首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 259 毫秒
1.
青藏高原东北缘上地幔各向异性研究   总被引:21,自引:13,他引:8       下载免费PDF全文
通过分析位于青藏高原东北缘的区域数字地震台网30个台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了青藏高原东北缘上地幔各向异性图像.从得到结果看,青藏高原东北缘的各向异性快波方向基本上呈NW-SE方向,并有一顺时针旋转趋势,快、慢波时间延迟是0.70~1.51 s.青藏高原东北缘的SKS快波偏振方向与区域内主要构造断裂走向基本一致;各向异性快波偏振方向变化与区域内最小平均主压应力方向变化相似,也与由GPS测量得到的速度场方向变化相似.研究表明青藏高原东北缘上地幔物质在区域构造应力场的作用下,发生了顺时针旋转的形变以至流动,使得上地幔中橄榄岩的晶格排列方向平行于物质形变或流动方向,上地幔变形和上覆地壳变形可能存在垂直连贯变形特征.  相似文献   

2.
青藏高原东部上地幔各向异性及相关的壳幔耦合型式   总被引:10,自引:0,他引:10  
对国家数字地震台网和云南、四川、甘肃、青海区域数字地震台网, 以及布设在川、滇、藏地区的宽频带流动地震台网共116个台站所记录的远震SKS波形资料作偏振分析, 采用叠加分析方法求得每一个台站的SKS快波偏振方向和快慢波的时间延迟, 获得青藏高原东部及其邻近地区的上地幔各向异性图像. 将该地区全球定位系统(GPS)的观测结果与上地幔各向异性分布相结合作地壳-地幔耦合变形的分析, 研究表明青藏高原内部和高原外部的云南地区具有不同的壳幔变形特征, 在高原的东缘地区(大致位于川滇西部的26°~27°N之间)存在一个壳幔变形的横向过渡带. 过渡带以南地区的快波偏振方向从滇西南的S60°~70°E逐渐转变到滇东南的近东西向, 以北的滇西北部和川西南部, 快波偏振方向为近似的南北向. 高原内部表现为强壳幔耦合型, 高原外部则属于壳幔解耦型. 这一横向过渡带与地表的断裂走向不一致, 但在地壳和上地幔, 其地球物理场(如: 地壳厚度, 布格重力异常和构造应力方向等)都具有横向过渡的特征. 该横向过渡带邻近东喜马拉雅构造结, 在板块边界动力学上有着重要的意义.  相似文献   

3.
利用青藏高原东北缘区域数字地震台网43个台站的远震SKS波形资料,采用最小能量法和旋转相关法得到台站下方上地幔介质各向异性的分裂参数:快波偏振方向(φ)和快慢波时间延迟(δt)。研究结果表明:在塔里木盆地东南缘区域,各向异性快波方向与该区域的断裂走向存在明显的夹角,该盆地向柴达木盆地的俯冲方向一致,各向异性归因为古构造运动遗留下的"化石各向异性",且由于壳幔物质的拆沉作用,推测该区域壳幔之间存在解耦作用;在祁连—河西走廊区,SKS快波偏振方向呈NW-SE,与主要断裂带的走向一致;在西秦岭北缘断裂带附近,观测到快慢波时间延迟有着较大的变化,可能是岩石圈变形和软流圈物质流动共同导致;在鄂尔多斯板块内,快波方向呈NW-SE方向,可能暗示青藏高原深部物质分叉绕流运动。青藏高原东北缘不同区域台站下方的各向异性均具有差异性,进一步证实了青藏高原东北缘地区构造变形的复杂性。  相似文献   

4.
青藏高原南部下的横波各向异性   总被引:19,自引:0,他引:19       下载免费PDF全文
吕庆田  Hirn  A 《地震学报》1996,18(2):215-223
利用中法合作布设在青藏高原南部近20个三分量数字地震仪记录到的远震SKS数据,计算并研究了台站下方各向异性的特征,讨论了各向异性层的深度、厚度、起因以及青藏高原岩石圈变形模式.各向异性研究表明:雅江南北各向异性存在较大的差异.雅江以北快速波偏振方向平均在N70E左右,且自北向南逐渐增大,在雅江附近近于东西方向;而雅江以南快速波偏振方向平均在N25W左右.雅江以北各向异性强度(快、慢波到时差)普遍很强,在那曲附近可达1 s,且存在局部变化;而雅江以南各向异性强度普遍较弱,一般在0.2 s,且相对稳定.对各向异性特征的分析认为:雅江以北的各向异性是青藏高原上地幔物质内部变形引起的,快波偏振方向代表物质流动变形的方向;而雅江以南的各向异性是印度板块俯冲形成的强变形带引起的,快波方向代表与俯冲有关的变形方向.研究还认为:青藏高原的地壳缩短是岩石圈内部整体沿北东方向流动变形和沿大型走滑断裂旋转运动共同作用的结果.   相似文献   

