首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Located on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between ca. 88 and ca. 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as Nummulites‐Discocyclina and Miscellanea‐Daviesina and transition into fluvial deposits dated at ca. 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by ca. 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than ca. 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.  相似文献   

2.
The upper Campanian–Lower Eocene synorogenic sedimentary wedge of the Ranchería Basin was deposited in an intraplate basin resting on a tilted continental crustal block that was deformed by collision and subsequent subduction of the Caribbean Plate. Upper Cretaceous–Lower Eocene strata rest unconformably upon Jurassic igneous rocks of the Santa Marta Massif, with no major thrust faults separating the Santa Marta Massif from the Ranchería Basin. The upper Campanian–Lower Eocene succession includes, from base to top: foraminifera‐rich calcareous mudstone, mixed carbonate–siliciclastic strata and mudstone, coal and immature fluvial sandstone beds. Diachronous collision and eastward tilting of the plate margin (Santa Marta Massif and Central Cordillera) favoured the generation of accommodation space in a continuous intraplate basin (Ranchería, Cesar and western Maracaibo) during the Maastrichtian to Late Palaeocene. Terrigenous detritus from the distal colliding margin filled the western segments of the continuous intraplate basin (Ranchería and Cesar Basins); in the Late Paleocene, continental depositional systems migrated eastwards as far as the western Maracaibo Basin. In Early Eocene time, reactivation of former extensional structures fragmented the intraplate basin into the Ranchería‐Cesar Basins to the west, and the western Maracaibo Basin and Palmar High to the East. This scenario of continent–oceanic arc collision, crustal‐scale tilting, intraplate basin generation and fault reactivation may apply for Upper Cretaceous–Palaeogene syntectonic basins in western Colombia and Ecuador, and should be considered in other settings where arc–continent collision is followed by subduction.  相似文献   

3.
The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.  相似文献   

4.
Sedimentological and geochronological studies along a north–south traverse across the Bangong‐Nujiang suture zone (BNSZ) in Gaize, Tibet provide evidence for a Late Triassic–Jurassic accretionary wedge accreted to the south margin of Qiangtang. This wedge, preserved as the Mugagangri Group (MG), records evidence for the northward subduction of the Bangong‐Nujiang Ocean (BNO) beneath Qiangtang. The MG strata comprise two coarser intervals (lower olistostromes and upper conglomerates) intercalated within sandy turbidites, which are consistent with timing and forearc stratigraphy during subduction initiation predicted by geodynamic modelling. Following the model, the northward subduction of the BNO beneath Qiangtang and subsequent arc‐magmatism are inferred to have begun, respectively, at ca. 220 Ma and ca. 210 Ma, with respect to depositional ages constrained by youngest detrital‐zircon ages. The initiation of arc‐magmatism is also supported by provenance transition reflected by sandstone detrital modes and age patterns of detrital zircons. Previously, evidence for an incipient arc was lacking, but the timing of Late Triassic BNO subduction and related arc‐magmatism is coincident with an important Late Triassic magmatic event in central Qiangtang that probably represents the ‘missing’ arc. Other Qiangtang events, such as exhumation of the Qiangtang metamorphic belt as a source area, and development of the Late Triassic Nadigangri deposits and bimodal volcanism, are more easily explained in the tectonic context of early northward subduction of the BNO beneath Qiangtang, beginning at about 220 Ma.  相似文献   

5.
We present the first fission‐track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene–early Eocene Amiran–Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj‐Sirjan Zone. Only apatite fission‐track (AFT) data have been successfully obtained, including 26 ages and 11 track‐length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre‐middle Jurassic at ~171 and ~225 Ma, early–late Cretaceous at ~91 Ma, Maastrichtian at ~66 Ma, middle–late Eocene at ~38 Ma and Oligocene–early Miocene at ~22 Ma. The most widespread middle–late Eocene cooling phase, around ~38 Ma, is documented by a predominant grain‐age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle–late Eocene phase mostly produced a long‐lasting slow‐ or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj‐Sirjan domain and its Gaveh Rud fore‐arc basin. As evidenced in this study, the Zagros orogeny was long‐lived and multi‐episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation.  相似文献   

