首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southern part of the Outer Zone of Southwest Japan including the Kii peninsula belongs to the tectonic ‘shadow zone’, where fewer conspicuous active faults and less Quaternary sediments develop than in the Nankai subduction zone and Inner Zone of Southwest Japan. In order to study the paleostress sequence of the Kii peninsula, we analyzed fault‐slip data and tension gashes at pilot sites of Early–Middle Miocene forearc sediments and Late Cretaceous accretionary complex. According to the results, six faulting events are reconstructed in sequence: (i) east–west extension (normal faulting); (ii) east–west compression and north–south extension (strike‐slip faulting); (iii) NNW–SSE compression and ENE–WSW extension (strike‐slip faulting); (iv) northeast–southwest compression and northwest–southeast extension (strike‐slip faulting); (v) WNW–ESE compression (strike‐slip or reverse faulting); and (vi) NNE–SSW extension. The north–south to NNW–SSE trending dyke swarm of Middle Miocene age in the Kii peninsula is thought to be related to Event 3, implying that Event 3 was active at least during the Middle Miocene. Because Event 6 is recognized solely at a site, the overall latest faulting event seems to be Event 5. Assuming that the compression results from the motion of the crust or plate, the compression direction of Event 5 is in good accordance with the present‐day WNW crustal velocity vectors of the Kii peninsula. The stress trajectory map of Southeast Korea and Southwest Japan reveals that the current compression directions of the Kii peninsula correspond to the combinatory stress fields of the Himalayan and Philippine Sea tectonic domains.  相似文献   

2.
龙陵-瑞丽断裂(南支)北段晚第四纪活动性特征   总被引:5,自引:0,他引:5       下载免费PDF全文
遥感影像解译和野外地质地貌调查表明,龙陵-瑞丽断裂(南支)北段是以左旋走滑为主兼张性正断的区域性活动断裂。根据一些断错地貌点的大比例尺填图、实地测量及其年代学分析,确定了该断裂为全新世活动断裂,断裂晚更新世以来的平均水平滑动速率为2.2mm/a,平均垂直滑动速率为0.6mm/a;全新世以来的平均水平滑动速率为1.8~3.0mm/a,平均垂直滑动速率为0.5mm/a。断裂晚更新世以来的滑动速率在不同的时间尺度上变化不大,反映了该断裂晚更新世以来的活动强度比较平稳  相似文献   

3.
Opening of the Japan Sea back arc basin was accompanied by extensional tectonics in the drifting southwest Japan arc. Various trends of Early Miocene grabens in the arc suggest multi-directional rifting, which necessarily involved strike-slip components of some of basin-margin faults. However, such components are not well understood. In this work we conducted a field survey in the Early Miocene Ichishi basin on the northern side of the Median Tectonic Line, central southwest Japan. We found that the basin was a compound of grabens that were formed along normal and sinistral strike-slip faults, the latter of which had northeast–southwest trends. The block faulting in this phase produced basement highs between sub-basins, which were filled with the lower part of the Ichishi Group. We found a low-angle angular unconformity at a middle horizon in the group, with which we define the upper and lower part of the group. The upper part onlapped both the basement highs and the lower part. It means that the transtensional basin formation ceased sometime between 18 and 17.5 Ma in the Ichishi area. The Ichishi basin turned subsequently into a sag basin subsided due to normal faulting probably along the Nunobiki-sanchi-toen fault zone. The transtension and the basin sag were driven by ENE–WSW extensional stress. This arc-parallel extension produced grabens various areas including Ichishi in the Early Miocene. The extensional deformation was eventually localized to the deep rift along the Fossa Magna to make the lithosphere under southwest Japan decoupled from that under northeast Japan. The decoupling allowed the rapid rotation of southwest Japan from ~17.5 Ma. The cluster of those grabens around the Ise bay probably determined the southeastern margin of the Kinki triangle.  相似文献   

