maximum (c. 11.3–7.7 ka) when the intrusion of upwelled relatively warm Atlantic‐derived waters led to an almost open fjord situation with reduced sea ice in summer. Around 7.7 ka, a rapid hydrographic shift occurred: the dominance of inflowing Atlantic‐derived waters was replaced by a stronger influence of Arctic Water reflecting regional palaeoceanographic conditions evident in the benthic foraminiferal fauna also at Svalbard's margins. Neoglacial conditions characterized the late Holocene (c. 3.1–0.2 ka), when glaciers probably advanced as cold atmospheric temperatures were decoupled from the advection of relatively warm intermediate waters probably caused by an extending sea‐ice coverage. Accordingly, our data show that even a remote, glacier‐proximal study site reflects rapid as well as longer‐term regional changes.  相似文献   

14.
Data from stalagmites in the Makapansgat Valley, South Africa, document regional climatic change in southern Africa in the Late Pleistocene and Holocene. A new TIMS U-series dated stalagmite indicates speleothem growth from 24.4 to 12.7 ka and from 10.2 to 0 ka, interrupted by a 2.5 ka hiatus. High-resolution oxygen and carbon stable isotope data suggest that postglacial warming was first initiated 17 ka, was interrupted by cooling, probably associated with the Antarctic Cold Reversal, and was followed by strong warming after 13.5 ka. The Early Holocene experienced warm, evaporative conditions with fewer C4 grasses. Cooling is evident from 6 to 2.5 ka, followed by warming between 1.5 and 2.5 ka and briefly at AD 1200. Maximum Holocene cooling occurred at AD 1700. The new stalagmite largely confirms results from shorter Holocene stalagmites reported earlier. The strongest variability superimposed on more general trends has a quasi-periodicity between 2.5 and 4.0 ka. Also present are weaker 1.0 ka and 100-year oscillations, the latter probably solar induced. Given similarities to the Antarctic records, the proximate driving force producing millennial- and centennial-scale changes in the Makapansgat record is postulated to be atmospheric circulation changes associated with change in the Southern Hemisphere circumpolar westerly wind vortex.  相似文献   

15.
Foraminiferal assemblages were studied in northern Barents Sea core ASV 880 along with oxygen and carbon isotope measurements in planktonic (N. pachyderma sin.) and benthic (E clavatum) species. AMS C‐14 measurements performed on molluscs Yoldiella spp. show that this core provides a detailed and undisturbed record of Holocene climatic changes over the last 10000 calendar years. Surface and deep waters were very cold (<0°C) at the beginning of the Holocene. C. reniforme dominated the highly diverse benthic foraminiferal assemblage. From 10 to 7.8 cal. ka BP, a warming trend culminated in a temperature optimum, which developed between 7.8 and 6.8 cal. ka BP. During this optimum, the input of Atlantic water to the Barents Sea reached its maximum. The Atlantic water mass invaded the whole Franz Victoria Trough and was present from subsurface to the bottom. No bottom water, which would form through rejection of brine during winter, was present at the core depth (388 m). The water stratification was therefore greatly reduced as compared to the present. An increase in percentage of I. helenae/norcrossi points to long seasonal ice‐free conditions. The temperature optimum ended rather abruptly, with the return of cold polar waters into the trough within a few centuries. This was accompanied by a dramatic reduction of the abundance of C. reniforme. During the upper Holocene, the more opportunistic species E. clavatum became progressively dominant and the water column was more stratified. Deep water in Franz Victoria Trough contained a significant amount of cold Barents Sea bottom water as it does today, while subsurface water warmed progressively until about 3.7 cal. ka BP and reached temperatures similar to those of today. These long‐term climatic changes were cut by several cold events of short duration, in particular one in the middle of the temperature optimum and another, which coincides most probably with the 8.2 ka BP cold event. Both long‐ and short‐term climatic changes in the Barents Sea are associated with changes in the flow of Atlantic waters and the oceanic conveyor belt.  相似文献   

16.
A new geochemical record from the paaleolake Santiaguillo documents the hydrological variability of sub‐tropical northern Mexico over the last 14 cal. ka. Summer‐season runoff, lake water salinity and deposition of sediments by aeolian activity were reconstructed from concentrations of K, Ca and Zr/K in bulk sediments. More‐than‐average runoff during c. 12.39.3 cal. ka BP represented an interval of enhanced summer precipitation. Arid intervals of c. 1412.3 cal. ka BP and c. 6–4.3 cal. ka BP were characterized by average and more‐than‐average aeolian activity. Comparison with proxy records of summer as well as winter precipitation from tropical and sub‐tropical North America and sea surface temperatures from the Atlantic and Pacific provides insight into the source of moisture and possible forcing. The wet Pleistocene?Holocene transition and early Holocene was contemporary with warmer conditions in the Gulf of California. We suggest that the Atlantic had minimal influence on the summer precipitation of the western part of sub‐tropical northern Mexico and that the source of moisture was dominantly Pacific.  相似文献   