6.
This paper addresses foreland basin fragmentation through integrated detrital zircon U–Pb geochronology, sandstone petrography, facies analysis and palaeocurrent measurements from a Mesozoic–Cenozoic clastic succession preserved in the northern Andean retroarc fold‐thrust belt. Situated along the axis of the Eastern Cordillera of Colombia, the Floresta basin first received sediment from the eastern craton (Guyana shield) in the Cretaceous–early Palaeocene and then from the western magmatic arc (Central Cordillera) starting in the mid‐Palaeocene. The upper‐crustal magmatic arc was replaced by a metamorphic basement source in the middle Eocene. This, in turn, was replaced by an upper‐crustal fold‐thrust belt source in the late Eocene which persisted until Oligocene truncation of the Cenozoic section by the eastward advancing thrust front. Sedimentary facies analysis indicates minimal changes in depositional environments from shallow marine to low‐gradient fluvial and estuarine deposits. These same environments are recorded in coeval strata across the Eastern Cordillera. Throughout the Palaeogene, palaeocurrent and sediment provenance data point to a uniform western or southwestern sediment source. These data show that the Floresta basin existed as part of a laterally extensive, unbroken foreland basin connected with the proximal western (Magdalena Valley) basin from mid‐Paleocene to late Eocene time when it was isolated by uplift of the western flank of the Eastern Cordillera. The Floresta basin was also connected with the distal eastern (Llanos) basin from the Cretaceous until its late Oligocene truncation by the advancing thrust front.  相似文献   

7.
An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (50°30′–52°S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single‐grain detrital‐zircon U‐Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin‐filling succession (>4000‐m‐thick). Prominent peaks in detrital‐zircon age distribution among the Punta Barrosa, Cerro Toro, Tres Pasos and Dorotea Formations indicate that the incorporation and exhumation of Upper Jurassic igneous rocks (ca. 147–155 Ma) into the Andean fold‐thrust belt was established in the Santonian (ca. 85 Ma) and was a significant source of detritus to the basin by the Maastrichtian (ca. 70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin fill corroborating the interpretation of an unroofing sequence. Detrital‐zircon ages indicate that the Magallanes foredeep received young arc‐derived detritus throughout its ca. 20 m.y. filling history, constraining the timing of basin‐filling phases previously based only on biostratigraphy. Additionally, spatial patterns of detrital‐zircon ages in the Tres Pasos and Dorotea Formations support interpretations that they are genetically linked depositional systems, thus demonstrating the utility of provenance indicators for evaluating stratigraphic relationships of diachronous lithostratigraphic units. This integrated provenance dataset highlights how the sedimentary fill of the Magallanes basin is unique among other retroarc foreland basins and from the well‐studied Andean foreland basins farther north, which is attributed to nature of the predecessor rift and backarc basin.  相似文献   

8.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

9.
Exceptional exposure of the forearc region of NW Peru offers insight into evolving convergent margins. The sedimentary fill of the Talara basin spans the Cretaceous to the Eocene for an overall thickness of 9000 m and records within its stratigraphy the complicated history of plate interactions, subduction tectonics, terrane accretion, and Andean orogeny. By the early Tertiary, extensional tectonism was forming a complex horst and graben system that partitioned the basin into a series of localized depocentres. Eocene strata record temporal transitions from deltaic and fluvial to deep‐water depositional environments as a response to abrupt, tectonically controlled relative sea‐level changes across those depocentres. Stratigraphic and provenance data suggest a direct relationship between sedimentary packaging and regional tectonics, marked by changes in source terranes at major unconformities. A sharp shift is recognized at the onset of deepwater (bathyal) sedimentation of the Talara Formation, whose sediments reflect an increased influx of mafic material to the basin, likely related to the arc region. Although the modern topography of the Amotape Mountains partially isolates the Talara basin from the Lancones basin and the Andean Cordillera to the east, provenance data suggest that the Amotape Mountains were not always an obstacle for Cordilleran sediment dispersal. The mountain belt intermittently isolated the Talara basin from Andean‐related sediment throughout the early Tertiary, allowing arc‐related sediment to reach the basin only during periods of subsidence in the forearc region, probably related to plate rearrangement and/or seamounts colliding with the trench. Intraplate coupling and/or partial locking of subduction plates could be among the major causes behind shifts from contraction to extension (and enhanced subduction erosion) in the forearc region. Eventually, collisional tectonic and terrane accretion along the Ecuadorian margin forced a major late‐Eocene change in sediment dispersal.  相似文献   