4.
The Qujiang Fault is one of the most seismically active faults in western Yunnan, China and is considered to be the seismogenic fault of the 1970 MS7.7 Tonghai earthquake. The Qujiang Fault is located at the southeastern tip of the Sichuan-Yunnan block. In this study, we examine the geometry, kinematics, and geomorphology of this fault through field observations and satellite images. The fault is characterized by dextral strike-slip movements with dip-slip components and can be divided into northwest and southeast segments according to different kinematics. The northwest segment shows right-lateral strike-slip with normal components, whereas it is characterized by dextral movements with the northeast wall thrusting over the opposite in the southeast segment. The offset landforms are well developed along the strike of the fault with displacements ranging from 3.7m to 830m. The Late Quaternary right-lateral slip rate was determined to be 2.3~4.0mm/a through dating and measuring on the offset features. The variation of the slip and uplift rates along the fault strike corresponds well to the fault kinematics segmentation: the slip rate on the northwest segment is above 3mm/a with an uplift rate of 0.6~0.8mm/a; however, influenced by the Xiaojiang Fault, the southeast segment shows apparent thrust components. The slip rate decreases to below 3.0mm/a with an uplift rate of 1.1mm/a, indicating different uplift between the northwest and southeast segments.  相似文献   

5.
Abstract The Korean peninsula is widely regarded as being located at the relatively stable eastern margin of the Asian continent. However, more than 10 Quaternary faults have recently been discovered in and reported from the southeastern part of the Korean Peninsula. One of these, the Eupchon Fault, was discovered during the construction of a primary school, and it is located close to a nuclear power plant. To understand the nature and characteristics of the Quaternary Eupchon Fault, we carried out two trench surveys near the discovery site. The fault system includes one main reverse fault (N20°E/40°SE) with approximately 4 m displacement, and a series of branch faults, cutting unconsolidated Quaternary sediments. Structures in the fault system include synthetic and antithetic faults, hanging‐wall anticlines, drag folds, back thrusts, pop‐up structures, flat‐ramp geometries and duplexes, which are very similar to those seen in thrust systems in consolidated rocks. In the upper part of the fault system, several tip damage zones are observed, indicating that the fault system propagates upward and terminates in the upper part of the section. Pebbles along the main fault plane show a preferred orientation of long axes, indicating the fault trace. The unconformity surface between the Quaternary deposits and the underlying Tertiary andesites or Cretaceous sedimentary rocks is displaced by this fault with a reverse movement sense. The stratigraphic relationship shows normal slip sense at the lower part of the section, indicating that the fault had a normal slip movement and was reversely reactivated during the Quaternary. The inferred length of the Quaternary thrust fault, based on the relationship between fault length and displacement, is 200–2000 m. The current maximum horizontal compressive stress direction in this area is generally east‐northeast–west‐southwest, which would be expected to produce oblique slip on the Eupchon Fault, with reverse and right‐lateral strike‐slip components.  相似文献   

6.
A thorough and complete understanding of the structural geology and evolution of the Cooper‐Eromanga Basin has been hampered by low‐resolution seismic data that becomes particularly difficult to interpret below the thick Permian coal measures. As a result, researchers are tentative to interpret the basement fault architecture within the basin, which is largely undefined. To provide a better understanding of the basement fault geometry, all available two‐dimensional seismic lines together with 12 three‐dimensional seismic surveys were structurally interpreted with assistance from seismic attribute analysis. The Upper Cretaceous Cadna‐owie Formation and top Permian reflectors were analysed using a common seismic attribute technique (incoherency) that was used to infer the presence of faults that may have otherwise been overlooked. Detailed basement fault maps for each seismic survey were constructed and used in conjunction with two‐dimensional seismic data interpretation to produce a regional basement fault map. Large north‐northeast–south‐southwest‐striking sinistral strike–slip faults were identified within the Patchawarra Trough appearing to splay from the main northeast–southwest‐striking ridge. These sinistral north‐northeast–south‐southwest‐striking faults, together with field‐scale southeast–northwest‐striking dextral strike–slip faults, are optimally oriented to have potentially developed as a conjugated fault set under a south‐southeast–north‐northwest‐oriented strike–slip stress regime. Geomechanical modelling for a regionally extensive system of Cretaceous polygonal faults was performed to calculate the Leakage Factor and Dilation Tendency of individual faults. Faults that extend into Lower Cretaceous oil‐rich reservoirs with strikes of between 060°N and 140°N and a high to near‐vertical dip angle were identified to most likely be acting as conduits for the tertiary migration of hydrocarbons from known Lower Cretaceous hydrocarbon reservoirs into shallow Cretaceous sediments. This research provides valuable information on the regional basement fault architecture and a more detailed exploration target for the Cooper‐Eromanga Basin, which were previously not available in literature.  相似文献   