5.
云南地区上地幔各向异性研究   总被引:12,自引:3,他引:12  
阮爱国  王椿镛 《地震学报》2002,24(3):260-267
对云南23个数字地震台11次地震的SKS记录,采用理论切向分量与实测切向分量拟合的方法,确定了快S波的偏振方向和快、慢波之间的时间延迟.结果表明,除鹤庆台外,在各台都观测到了S波分裂现象;云南地区的快方向总体特征是北北东向,时间延迟变化范围为0.5~2.0s.在地质构造复杂地区断层对分析的影响很大.分析表明,作为青藏高原与华南块体之间的过渡带,云南地区的S波快方向反映了印度板块向欧亚板块俯冲是该地区地球动力学的基本背景,而由于青藏高原隆起造成的康滇菱形块体的南东-南南东向运动是造成复杂构造、应力环境的重要因素.快方向与上地幔运动的方向存在差异,说明在云南地区低速层或者软流层的运动与地壳块体的运动之间存在着复杂的耦合作用,构造驱动力如同向北东方向张开的手掌.从时间延迟出发,推断各向异性层的厚度为60~225km.其变化范围与低速层埋深的变化范围(104~260km)相当,认为各向异性层顶面可能在地壳底部,也可能在低速层,且在不同地点是不相同的,这与云南及周边地区莫霍面变化剧烈有因果关系.进一步推断出上地幔的各向异性主要存在于岩石圈而不是整个上地幔.   相似文献   

6.
利用位于青藏高原东南缘云南地区的中国地震科学探测台站(ChinArray)一期300多个宽频带流动台站记录到的XKS波形(包括SKS,SKKS,PKS)进行了S波分裂分析。XKS分裂结果最主要的特征是快波偏振方向(φ)在26~27°N附近,从北部的近N—S向突变为南部的近E—W向。研究区西部喜马拉雅东构造结附近的结果较好地反映了岩石层左旋剪切变形下发育的各向异性。26°N以南地区,快波分裂方向以E—W向为主,与中上地壳最大张应力的方向一致,表明云南地区整个岩石层都可能处于纯剪切变形环境。但是该区岩石层厚度不足80km,产生的XKS分裂快慢波时差(0.7s)仅能解释部分观测值(0.9~1.5s)。因此,软流层中的各向异性对于该地区的S波分裂结果(快波偏振方向为NW—SE和近E—W向)可能产生了重要的作用。一方面,NW—SE向快波偏振方向可能反映了缅甸块体的俯冲及其随后撤退引起的上地幔流动造成的各向异性。另一方面,伴随着高原构造演化发生的从青藏高原向中国东部的软流层物质流动,以及由于绝对板块运动造成的软流层顶部的剪切作用,将产生快波方向为近E—W向的各向异性。本研究结果为研究青藏高原东南缘不同深度的变形特征及其差异提供了重要的信息,尤其在研究青藏高原的构造抬升及其向东南缘的扩展方面产生了新的认识。  相似文献   

7.
首都圈地区SKS波分裂研究   总被引:7,自引:2,他引:5       下载免费PDF全文
通过分析首都圈数字地震台网的49个宽频带和甚宽带台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法,求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了首都圈地区上地幔各向异性图象.首都圈地区的各向异性快波方向基本上呈WNW-ESE方向,快、慢波时间延迟为0.56-1.56 s.研究表明,首都圈地区上地幔存在明显的各向异性,引起各向异性的主要原因是研究区受太平洋板块俯冲作用下软流圈物质变形,使得上地幔橄榄岩等晶体的晶格优势取向沿物质流动方向.另外,中国大陆受印度板块与欧亚板块的强烈碰撞,大陆西部地壳增厚隆起,同时造成物质东向挤出,使得首都圈地区上地幔物质沿快波方向变形.通过研究区各向异性快波方向和伸展运动方向与GPS测量得到的速度场对比分析,首都圈地区壳幔变形可能具有垂直连贯变形特征.  相似文献   

