首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
一、基本原理经典天文测定地球自转是以垂线为依据的。垂线在南北方向的变化影响纬度测定,东西方向的变化影响地球自转速率的测定、固体潮使地球发生周期性形变,因而测站的垂线方向也有周期性变化,即在测定地球自转中有固体潮影响。在地面观测站P点,由日月引力产生的引潮位可表示为:  相似文献   

2.
引力常数变化对地球自转长期变化的影响   总被引:1,自引:0,他引:1  
探讨和估计了各种引力常数变化理论对地球角速度和日长变化的影响。各种引力常数变化理论包括了引力常数G随时间、空间以及速度变化等几个方面的影响。另外也估计了对地球自转角速度和日长变化产生的效应。其中有些研究对探讨地球自转变化也有启发意义。  相似文献   

3.
探讨和估计了各种引力常数变化理论对地球钥速度和日长变化的影响。各种引力常数变化理论包括了引力常数G随时间,空间以及速度变化等几个方面的影响。另外也估计了对地球自转角速度和日长变化产生的效应。其中有些研究对探讨地球自转变化也有启发意义。  相似文献   

4.
本文讨论了弹性地球在自转离心力作用下的形变效应。由此引起的垂线偏离小于0.″001量级,在经典天体测量中可以忽略。测站位移达厘米级,地球引力位二阶电谐系数的修正为10~(-10)量级;这些影响在激光侧卫中应予考虑。  相似文献   

5.
由PREM模型参数计算地球自转的周期变化   总被引:3,自引:1,他引:2  
萧耐园  成灼 《天文学报》1997,38(4):370-378
弹性地球在日月引潮力势作用下的形变引起其转动惯量的改变,从而导致地球自转速率的变化.本文利用PREM地球模型所给的物质密度和弹性等参数分布.计算日月引潮力势产生的地球形变附加势,进而计算转动惯量的变化.最后得到一系列包含周期同引潮势带谐项、振幅大于1微秒的自转速率周期变化系数.  相似文献   

6.
本文讨论了有挠引力规范场中转动物体的动力学特性.着重讨论了在太阳的球对称静场中地球自转季节变化和陀螺进动效应.所得结果对所有不同类型的有挠引力规范理论都适用.  相似文献   

7.
介绍和论述了在后牛顿引力理论(PPN形式)中在优越参考系和非优越参考系中经过参数化后引力常数变化对地球自转产生的效应,其中特别重点介绍了年周期变化的效应。此外也将理论结果同观测结果相对比。  相似文献   

8.
IERS1996规范中地球引力势模型和测量模型的改进   总被引:1,自引:0,他引:1  
简要而系统地介绍IERS1996规范采用的地球引力势模型和各种测量模型,着重叙述了其与IERS1992标准相比所作的改进。规范用JGM-3地球引力势模型取代GEM-T3模型,在计算地球潮汐形变产生的附加势时展开到3阶,并考虑了地幔的滞弹效应。在测站位移的计算中,规范引入了3倍洛夫数,计及地幔的滞弹性,引入了计算冰后期回弹的ICE-4G模型,列出了改正VLBI观测中天线形变改正的公式。关于地球自转和  相似文献   

9.
在研究地球章动或潮汐理论时,常常需要对均匀自转、微椭、弹性、自引力的地球的运动方程组积分,并通过选取一组恰当的边界条件来定解。在阶扁率近似下,先将椭球形参考边界上一个有关形变的连续量转化到等效球面上,然后作广义面球谐函数展开进行标量化,并分解为球形与环形部分,截断后可导出3个标量常微分形式的边界条件。  相似文献   

10.
自转使地球产生形变,形变反过来又引起一些复杂的自转现象。它们有:希勃切斯在二千一百年前发现的岁差,布雷德利在二百三十年前发现的章动,以及二百一十年前就被预言但当时尚先观测的极移。本文讨论极移,必须把它与岁差和章动严格区别开来。地球是一个扁球体,包含极轴的每一个截面是一个椭圆;在赤道部分隆起,内部各等密度层都是一些扁球。太阳和月亮通常位于地球的赤道面之外,它们的引力使旋转着的地球产生一个陀螺  相似文献   

11.
The spatial and temporal variations of the Earth deformation and the gravitational field are important both in the theoretical research and in the construction of geospatial database. The Earth deforms due to various mechanisms and the deformation further induces changes in the gravitational potential of the Earth, i.e. the deformation-induced additional potential or the Euler gravitational increment. Based on the theory of vector spherical harmonics, we discuss in this paper the Earth deformation and gravitational increment resulting from the tidal force, loading force and the stress of the Earth's surface. We write out the expression for the Euler gravitational potential increment and the relations between different Love numbers. These are all important points in the research on Earth deformation.  相似文献   