7.
The Bozhong depression of the Bohaiwan basin belongs to a family of extensional basins in East China, but is quite different from other parts of the basin. The Cenozoic subsidence of the depression is controlled by a combination of lithospheric thinning and polycyclic strike-slip movements. Three episodic rifts have been identified, i.e. Paleocence-early Eocene, middle-late Eocene and Oligocene age. The depression underwent syn-rift and post-rift stages, but two episodic dextral movement events of the strike-slip faults modify the subsidence of the Bozhong depression since the Oligocene. The early dextral movement of the Tan-Lu fault associated with crustal extension resulted in accelerated subsidence during the time of deposition of the Dongying Formation with a maximum thickness of 4000 m. A late reactivation of dextral movement of the Tan-Lu fault began in late Miocene (about 12 Ma), which resulted in the intense subsidence of Minghuazhen Formation and Quaternary. In addition, dynamic mantle convection-driven topography also accelerated the post-rift anomalous subsidence since the Miocene (24.6 Ma). Our results indicate that the primary control on rapid subsidence both during the rift and post-rift stages in the Bozhong depression originates from a combination of multiple episodic crustal extension and polycyclic dextral movements of strike-slip faults, and dynamic topography.  相似文献   

8.
乌兰乌拉湖-玉树断裂东段晚第四纪滑动速率   总被引:2,自引:0,他引:2       下载免费PDF全文
乌兰乌拉湖-玉树断裂是巴颜喀拉地块与羌塘地块分界地带的一条重要活动断裂.该断裂东段晚第四纪以来活动强烈,断错地貌特征明显,为全新世活动的左旋逆冲断裂.利用后差分GPS对阶地与洪积扇断错地貌进行了精细测量,并结合碳十四(14C)和光释光(OSL)测年结果对地貌面年代进行限定,获得该断裂东段晚更新世晚期以来的垂直位错量为5...  相似文献   

9.
The horizontal movement of the Helan Shan west-piedmont fault is important to determination of the present-day boundary between the Alashan and North China blocks as well as to the exploration of the extent of the northeastward expansion of the Tibetan plateau. Field geological surveys found that this fault cuts the west wing of the Neogene anticline, which right-laterally offset the geological boundary between Ganhegou and Qingshuiying Formations with displacement over 800m. The secondary tensional joints (fissures)intersected with the main faults developed on the Quaternary flood high platform near the fault, of which the acute angles indicate its dextral strike slip. The normal faults developed at the southern end of the Helan Shan west-piedmont fault show that the west wall of this fault moves northward, and the tensional adjustment zone formed at the end of the strike slip fault, which reflects that the horizontal movement of the main fault is dextral strike slip. The dextral dislocation occurred in the gully across the fault during different periods. Therefore, the Helan Shan west-piedmont fault is a dextral strike slip fault rather than a sinistral strike slip fault as previous work suggested. The relationship between the faulting and deformation of Cenozoic strata demonstrates that there were two stages of tectonic deformation near the Helan Shan west-piedmont fault since the late Cenozoic, namely early folding and late faulting. These two tectonic deformations are the result of the northeastward thrust on the Alashan block by the Tibet Plateau. The influence range of Tibetan plateau expansion has arrived in the Helan Shan west-piedmont area in the late Pliocene leading to the dextral strike slip of this fault as well as formation of the current boundary between the Alashan and North China blocks, which is also the youngest front of the Tibetan plateau.  相似文献   