8.
用H/V谱比法计算云南区域数字地震台站的场地响应   总被引:1,自引:0,他引:1  
朱荣欢  苏有锦 《地震研究》2007,30(3):248-252
用H/V谱比法,计算给出了云南区域数字地震台网23个子台S波随频率变化的台站场地响应特征。结果表明:在1~10Hz频段内,23个子台S波的场地响应相对较平坦,在1.41~2.91之间变化,平均2.08;在大于10Hz的高频段,部分台站的场地响应有较明显的放大。  相似文献   

9.
本文搜集整理了华东地区6个区域地震台网的宽频带数字地震台站SKS波记录资料, 使用最小切向能量的网络搜索法, 得到了华东地区157个台站下方上地幔各向异性参数。 测算结果表明, 华东地区各向异性快波偏振方向主体为NW—SE向、 南部近E—W向, 逐渐呈旋转趋势, 与绝对板块运动方向一致; 其各向异性主要来自于上地幔, 地壳与沉积层对各向异性影响较小; 研究区内地下浅部与深部物质的运动模式基本一致, 壳幔变形存在垂直连贯变形的特征。  相似文献   

10.
南北构造带北段上地幔各向异性特征   总被引:9,自引:5,他引:4       下载免费PDF全文
对布设在南北构造带北段的中国地震科学探测台阵项目二期674个宽频带流动台站和鄂尔多斯台阵21个宽频带流动台站记录的远震XKS(SKS、SKKS和PKS)波形资料作偏振分析,采用最小切向能量的网格搜索法和"叠加"分析方法求得每一个台站的XKS波的快波偏振方向和快、慢波的时间延迟,并结合该区域出版的122个固定台站的分裂结果,获得了南北构造带北段上地幔各向异性图像.快波方向分布显示青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘的快波方向主要表现为NW—SE方向,秦岭造山带的快波方向为近E—W方向,鄂尔多斯块体内部的快波方向在北部为近N—S方向,南部表现为近E—W方向.时间延迟分布来看,鄂尔多斯块体的时间延迟不仅明显小于其周缘地区,而且小于其他构造单元,特别是在高原东北缘、阿拉善块体和鄂尔多斯块体的交汇地区的时间延迟很大,反映了构造稳定单元的时间延迟小于构造活跃单元.通过比较快波方向的横波分裂测量值与地表变形场模拟的预测值,并结合研究区地质构造和岩石圈结构特征分析表明,在青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘各向异性主要由岩石圈变形引起,地表变形与地幔变形一致,地壳耦合于地幔,是一种垂直连贯变形模式;秦岭造山带的各向异性不仅来自于岩石圈,而且其岩石圈板块驱动的软流圈地幔流作用不可忽视;鄂尔多斯块体内部深浅变形不一致,具有弱的各向异性、厚的岩石圈和构造稳定的特征,我们认为其各向异性可能保留了古老克拉通的"化石"各向异性.  相似文献   

11.
Introduction The study of the upper mantle anisotropy in Yunnan area benefits the research of deep structure of Sichuan-Yunnan active block and the characteristics of deformation field, the analysis of the coupling relations among different layers of the earth and the promotion of understanding the relation between anisotropy and stress-strain field and geological construction processes. The research results would be of important significance for the interpretation of movement of plates, the …  相似文献   

12.
Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN(郑斯华)(高原)Azimuthalanisotropyinlit...  相似文献   

