首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.  相似文献   

2.
Recent researches have revealed that the seismic ground response above tunnels can be different from the free-field motion during earthquakes. Nevertheless, to the best of the authors׳ knowledge, neither building codes nor seismic microzonation guidelines have yet considered this matter. In the present study, the seismic response of a linear elastic medium including a buried unlined tunnel subjected to vertically propagating incident SV and P waves are addressed. For analysis purposes, a numerical time-domain analysis is performed by utilizing a robust numerical algorithm working based on the boundary element method. It is observed that the amplification of the ground surface underlain by a tunnel is increased in long periods. The variation of the amplification factor and characteristic period of the medium versus the buried depth of the tunnel are depicted as the major results of this study. Some simple and useful relations are proposed for estimating the seismic microzonation of the areas underlain by tunnels. These relations can also be used for the preliminary seismic design of structures located on underground structures.  相似文献   

3.
Amplification of in-plane seismic ground motion by underground group cavities in layered half-space is studied both in frequency domain and time domain by using indirect boundary element method (IBEM), and the effect of cavity interval and spectrum of incident waves on the amplification are studied by numerical examples. It is shown that there may be large interaction between cavities, and group cavities with certain intervals may have significant amplification to seismic ground motion. The amplification of PGA (peak ground acceleration) and its PRS (peak response spectrum) can be increased up to 45.2% and 84.4%, for an example site in Tianjin, under the excitation of Taft wave and El Centro wave; and group cavities may also affect the spectra of the seismic ground motion. It is suggested that the effect of underground group cavities on design seismic ground motion should be considered.  相似文献   

4.
A series solution of displacement response of the ground surface in the presence of underground twin tunnels subjectcd to excitation of incident plane SV waves is derived by using Fourier-Bessel series expansion method. The numerical parametric study shows that underground twin tunnels significantly amplify the nearby surface ground motion. It is suggested that the effect of subways on ground motion should be considered when the subways are planned and designed.  相似文献   

5.
基于有效的土-结相互作用有限元数值模拟方法,利用有限元软件ABAQUS对水平及竖向地震共同作用下双线盾构隧道的地震响应进行分析研究。地震动输入选取近场地震Loma、ChiChi、Mammoth和WoLong的基岩水平及竖向加速度时程记录。结果表明,不同近场地震记录对隧道结构的作用不同,隧道的地震反应与场地性质及地震动的频谱特性密切相关。对比隧道在水平及竖向地震动共同作用下的响应与单向水平地震动作用下的响应,发现隧道的最大地震附加内力及其分布均发生较大的变化,在隧道结构抗震设计中需引起重视。另外,分析中还考虑了在双向地震动共同作用下,隧道间距、土-结接触面的摩擦系数、土-结相对刚度、输入的地震记录和竖向地震动相对强度对隧道地震响应的影响等,研究结果对隧道工程的抗震设计具有一定的参考价值。  相似文献   

6.
The importance of underground structures in transportation and utility networks makes their vulnerability to earthquakes a sensitive issue. Underground facilities are usually less vulnerable to earthquakes compared to above-ground structures, but the associated risk may be relevant, since even a low level of damage may affect the serviceability of a wide network. Seismic analysis of tunnels close to seismogenic faults is a complex problem, which is often neglected at the design stage for the lack of specific codes or guidelines for the design of underground structures in seismic conditions and also because, as mentioned above, underground structures are considered less vulnerable to earthquake loading. This paper investigates the seismic response of deep tunnels focusing on the required steps for a proper design under both static and dynamic loading. The study aims at contributing to improve the methods currently used for the seismic analysis of underground structures. At this purpose, the seismic response of a deep tunnel in Southern Italy has been investigated along the transversal direction. The infrastructure is part of the railway switch line connecting Caserta to Foggia in the Southern Apennines which is one of the most active seismic regions in Italy. The seismic response in the transversal direction has been analysed by using the pseudo-static approach as well as through advanced numerical modeling using the spectral element method coupled with a kinematic approach for finite fault simulations. The pseudo-static approach has been implemented using a closed-form analytical solution. The results obtained from advanced numerical modeling and the pseudo-static method have been compared to assess their validity and limitations.  相似文献   