10.
Running across the urban areas of Changzhou, Wuxi and Suzhou, the NW-trending Su-Xi-Chang Fault is an important buried fault in Yangtze River Delta. In the respect of structural geomorphology, hilly landform is developed along the southwest side of the Su-Xi-Chang Fault, and a series of lakes and relatively low-lying depressions are developed on its northeast side, which is an important landform and neotectonic boundary line. The fault controlled the Jurassic and Cretaceous stratigraphic sedimentary and Cenozoic volcanic activities, and also has obvious control effects on the modern geomorphology and Quaternary stratigraphic distribution. Su-Xi-Chang Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Changzhou City" and "Urban active fault exploration and seismic risk assessment in Suzhou City". Hidden in the ground with thick cover layer, few researches have been done on this fault in the past. The study on the activity characteristics and the latest activity era of the Su-Xi-Chang Fault is of great significance for the prevention and reduction of earthquake disaster losses caused by the destructive earthquakes to the cities of Changzhou, Wuxi and Suzhou. Based on shallow seismic exploration and drilling joint profiling method, Quaternary activities and distribution characteristics of the Su-Xi-Chang Fault are analyzed systematically. Shallow seismic exploration results show that the south branch of the Su-Xi-Chang Fault in Suzhou area is dominated by normal faulting, dipping to the north-east, with a dip angle of about 60° and a displacement of 3~5m on the bedrock surface. The north branch of the Su-Xi-Chang Fault in Changzhou area is dominated by normal faulting, dipping to the south, with a dip angle of about 55°~70° and a displacement of 4~12m on the bedrock surface. All breakpoints of Su-Xi-Chang Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary. On the drilling joint profile in the Dongqiao site of Suzhou, the latest activity of the south branch of Su-Xi-Chang Fault is manifested as reverse faulting, with maximum displacement of 2.9m in the upper part of Lower Pleistocene, and the Middle Pleistocene has not been dislocated by the fault. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 3.7m in the Neogene stratum. On the drilling joint profile in the Chaoyang Road site of Changzhou, the latest activity of the north branch of Su-Xi-Chang Fault is manifested as reverse faulting too, with maximum displacement of 2.8m in the bottom layer of the Middle Pleistocene. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 10.2m in the bedrock surface. Combining the above results, we conclude that the latest activity era of Su-Xi-Chang Fault is early Middle Pleistocene. The Su-Xi-Chang Fault was dominated by the sinistral normal faulting in the pre-Quaternary period, and turned into sinistral reverse faulting after the early Pleistocene, with displacement of about 3m in the Quaternary strata. The maximum magnitude of potential earthquake on the Su-Xi-Chang Fault is estimated to be 6.0.  相似文献   

11.
Significant advances were made in the last century in the investigations of the Neogene stress history of the NE Japan arc. However, previous studies have failed to fully resolve middle Miocene post‐rift stress conditions owing to their assumption of Andersonian faulting and an inability to determine maximum and intermediate stress axes from dike orientations. We applied the latest methods of paleostress analysis in this study to igneous dikes and mesoscale faults in the Kakunodate area of the NE Japan arc to elucidate post‐rift stress conditions. Stratigraphic constraints and U–Pb dating indicate that the doleritic and dacitic dikes were formed at 16–12 Ma and 15–12 Ma, respectively. Dolerite and dacite dikes yielded NW–SE extensional stresses with intermediate and low stress ratios, respectively. Mesoscale faults in the middle Miocene formations of the studied area indicated similar stresses. We suggest the sluggish deformations resulting in the dike intrusion and faulting in the normal‐faulting stress regime after the termination of intra‐arc rifting at ca. 15 Ma.  相似文献   