13.
Seismic anisotropy has been widely used to constrain deformation and mantle flow within the upper mantle of the Earth's interior, and is mainly affected by crystallographic preferred orientation(CPO)of anisotropic mineral in lithosphere. Anisotropy of peridotites caused by deformation is the main source of seismic anisotropy in the upper mantle. Olivine is the most abundant and easily deformed mineral to form CPO in peridotite, thus the CPO of olivine controls seismic anisotropy in the upper mantle. Based on simple shear experiments and studies of natural peridotites deformation, several CPO types of olivine have been identified, including A, B, C, D, E and AG-type. Studies on the deformation of olivine have shown that the CPO of olivine is mainly related to stress, water content, temperature, pressure, partial melting and melt/fluid percolation. Most of the seismic anisotropy has been explained by the A-type olivine CPO in the upper mantle, which is commonly found in upper-mantle peridotites and produced by the simple shear in dry conditions. Previous studies showed that anisotropy was attributed to the CPO of mica and amphibole in the middle-lower crust. The comparison between mantle anisotropy calculated from mineral CPO and regional anisotropy deduced from geophysical methods is therefore particularly useful for interpreting the deformation mechanisms and geodynamic processes which affect the upper mantle in different tectonic units such as subduction system, continental rift and continental collision zone in the world. The paper summarizes the characteristics of CPO and anisotropy of major anisotropic minerals in the upper mantle. Taking the lithosphere mantle xenoliths in the southeastern Tibetan plateau as an example, we perform detailed studies on the microstructures and seismic anisotropy to better understand the deformation mechanisms and upper mantle anisotropy in this region. Results show that the CPO of olivine in peridotite xenoliths in southeastern Tibetan plateau are A-type and AG-type. The mechanisms proposed for the formation of AG-type are different from that for the A-type. Therefore, the occurrence of AG-type olivine CPO pattern suggests that this CPO may record a change in deformation mechanism and tectonic environment of the lithosphere in southeastern Tibetan plateau. Provided that the strong SKS(shear wave splitting)observed in southeastern Tibetan plateau results from lithosphere mantle, the lithosphere mantle in this region is expected to be at least 130km thick and characterized by vertical foliation. Considering that the thickness of lithosphere in southeastern Tibetan plateau is much less than 130km and the lithosphere mantle cannot explain the anisotropy measured by SKS, other anisotropy sources should be considered, such as anisotropy in the asthenosphere and the oriented melt pockets(MPO)in the upper mantle. Therefore, detailed study of CPO of anisotropic mineral is essential for constraining geophysical measurements and analyzing the dynamic process of the lithosphere reasonably.  相似文献   

14.
It is well established that the Earth's uppermost mantle is anisotropic, but observations of anisotropy in the deeper mantle have been more ambiguous. Radial anisotropy, the discrepancy between Love and Rayleigh waves, was included in the top 220 km of PREM, but there is no consensus whether anisotropy is present below that depth. Fundamental mode surface waves, for commonly used periods up to 200 s, are sensitive to structure in the first few hundred kilometers and therefore do not provide information on anisotropy below. Higher mode surface waves, however, have sensitivities that extend to and below the transition zone and should thus give insight about anisotropy at greater depths, but they are very difficult to measure. We previously developed a new technique to measure higher mode surface wave phase velocities with consistent uncertainties. These data are used here to construct probability density functions of a radially anisotropic Earth model down to approximately 1500 km. In the uppermost mantle, we obtain a high probability of faster horizontally polarized shear wave speed, likely to be related to plate motion. In the asthenosphere and transition zone, however, we find a high probability of faster vertically polarized shear wave speed. To a depth of 1500 km in the lower mantle, we see no significant shear wave anisotropy. This is consistent with results from laboratory measurements which show that lower mantle minerals are anisotropic but LPO is unlikely to develop in the pressure–temperature conditions present in the mid-mantle.  相似文献   

15.
The crustal and upper mantle azimuthal anisotropy of the Tibetan Plateau and adjacent areas was studied by Rayleigh wave tomography. We collected sufficient broadband digital seismograms trav-ersing the Tibetan Plateau and adjacent areas from available stations, including especially some data from the temporary stations newly deployed in Yunnan, eastern Tibet, and western Sichuan. They made an adequate path coverage in most regions to achieve a reasonable resolution for the inversion. The model resolution tests show that the anisotropic features of scope greater than 400 km and strength greater than 2% are reliable. The azimuthal anisotropy pattern inside the Tibetan Plateau was similar to the characteristic of tectonic partition. The crustal anisotropy strength is greater than 2% in most re-gions of East Tibet, and the anisotropy shows clockwise rotation surrounding the eastern Himalayan syntaxis. Vertically, the anisotropy direction indicates a coherent pattern within the upper crust, lower crust, and lithosphere mantle of the Tibetan Plateau, which also is consistent with GPS velocity field and SKS fast polarization directions. The result supports that the crust-mantle deformation beneath the Tibetan Plateau is vertically coherent. The anisotropy strength of crust and lithospheric upper mantle in Yunnan outside the Tibetan Plateau is lower than 2%, so SKS splitting from core-mantle boundary to station should largely be attributed to the anisotropy of asthenosphere.  相似文献   