17.
The retreat of the Barents Sea Ice Sheet on the western Svalbard margin   总被引:1,自引:0,他引:1  
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden. is discussed based on sub-bottom seismic records and scdirncnt cores. The sea lloor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjordcn up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from thc glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front rctrcatcd from the outermost shelf around 14. 8 ka A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was intcrruptcd by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscundian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isljorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice liont terminated far out in the main fjord. The remnants of the Harcnts Sea Ice Shcet melted quickly away as a response to the Holocene warming around 10 ka.  相似文献   

18.
The Holocene temperature history of Iceland is not well known, despite Iceland's climatically strategic location at the intersection of major surface currents in the high-latitude North Atlantic. Existing terrestrial records reveal spatially heterogeneous changes in Iceland's glacier extent, vegetation cover, and climate over the Holocene, but these records are temporally discontinuous and mostly qualitative. This paper presents the first quantitative estimates of temperatures throughout the entire Holocene on Iceland. Mean July temperatures are inferred based upon subfossil midge (Chironomidae) assemblages from three coastal lakes in northern Iceland. Midge data from each of the three lakes indicate broadly similar temperature trends, and suggest that the North Icelandic coast experienced relatively cool early Holocene summers and gradual warming throughout the Holocene until after 3 ka. This contrasts with many sites on Iceland and around the high-latitude Northern Hemisphere that experienced an early to mid-Holocene “thermal maximum” in response to enhanced summer insolation forcing. Our results suggest a heightened temperature gradient across Iceland in the early Holocene, with suppressed terrestrial temperatures along the northern coastal fringe, possibly as a result of sea surface conditions on the North Iceland shelf.  相似文献   

19.
Previous research has shown that speleothems from the northern rim of the European Alps captured submillennial-scale climate change during the last glacial period with exceptional sensitivity and resolution, mimicking Greenland ice-core records. Here we extend this so-called NALPS19 record across the Late Glacial using two stalagmites which grew continuously into the Holocene. Both specimens show the same high-amplitude δ18O signal as Greenland ice cores down to decadal resolution. The start of the warming at the onset of the equivalent of Greenland Interstadial (GI) GI-1e at 14.66 ± 0.18 ka agrees with the North Greenland Ice Core Project (NGRIP) (14.64 ± 0.28 ka) and comprised a temperature rise of about 5–6 °C. The transition from the equivalent of GI-1a into the equivalent of Greenland Stadial (GS) GS-1 (broadly equivalent to the Younger Dryas) commenced at 13.02 ± 0.13 ka which is consistent with NGRIP (12.80 ± 0.26 ka) within errors. The onset of the Holocene started at 11.78 ± 0.14 ka (11.65 ± 0.10 ka at NGRIP) and involved a warming of about 4–5 °C. In contrast to δ18O, δ13C values show no response to (sub)millennial climate shifts due to strong rock-buffering and only record a long-term trend of soil development starting with the rapid warming at 14.7 ka.  相似文献   

20.
Seasonality of precipitation is an important yet elusive climate parameter in paleoclimatological reconstructions. This parameter can be inferred qualitatively from pollen and other paleoecological methods, but is difficult to assess quantitatively. Here, we have assessed seasonality of precipitation and summer surface wetness using compound specific hydrogen and carbon isotope ratios of vascular plant leaf waxes and Sphagnum biomarkers extracted from the sediments of an ombrotrophic peatland, Bøstad Bog, Nordland, Norway. Our reconstructed precipitation seasonality and surface wetness are consistent with regional vegetation reconstructions. During the early Holocene, 11.5–7.5 ka, Fennoscandia experienced a cool, moist climate. The middle Holocene, 7.5–5.5 ka, was warm and dry, transitioning towards cooler and wetter conditions from the mid-Holocene to the present. Changes in seasonality of precipitation during the Holocene show significant coherence with changes in sea surface temperature in the Norwegian Sea, with higher SST corresponding to greater percentage of winter precipitation. Both high SST in the Norwegian Sea and increased moisture delivery to northern Europe during winter are correlated with a strong gradient between the subpolar low and subtropical high over the North Atlantic (positive North Atlantic Oscillation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号