12.
Neotectonic activity and formation mechanism of the Yishu Fault Zone   总被引:3,自引:0,他引:3  
On the basis of comprehensive analyses of fault textures and geometry, the active methods, stress field, mechanism and time of the Yishu Fault Zone during the neotectonic period are discussed in this paper. The results show that the Yishu Fault Zone is a major mobile belt since the Quaternary. It consists of four major active faults with reverse dextral slip. Their active intensity increases eastwards and southwards. Fault-slip data from many active faults in the fault zone demonstrate that ENE-WSW compression predominated in the neotectonic period. Detailed field investigation shows that formation mechanism of shallow, active faults in the Yishu Fault Zone includes direct boundary fault reactivity, buried fault propagation, and reactivity of antithetic and truncating faults. In most cases, shallow, active faults in the fault zone are developed through direct reactivity or upward propagation of the previous four graben boundary faults.  相似文献   

13.
The northeast margin of the Tibetan Plateau, a particularly important area to understand the mechanism of plateau formation, is characterized by large transpressional arcuate faults. There is debate on the amount of Quaternary sinistral displacement on the major Haiyuan Fault. Previously unrecognized systemic asymmetrical valleys have developed between the Haiyuan and Xiangshan faults. Southeast tilting and sinistral displacement on the northeast side of the Haiyuan Fault resulted in southeast migration of large rivers and asymmetrical widening of their valleys, leaving a systematic distribution of tilted strath terraces along their northwest sides. Where asymmetrical widening created by tilting kept pace with sinistral displacement, rivers have not been deflected, and the increase in valley width downstream from the fault should equate to total lateral displacement since river formation (e.g. Yuan River, a 7 km asymmetrical valley with a c. 2.2 Ma paleomagnetic age). Where river deflection and asymmetrical valley growth are coeval, valley width is less than total horizontal displacement (e.g. Hebao River, a c. 2.1 km asymmetrical valley with c. 2 km deflection). All rivers north of the Haiyuan Fault converge to cut across the Xiangshan Mountains as a gorge. Northeast thrusting of the upthrown side of the Xiangshan Fault has resulted in degradation and related strath terrace formation as the valleys asymmetrically widened. A probable earthquake‐induced landslide caused by movement on the Xiangshan Fault in latest Pleistocene blocked the gorge causing aggradation along all rivers and their tributaries. Deposition terraces were formed after the landslide dam was breached. Together with previous research on the Xiangshan Fault, it is concluded that there has been c. 7 km of Quaternary sinistral displacement on the Haiyuan and Xiangshan faults along the northeast margin of the Tibetan Plateau since the formation of rivers that intersect them. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract   Two groups of Quaternary faults occur in the southeastern Korean Peninsula. The first group is north-northeast-striking, high-angle dextral strike–slip faults. The second group is north-northeast-striking, low-angle reverse faults that represent the reactivation of the pre-existing normal faults. Optically stimulated luminescence dating of Quaternary sediments cut by one of the reverse faults constrains the faulting age to post-32 Ka. These faults seem to be capable of further slip under the current tectonic stress regime, as determined by recent earthquake events in northeast Asia. Therefore, the traditional concept that the southeastern Korean Peninsula is seismically stable should be reappraised.  相似文献   

15.
Formation and deformation processes of the late Paleogene sedimentary basins related to a strike–slip fault system in southern central Hokkaido are described by a combination of paleomagnetic study and numerical analysis. After correction of the Miocene counter‐clockwise rotation associated with back‐arc opening of the Japan Sea, paleomagnetic declination data obtained from surface outcrops in the Umaoi and Yubari areas show significant easterly deflections. Although complicated differential rotation is anticipated as a result of recent thrust movements, clockwise rotation in the study areas is closely linked with development of the Paleogene Minami‐naganuma Basin as a pull‐apart depression along the north–south fault system. Numerical modeling suggests that 30 km of strike–slip is required to restore the distribution and volume of the Minami‐naganuma Basin. The relative slip rate on the long‐standing fault system is about 10 mm/yr, which corresponds to global‐scale plate motion. It has inevitably caused regional rearrangement of the eastern Eurasian margin. A rotation field simulated by simplified dextral motion using dislocation modeling basically accords with the paleomagnetic data around the pull‐apart basin.  相似文献   