10.
The Cenozoic geodynamics of the north‐eastern Mediterranean Basin have been dominated by the subduction of the African Plate under Eurasia. A trench‐parallel crustal‐scale thrust system (Misis–Kyrenia Thrust System) dissects the southern margin of the overriding plate and forms the structural grain and surface expression of northern Cyprus. Late Eocene to Miocene flysch of the Kythrea (De?irmenlik) Group is exposed throughout northern Cyprus, both at the hanging‐wall and foot‐wall of the thrust system, permitting access to an extensive Cenozoic sedimentary record of the basin. We report the results of a combined examination of detrital zircon and rutile U–Pb geochronology (572 concordant ages), coupled with Th/U ratios, Hf isotopic data and quantitative assessment of grain morphology of detrital zircon from four formations (5 samples) from the Kythrea flysch. These data provide a line of independent evidence for the existence of two different sediment transportation systems that discharged detritus into the basin between the late Eocene and late Miocene. Unique characteristics of each transport system are defined and a sediment unmixing calculation is demonstrated and explained. The first system transported almost exclusively North Gondwana‐type, Precambrian‐aged detrital zircon sourced from siliciclastic rock units in southern Anatolia. A different drainage system is revealed by the middle to late Miocene flysch sequence that is dominated by Late Cretaceous–Cenozoic‐aged detrital zircon, whose age range is consistent with the magmatic episodicity of southeast Anatolia, along the Arabia–Eurasia suture zone. Deposition of these late Miocene strata took place thereupon closure of the Tethyan Seaway and African–Eurasian faunal exchange, and overlap in time with a pronounced uplift of eastern Anatolia. Our analytical data indicate the onset of prominent suture‐parallel sediment transport from the collision zone of south‐eastern Anatolia into the Kyrenia Range of northern Cyprus, marking the drainage response to the continental collision between Arabia and Eurasia.  相似文献   

11.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

12.
Sedimentary strata in the Lhasa terrane of southern Tibet record a long but poorly constrained history of basin formation and inversion. To investigate these events, we sampled Palaeozoic and Mesozoic sedimentary rocks in the Lhasa terrane for detrital zircon uranium–lead (U–Pb) analysis. The >700 detrital zircon U–Pb ages reported in this paper provide the first significant detrital zircon data set from the Lhasa terrane and shed new light on the tectonic and depositional history of the region. Collectively, the dominant detrital zircon age populations within these rocks are 100–150, 500–600 and 1000–1400 Ma. Sedimentary strata near Nam Co in central Lhasa are mapped as Lower Cretaceous but detrital zircons with ages younger than 400 Ma are conspicuously absent. The detrital zircon age distribution and other sedimentological evidence suggest that these strata are likely Carboniferous in age, which requires the existence of a previously unrecognized fault or unconformity. Lower Jurassic strata exposed within the Bangong suture between the Lhasa and Qiangtang terranes contain populations of detrital zircons with ages between 200 and 500 Ma and 1700 and 2000 Ma. These populations differ from the detrital zircon ages of samples collected in the Lhasa terrane and suggest a unique source area. The Upper Cretaceous Takena Formation contains zircon populations with ages between 100 and 160 Ma, 500 and 600 Ma and 1000 and 1400 Ma. Detrital zircon ages from these strata suggest that several distinct fluvial systems occupied the southern portion of the Lhasa terrane during the Late Cretaceous and that deposition in the basin ceased before 70 Ma. Carboniferous strata exposed within the Lhasa terrane likely served as source rocks for sediments deposited during Cretaceous time. Similarities between the lithologies and detrital zircon age‐probability plots of Carboniferous rocks in the Lhasa and Qiangtang terranes and Tethyan strata in the Himalaya suggest that these areas were located proximal to one another within Gondwanaland. U–Pb ages of detrital zircons from our samples and differences between the geographic distribution of igneous rocks within the Tibetan plateau suggest that it is possible to discriminate a southern vs. northern provenance signature using detrital zircon age populations.  相似文献   