16.
朱涛 《地球物理学报》2018,61(3):948-962
地震各向异性与地幔对流导致的变形存在因果关系,因此地幔对流模拟可被用来预测地震各向异性,并推测剪切波各向异性地幔源的深度.本文建立了基于地震速度结构的地幔对流模型来预测云南地区剪切波分裂的快波方向,它同时受地表板块运动和地幔内部的温度扰动所驱动.通过与观测结果进行对比分析,推测在云南地区西北部和东部区域,剪切波各向异性源主要存在于岩石圈中.在西南部和四川盆地及其西缘,地幔流动可能是剪切波各向异性的主要贡献者,各向异性层分别位于210~330 km和170~330 km深度,导致西南部剪切波各向异性的地幔可能处于大幅度的剪切变形状态,而四川盆地及其西缘主要处于中等强度的剪切变形状态.  相似文献   

17.
We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau,the Ordos block and the Sichuan basin.The seismic data come from about 160 stations of the provincial broadband digital seismograph networks of China.Ambient noise cross-correlations are performed on the data recorded between 2007 and 2009 and high quality inter-station Rayleigh phase velocity dispersion curves are obtained between periods of 6 s to 35 s.Resulting Rayleigh wave phase velocity maps possess a lateral resolution between 100 km and 200 km.The phase velocities at short periods (20 s) are lower in the Sichuan basin,the northwest segment of the Ordos block and the Weihe graben,and outline sedimentary deposits.At intermediate and long periods (25 s),strong high velocity anomalies are observed within the Ordos block and the Sichuan basin and low phase velocities are imaged in the northeastern Tibetan plateau,reflecting the variation of crustal thickness from the Tibetan plateau to the neighboring regions in the east.Crustal and uppermost mantle shear wave velocities vary strongly between the Tibetan plateau,the Sichuan basin and the Ordos block.The Ordos block and the Sichuan basin are dominated by high shear wave velocities in the crust and uppermost mantle.There is a triangle-shaped low velocity zone located in the northeastern Tibetan plateau,whose width narrows towards the eastern margin of the plateau.No low velocity zone is apparent beneath the Qinling orogen,suggesting that mass may not be able to flow eastward through the boundary between the Ordos block and the Sichuan basin in the crust and uppermost mantle.  相似文献   

18.
Located at the northeastern margin of the Tibetan plateau,the Ordos block is a stable tectonic unit in North China.With its active boundary fault zones,the Ordos block played an important role in the eastward extrusion mechanism of the Tibetan plateau.Peking University deployed a linear array of 15 portable broadband seismometers across the western Weihe graben during September 2005 to August 2006 and later a 2-D seismic array(Southwest Ordos Array) of 14 portable broadband seismometers during 2007-2008 at its southwestern boundary.Analyses of shear wave splitting of SKS and SKKS phases at these stations show that the fast directions trend ~110° with an average delay time of 0.9 s in the southwestern margin of the Ordos block.The agreement between the lithosphere deformation indicated by GPS data and Quaternary fault slip-rate observations and the mantle flow represented by shear wave splitting implies that accordant deformation patterns from lithosphere to asthenosphere in relation to the eastward extrusion of the Tibetan plateau could extend at least to 200 km depth.Spatial distribution of splitting polarization directions indicates that the mantle flow driven by the Tibetan plateau is blocked by the Ordos block and locally restricted in a narrow channel along the Qinling-Dabie fault zones between the Ordos block and Sichuan basin.  相似文献   

19.
利用我国第24次和第25次南极科学考察队于2008年2月—2010年3月南极长城站记录到的地震事件数据进行剪切波分裂研究. 选取近震事件对Sg波进行剪切波分裂计算,结果表明快波偏振方向有两个,分别为北东向和近南北向; 慢波延迟时间的范围为1.45—5.17 ms/km,平均值为3.54 ms/km.同时选取长城站记录到的远震数据SKS波震相进行剪切波分裂计算,得出上地幔快波偏振方向优势取向为北东向, 慢波延迟时间平均值为1.60 s. 剪切波分裂结果显示长城站地区地壳和上地幔具有明显的各向异性, 并显示长城站地区地壳与上地幔快波偏振方向几乎平行,表明壳幔变形的一致关系.另外,地壳和上地幔各向异性的快波偏振方向不仅与长城站附近的海沟方向平行,同时也与绝对板块的运动方向平行.该结果进一步说明了绝对板块的运动是构成上地幔各向异性的主要原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号