16.
Strike-slip faults and normal faults are dominant active tectonics in the interior of Tibetan plateau and control a series of basins and lakes showing extension since the Late Cenozoic, by contrast with the thrust faulting along the orogenic belts bordering the plateau. The late Neotectonic movement of those faults is key information to understand the deformation mechanism for Tibetan plateau. The Gyaring Co Fault is a major active right-lateral strike-slip fault striking~300° for a distance of~240km in central Tibet, in south of Bangong-Nujiang suture zone. The Gyaring Co Fault merges with the north-trending Xainza-Dinggye rift near the southern shore of Gyaring Co. From NW to SE, Dongguo Co, Gemang Co-Zhangnai Co, Zigui Co-Gyaring Co form the Gyaring Co fault zonal drainage basin. Some scholars have noticed that the formation of lakes and basins may be related to strike-slip faults and rift, but there is no analysis on the Gyaring Co fault zonal drainage basin and its response to regional tectonics. In recent years, a variety of quantitative geomorphic parameters have been widely used in the neotectonic systems to analyze the characteristics of the basin and its response mechanism to the tectonic movement. In this paper, we applied ASTER GDEM data on the ArcGIS platform, extracted the Gyaring Co fault zonal drainage basin based on Google Earth images (Landsat and GeoEye) and field work. We acquired basic geomorphic parameters of 153 sub-basin (such as grade, relief, average slope, area) and Hypsometric Index (HI) value and curve. Statistical results have indicated significant differences in scale(area and river network grade)in north and south sides of the fault. Southern drainage basins' relief, slope, HI value are higher than the northern basins, and the overall shape of hypsometric curve of northern basins are convex compared with southern concavity. Along the strike of the Gyaring Co Fault, average slope, and HI value are showing generally increasing trending and hypsometric curve become convex from west to east. By comparing and analyzing the lithology and rainfall conditions, we found that they have little influence on the basic parameters and HI value of drainage basins. Therefore, the changes of basin topographic differences between northern and southern side of fault and profile reveal the Gyaring Co Fault has experienced differential uplift since the late Cenozoic, southern side has greater uplift compared to the north side, and the uplift increased from NW to SE, thus indicate that normal faulting of the Gyaring Co Fault may enhanced by the Xainza-Dinggye rift. The early uplift of the Gangdise-Nyainqentanglha Mountain in late Cenozoic might provide northward inclined pre-existing geomorphic surfaces and the later further rapid uplift on the Gangdise-Nyaingentanglha Mountain and Xainza-Dinggye rift might contribute to the asymmetrical development of the Gyaring Co fault zonal drainage basin.  相似文献   

17.
对白垩纪-古近纪洞庭盆地东部湘阴凹陷的北部进行了地表地质调查与研究。凹陷呈NE走向,沉积岩层倾向南东,且自南东往北西倾角变陡。凹陷南段宽、北段窄,其南东边界分别为倾向NW的公田断裂和忠防断裂,两断裂之间以走向NW、倾向南西的白羊田断裂和石姑桥断裂相连接。公田断裂为正断裂,白羊田断裂和石姑桥断裂为右旋平移正断裂,忠防断裂为左行平移正断裂;公田断裂和石姑桥断裂均经历了自韧性→脆性的转变过程。凹陷内部发育NE~NNE向小型同成盆正断裂。上述信息表明:①湘阴凹陷为箕状断陷盆地;②公田断裂和忠防断裂的拉张活动控制了凹陷的形成和发展,区域N(N)E向左旋走滑应力场对凹陷北段有一定影响;③白羊田断裂和石姑桥断裂属横向调整断裂;④凹陷发展及其沉积充填,与南东面幕阜山隆起的抬升与剥蚀(包括沉积剥蚀和构造剥蚀)相耦合。结合区域资料,讨论认为湘阴凹陷形成的伸展构造环境受本地区特有的地幔上隆深部构造背景与中国东南部区域张性构造环境的双重制约,并以前者为主;凹陷走向主要受区域NNE向左行走滑应力场的控制。  相似文献   