13.
Detrital fission‐track studies on sedimentary basins surrounding eroding mountain belts provide a powerful tool to reconstruct exhumation histories of the source area. However, examples from active arc‐trench systems are sparse. In this study, we report detrital apatite fission‐track (AFT) data from Holocene and Pleistocene turbiditic trench and modern river sediments at the Chilean margin (36°S‐47°S). Sediment petrography and detrital AFT data point to different major sediment sources, underlining the need for multidisciplinary studies: whereas sediment petrography indicates the erosion of large volumes of volcanic detritus, no such volcanic signal is seen in the detrital age pattern. Areally subordinate plutonic units are identified as the main, often unique sources. This result has important implications for studies of fossil systems, where the feeder areas are eroded, and where the youngest age population is often interpreted to indicate active volcanism. For the southernmost part of the study area in the Patagonian Andes, where the source area is mainly composed of granitoids, the sediment is derived from only small portions along the main divide, pointing to focused glacial erosion there. Our detrital AFT data show no exhumational signal that could be related to the subduction of the actively spreading Chile Ridge at c. 47°S and to the opening of a slab window beneath the South American Plate.  相似文献   

14.
During the Cretaceous, the Neuquén Basin transitioned from an extensional back‐arc to a retroarc foreland basin. We present a multi‐proxy provenance study of Aptian to Santonian (125–84 Ma) continental sedimentary rocks preserved in the Neuquén Basin used to resolve changes of sediment drainage pattern in response to the change in tectonic regime. Sandstone petrology and U–Pb detrital zircon geochronology constrain the source units delivering detritus to the basin; apatite U–Pb and fission track dating further resolve provenance and determine the age and patterns of exhumation of the source rocks. Sandstone provenance records a sharp change from a mixed orogenic source during Aptian time (ca. 125 Ma), to a magmatic arc provenance in the Cenomanian (ca. 100 Ma). We interpret this provenance change as the result of the drainage pattern reorganisation from divergent to convergent caused by tectonic basin inversion. During this inversion and early stages of contraction, a transient phase of uplift and basin erosion, possibly due to continental buckling, caused the pre‐Cenomanian unconformity dividing the Lower from Upper Cretaceous strata in the Neuquén Basin. This phase was followed by the development of a retroarc foreland basin characterised by a volcanic arc sediment provenance progressively shifting to a mixed continental basement provenance during Turonian‐Santonian (90–84). According to multi‐proxy provenance data and lag times derived from apatite fission track analysis, this trend is the result of a rapidly exhuming source within the Cordillera to the west, in response to active compressional tectonics along the western margin of South America, coupled with the increasing contribution of material from the stable craton to the east; this contribution is thought to be the result of the weak uplift and exhumation of the foreland due to eastward migration of the forebulge.  相似文献   

15.
Determining both short‐ and long‐term sedimentation rates is becoming increasingly important in geomorphic (exhumation and sediment flux), structural (subsidence/flexure) and natural resource (predictive modelling) studies. Determining sedimentation rates for ancient sedimentary sequences is often hampered by poor understanding of stratigraphic architecture, long‐term variability in large‐scale sediment dispersal patterns and inconsistent availability of absolute age data. Uranium–Lead (U‐Pb) detrital zircon (DZ) geochronology is not only a popular method to determine the provenance of siliciclastic sedimentary rocks but also helps delimit the age of sedimentary sequences, especially in basins associated with protracted volcanism. This study assesses the reliability of U‐Pb DZ ages as proxies for depositional ages of Upper Cretaceous strata in the Magallanes‐Austral retroarc foreland basin of Patagonia. Progressive younging of maximum depositional ages (MDAs) calculated from young zircon populations in the Upper Cretaceous Dorotea Formation suggests that the MDAs are potential proxies for absolute age, and constrain the age of the Dorotea Formation to be ca. 82–69 Ma. Even if the MDAs do not truly represent ages of contemporaneous volcanic eruptions in the arc, they may still indicate progressive‐but‐lagged delivery of increasingly younger volcanogenic zircon to the basin. In this case, MDAs may still be a means to determine long‐term (≥1–2 Myr) average sedimentation rates. Burial history models built using the MDAs reveal high aggradation rates during an initial, deep‐marine phase of the basin. As the basin shoaled to shelfal depths, aggradation rates decreased significantly and were outpaced by progradation of the deposystem. This transition is likely linked to eastward propagation of the Magallanes fold‐thrust belt during Campanian‐Maastrichtian time, and demonstrates the influence of predecessor basin history on foreland basin dynamics.  相似文献   