12.
The aim of the present paper will be to derive from the fundamental equations of hydrodynamics the explicit form of the Eulerian equations which govern the motion about the centre of gravity of self-gravitating bodies, consisting of compressible fluid of arbitrary viscosity, in an arbitrary external field of force. If the problem is particularized so that the external field of force represents the attaction of the sun and the moon, this motion would represent the luni-solar precession and nutation of a fluid viscous earth; if, on the other hand, the external field of force were governed by the earth (and the sun), the motion would define the physical librations of the moon regarded as a deformable body. The same equations are, moreover, equally applicable to the phenomena of precession and nutation of rotating fluid components in close binary systems, distorted by mutual tidal action; and the present paper contains the first formulation of the effects of viscosity on such phenomena.Investigation supported in part by the U.S. National Aeronautics and Space Administration under Contract No. NASW-1470.  相似文献   

13.
The spring constant of the earth is found to be 1.1 × 10−8/s2 which is based on the famous Pound and Rebka gravitational red-shift experimental data. The spring force, or so-called the fifth force of the earth is then known. This paper suggests how can NASA’s Lunar Reconnaissance Orbiter (LRO) projects verify the existence of the fifth force by simple free fall experiment without man-mission. Such a force, as we have predicted, should be the type of intermediate range.  相似文献   

14.
夏一飞  萧耐园 《天文学报》2001,42(3):266-271
采用较完善的地球模型PREM,通过求解弹性体的基本运动方程,得到形变位移矢量,由此分别计算出因日月引潮力势和地球自转离心力势引起的地球的弹性形变能,它将为弹性地球运动的Hamilton表达式提供摄动项的量级估计,并将是理论上探讨地月系演化的一个重要方面。  相似文献   

15.
In this paper, a model is developed for the dynamics of a system of two bodies whose material points are under the influence of a central gravitational force. One of the bodies is assumed to be rigid and spherically symmetric, while the other is assumed to be deformable. To develop a tractable model for the system, the deformable body is modeled using Cohen and Muncaster's theory of a pseudo-rigid body. The resulting model of the system has several of the features, such as angular momentum conservation, exhibited by more restrictive models. We also show how the self-gravitation of the deformable body can be accommodated using appropriate constitutive equations for a force tensor. This enables our model to subsume many existing models of ellipsoidal figures of equilibrium. After the model and its conservations have been discussed, attention is restricted to steady motions of the system. Several results, which generalize recent works on rigid satellites, are established for these motions. For a specific choice of constitutive equations for the pseudo-rigid body, we determine the steady motions with the aid of a numerical continuation method. These results can also be considered as generalizations of earlier works on Roche's ellipsoids of equilibrium.  相似文献   

16.
Recent work on planetary formation processes have suggested that ancient planetary bodies could have been warmer and, therefore, more easily deformable soon after formation than at present. By use of the estimates for the elastic parameters believed to be appropriate for a warm ancient Moon and Earth, it is shown that the energy of deformation of the planetary bodies during a close gravitational encounter was sufficient to effect capture.  相似文献   

17.
18.
We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and ex‐perience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study, we present an analytical treatment of the secular evolution of two bars that oscillate with respect to one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non‐deformable, bars produces in some cases an oscillatory motion in the bodies similar to that of a harmonic oscillator. For the other case, a deformable rotating body that can be represented by a modified Jacobi ellipsoid under the influence of an exterior massive body will change its rotational velocity to escape from the attracting body, just as if the gravitational torque exerted by the exterior body were of opposite sign. Instead, the exchange of angular momentum will cause the Jacobian body to modify its geometry by enlarging its long axis, located in the plane of rotation, thus decreasing its axial ratios. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
M. Knölker  M. Stix 《Solar physics》1983,82(1-2):331-341
The differential equations describing stellar oscillations are transformed into an algebraic eigenvalue problem. Frequencies of adiabatic oscillations are obtained as the eigenvalues of a banded real symmetric matrix. We employ the Cowling-approximation, i.e. neglect the Eulerian perturbation of the gravitational potential, and, in order to preserve selfadjointness, require that the Eulerian pressure perturbation vanishes at the outer boundary. For a solar model, comparison of first results with results obtained from a Henyey method shows that the matrix method is convenient, accurate, and fast.  相似文献   

20.
A case is made that in encounters with the earth's atmosphere, astrophysical little black holes (LBH) can manifest themselves as the core energy source of ball lightning (BL). Relating the LBH incidence rate on earth to BL occurrence has the potential of shedding light on the distribution of LBH in the universe, and their velocities relative to the earth. Most BL features can be explained by a testable LBH model. Analyses are presented to support this model. LBH produce complex and many-faceted interactions in air directly and via their exhaust, resulting in excitation, ionization, and light due to processes such as gravitational tidal force, bremsstrahlung, pair production and annihilation, orbital electron near-capture by interaction with a charged LBH. Gravitational tidal force interaction of LBH with polarization and atmospheric atoms can result in an enhanced cross-section for polarization and ionization. An estimate for the power radiated by BL ∼ Watts is in agreement with observation. An upper limit is found for the largest masses that can produce ionization and polarization excitation. It is shown that the effects of LBH high power exhaust radiation are consistent with observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号