18.
Based on the interpretation of 3D seismic data and structural mapping we analyzed the geometry and kinematics of the fault system and validated the expression of the “Tan-Lu Fracture Zone” in the West Sag of Liaohe Depression, Bohaiwan basin province. The Cenozoic structural deformation within the West Sag of Liaohe Depression can be divided into extensional structure system and dextral structure system. The extensional system is constituted by numerous NNE-NE trending Paleogene normal faults, where the Taian-Dawa fault (F1) is the master boundary fault (MBF) dominating the deposition during Paleogene so that the sag shows a complex half-graben with “boundary fault in the east and overlap in the west”. The dextral system is constituted by 2–3 dextral basement faults in NNE-NE trending (F2, F3, F4) and associated structure, and the time of structural action started in Oligocene and continued to Quarternary so that some associated secondary faults of the dextral system cut off the Neogene and Quaternary. Under the influence of the position and attitude of NNE-NE trending basement strike-slip faults, the central north part and the south part of the West Sag show obviously different structural features. The former appears to be a complex “graben” structure limited by the reversed strike-slip fault in the west and bounded by the inverted normal fault in the east, the latter remains the complex half-graben structure with “boundary fault in the east and overlap in the west”, and the graben was mildly reconstructed by one or two normal strike-slip faults. The dextral system within the West Sag is the element of the west branch fault of the Tan-Lu Fracture Zone, which is a deep fracture zone extending along the east of the Liaodongwan Gulf. The deep fracture zone branches off into two separate faults within the Liaohe Depression. The east branch goes through from northern part of the Liaodongwan Gulf to the East Sag of Liaohe Depression and links with the Denghua-Mishan Fault near Shenyang, and the west branch passes from northern part of the Liaodongwan Gulf to the West Sag and Damintun Sag of Liaohe Depression and links with the Yilan-Yitong Fault. The principal displacement zone of the west branch of the Tan-Lu Fracture Zone cuts off the master extensional fault (F1) within the West Sag of Liaohe Depression and induces many cover faults in EW trending within the Neogene and Quaternary.  相似文献   

19.
Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment. In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.  相似文献   

20.
Our detailed field investigation, paleoseismic trenching, and airborne light detection and ranging (LiDAR)‐derived topographic data provides the first direct evidence for late Quaternary repetitive surface faulting on the northeast‐striking Isurugi fault along the northwestern margin of the Tonami Plain in the Hokuriku region of north‐central Japan. This fault has been interpreted previously by different researchers as both inactive and active, owing to a lack of geologic evidence and a failure to identify fault‐related geomorphic features. Our mapping of LiDAR topography revealed a series of northeast‐trending warped fluvial terraces, about 1.5 km long and 170 m wide, with an age of ≤ 29 ka. We interpreted these geomorphologic features to represent an active pop‐up structure bounded to the southeast by the northwest‐dipping main thrust of the Isurugi fault and to the northwest by a southeast‐dipping backthrust that splays off the main thrust in the shallow subsurface. Paleoseismic trenching across the northwestern part of an elongate terrace exposed a series of southeast‐dipping backthrusts and associated northwest‐verging monoclines. The deformation and depositional age of the strata provide evidence for repetitive surface rupturing on the backthrusts since the latest Pleistocene; the latest of these events occurred in the Holocene between about 4.0 and 0.9 ka. Despite the poor preservation of the surface expression of the Isurugi fault, repetitive scarp‐forming faulting in the late Quaternary and the proximity of the Oyabe River and its tributaries to the fault trace suggest that there may be an extension of the Isurugi fault to the northeast and southwest beneath the Tonami Plain that makes the fault long enough to generate a large earthquake (Mw ≥ 6.8) accompanied by surface rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号