16.
The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.  相似文献   

17.
《Basin Research》2018,30(Z1):1-14
The paleogeographic reconstruction of the Variscan Mountains during late Carboniferous‐Permian post‐orogenic extension remains poorly understood, owing to the subsequent erosion and/or burial of most associated sedimentary basins during the Mesozoic. The Graissessac‐Lodève Basin (southern France) preserves a thick and exceptionally complete record of continental sedimentation spanning late Carboniferous through late Permian time. This section records the localized tectonic and paleogeographic evolution of southern France in the context of the low‐latitude Variscan Belt of Western Europe. This study presents new detrital zircon and framework mineralogy data that address the provenance of siliciclastic strata exposed in the basin. The ages and compositions of units that constitute the Montagne Noire metamorphic core complex (west of the basin) dictate the detrital zircon age populations and sandstone compositions in Permian strata, recording rapid exhumation and unroofing of the Montagne Noire dome. Cambrian‐Archean zircons and metamorphic lithic‐rich compositions record derivation from recycled detritus of the earliest Paleozoic sedimentary cover and Neoproterozoic‐early Cambrian metasedimentary Schistes X, which formerly covered the Montagne Noire dome. Ordovician zircons and subarkosic framework compositions indicate erosion of orthogneiss units that formed a large part of the dome. The youngest zircon population (320–285 Ma) reflects derivation from late Carboniferous‐early Permian granite units in the axial zone of the Montagne Noire. This population appears first in the early Permian, persists throughout the Permian section and is accompanied by sandstone compositions dominated by feldspar, polycrystalline quartz and metamorphic lithic fragments. The most recent migmatization, magmatism and deformation occurred ca. 298 ± 2 Ma, at ca. 17 km depth (based on peak metamorphic conditions). Accordingly, these new provenance data, together with zircon fission‐track thermochronology, demonstrate that exhumation of the Montagne Noire core complex was rapid (1–17 mm year−1) and early (300–285 Ma), reflecting deep‐seated uplift in the southern Massif Central during post‐orogenic extension.  相似文献   

18.
This study constrains the sediment provenance for the Late Cretaceous–Eocene strata of the Ager Basin, Spain, and reconstructs the interplay between foreland basin subsidence and sediment routing within the south-central Pyrenean foreland basin during the early phases of crustal shortening using detrital zircon (DZ) U-Pb-He double dating. Here we present and interpret 837 new DZ U-Pb ages, 113 of which are new DZ (U-Th)/He double-dated zircons. U-Pb-He double dating results allow for a clear differentiation between different foreland and hinterland sources of Variscan zircons (280–350 Ma) by leveraging the contrasting thermal histories of the Ebro Massif and Pyrenean orogen, recorded by the zircon (U-Th)/He (ZHe) ages, despite their indistinguishable U-Pb age signatures. Cretaceous–Paleocene sedimentary rocks, dominated by Variscan DZ U-Pb age components with Permian–Triassic (200–300 Ma) ZHe cooling ages, were sourced from the Ebro Massif south of the Ager Basin. A provenance shift occurred at the base of the Early Eocene Baronia Formation (ca. 53 Ma) to an eastern Pyrenean source (north-east of the Ager Basin) as evidenced by an abrupt change in paleocurrents, a change in DZ U-Pb signatures to age distributions dominated by Cambro-Silurian (420–520 Ma), Cadomian (520–700 Ma), and Proterozoic–Archean (>700 Ma) age components, and the prominent emergence of Cretaceous–Paleogene (<90 Ma) ZHe cooling ages. The Eocene Corçà Formation (ca. 50 Ma), characterized by the arrival of fully reset ZHe ages with very short lag times, signals the accumulation of sediment derived from the rapidly exhuming Pyrenean thrust sheets. While ZHe ages from the Corçà Formation are fully reset, zircon fission track (ZFT) ages preserve older inherited cooling ages, bracketing the exhumation level within the thrust sheets to ca. 6–8 km in the Early Eocene. These DZ ZHe ages yield exhumation rate estimates of ca. 0.03 km/Myr during the Late Cretaceous–Paleocene for the Ebro Massif and ca. 0.2–0.4 km/Myr during the Eocene for the eastern Pyrenees.  相似文献   

19.
Laser ablation‐multi collector‐inductively coupled mass spectrometry U‐Pb geochronology, detailed field mapping and stratigraphic data offer improved insights into the timing and style of Laramide deformation and basin development in the Little Hatchet Mountains, southwestern New Mexico, USA, a key locality in the ‘southern Laramide province.’ The Laramide synorogenic section in the northern Little Hatchet Mountains comprises upper Campanian to Maastrichtian strata consisting of the Ringbone and Skunk Ranch formations, with a preserved maximum thickness of >2400 m, and the correlative Hidalgo Formation with a total thickness >1700 m. The Ringbone Formation and superjacent Skunk Ranch Formation are each generally composed of (1) a basal conglomerate member; (2) a middle member consisting of lacustrine shale, limestone, sandstone, and interbedded ash‐fall tuffs; and (3) an upper sandstone and conglomerate member. Basaltic andesite flows are intercalated with the upper member of the Ringbone Formation and the middle member of the Skunk Ranch Formation. The Hidalgo Formation, which crops out in the northern part of the range, is dominantly composed of basaltic andesite breccias and flows equivalent to those of the Ringbone and Skunk Ranch formations. The Laramide section was deposited in an intermontane basin partitioned across intrabasinal thrust structures, which controlled growth‐stratal development. U‐Pb zircon ages from five tuffs indicate that the age range of the Laramide sedimentary succession is ca. 75–70 Ma. U‐Pb detrital‐zircon age data (n = 356 analyses) from the Ringbone Formation and a Lower Cretaceous unit indicate sediment contribution from uplifted Lower and Upper Cretaceous rocks adjacent to the basin and the contemporary Tarahumara magmatic arc in nearby northern Sonora, Mexico. The new ages, combined with published data, indicate that uplift, basin development, and magmatism in the region proceeded diachronously northeastwards as the subducting Farallon slab flattened under northern Mexico and southern New Mexico from Campanian to Palaeogene time.  相似文献   

20.
This article presents combined stratigraphic, sedimentological, subsidence and provenance data for the Cretaceous–Palaeogene succession from the Zhepure Mountain of southern Tibet. This region records the northernmost sedimentation of the Tethyan passive margin of India, and this time interval represents the transition into continental collision with Asia. The uppermost Cretaceous Zhepure Shanpo and Jidula formations record the transition from pelagic into upper slope to delta‐plain environments. The Palaeocene–lower Eocene Zongpu Formation records a carbonate ramp that is overlain by the deep‐water Enba Formation (lower Eocene). The upper part of the Enba Formation records shallowing into a storm‐influenced, outer shelf environment. Detrital zircon U–Pb and Hf isotopic data indicate that the terrigenous strata of the Enba Formation were sourced from the Lhasa terrane. Unconformably overlying the Enba Formation is the Zhaguo Formation comprising fluvial deposits with evidence of recycling from the underlying successions. Backstripped subsidence analysis indicates shallowing during latest Cretaceous‐earliest Palaeocene time (Zhepure Shanpo and Jidula formations) driven by basement uplift, followed by stability (Zongpu Formation) until early Eocene time (Enba Formation) when accelerated subsidence occurred. The provenance, subsidence and stratigraphy suggest that the Enba and Zhaguo formations record foredeep and wedge‐top sedimentation respectively within the early Himalayan foreland basin. The underlying Zongpu Formation is interpreted to record the accumulation of a carbonate ramp at the margin of a submarine forebulge. The precursor tectonic uplift during latest Cretaceous time could either record surface uplift over a mantle plume related to the Réunion hotspot, or an early signal of lithospheric flexure related to oceanic subduction, continental collision or ophiolite obduction. The results indicate that the collision of India with Asia occurred before late Danian (ca. 62 Ma) time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号