7.
黄土高填方场地地震动参数特性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
来春景  朱彦鹏  王春青  马天忠 《地震工程学报》2018,40(6):1168-1173,1223
削山造地后形成的黄土高填方场地对地震动参数特性影响较大。以实际工程项目为研究对象,构造不同填土高度的计算剖面,采用一维等效线性化方法计算土层地震动参数,分析基岩地震动输入参数和填土高度对场地地表放大效应的影响。研究表明:场地地震放大系数随填土层的高度增加呈递减趋势。在多遇地震动和基本地震动作用下,场地地震放大系数递减速度比罕遇地震动和极罕遇地震动作用下要大。当填土高度达到一定程度后放大效应趋于平稳;填土高度的变化,会改变地表加速度反应谱的形状。填土高度越大,地表反应谱长周期的频谱成分越显著,反应谱曲线向后移,反应谱峰值点均明显向长周期移动,并出现多个峰值点,反应谱特征周期值变大;下伏基岩的刚度越大,地表峰值加速度的放大效应越大。地表加速度反应谱特征值相比变小。当填土高度增大到一定程度时,下伏基岩的种类对地表地震动特性影响则不明显。该研究成果对高填方场地的地震安全评价和结构抗震设计提供参考。  相似文献   

8.
地铁隧道群对地震动的放大作用   总被引:1,自引:0,他引:1  
本文采用有限元方法在时域内研究了基岩上均匀场地中隧道群对地震动的放大作用,分析了隧道间距、人射地震波频谱等因素对隧道群附近地表地震动反应谱的影响.研究表明,隧道群对地震动具有显著的放大作用,放大作用的大小与隧道间距和人射地震波频谱有着密切关系;隧道之间存在相互作用,加速度峰值的最大值多大于单隧道情况,且水平加速度峰值的...  相似文献   

9.
Underground utility tunnels are the most fundamental and reliable lifeline network in urban cities,and are widely constructed throughout the world.In urban areas,most utility tunnels usually encounter the non-homogeneity of subsoil condition due to various construction effects.Studies have shown that the damage mechanism of shallow underground structures mainly depends on the inhomogeneity of the subsoil conditions.This would become a considerable factor for the stability of the underground utility tunnel structures.However,this type of research still needs to establish the vulnerable seismic design.In this study,a series of shaking table tests were conducted on non-homogenous soils to investigate the performance of seismic interaction between utility tunnels,surrounding soils and interior pipelines.The dynamic responses measured from the test account for the boundary condition of non-homogeneous soils,the internal forces,displacement of tunnel joints,the dynamic characteristics on interior pipelines and the reasonable spring stiffness with damping in the seismically isolated gas pipeline model inside the tunnel.The vulnerability of underground utility tunnel in non-homogeneous soil zone and the mechanism of the stability of interior facilities are the main topics discussed in this paper.  相似文献   

10.
禹海涛  李晶  王祺 《地震学报》2022,44(1):123-131
为探讨“最不利地震动”概念在地下结构抗震设计中的适用性,以软土地铁区间隧道为对象建立相应的地层-结构动力分析模型。以直径变形率为分析指标,基于动力时程方法研究18条不同输入地震动作用下隧道结构动力响应的分布及差异性,得出基于隧道地震响应的输入地震动排序,并通过调幅手段对比分析了地面峰值加速度(PGA)和隧道埋深变化对隧道结构地震动响应排序的影响规律。最后,评价了不同输入地震动参数,包括峰值加速度、峰值速度、峰值位移、绝对累积速度(CAV)和阿里亚斯(Arias)强度(IA)与隧道地震响应之间的相关性。分析结果表明:① 随着PGA从0.5 m/s2增加到2 m/s2,地震动排序发生明显变化,并且不同输入地震动引起的隧道地震响应差异显著提高,最不利地震动引起的直径变形率与平均值的比值从1.1增加到1.9;② 隧道从浅埋到深埋的过程中,地震动排序结果基本保持不变;③ PGA为2 m/s2时,隧道地震响应与基岩面峰值速度(PBV)的相关性最好,相关系数达到0.94,其次是与基岩面峰值位移(PBD)和IA,相关系数分别为0.62和0.48,相关性最差的是基岩面峰值加速度(PBA)和CAV,相关系数仅为0.37和0.22。研究结论可为今后软土隧道的输入地震动选择提供科学依据。   相似文献   

11.
当前,合理确定地震动峰值加速度与反应谱特征周期是工程场地地震动参数确定工作的主要内容。本文以北京地区典型中硬场地为研究对象,分析场地条件对不同周期地震动反应谱值的影响。首先,计算不同震级、震中距条件下的基岩地震动加速度反应谱,合成基岩输入地震动时程;再利用110个工程场地的钻孔资料进行土层地震反应计算,分析中硬场地条件对不同输入环境下的地震动加速度反应谱值的放大效应。结果表明,中硬场地对高、中频震动放大效应明显,尤其是对0.2-0.5s周期段地震动加速度反应谱值的放大倍数大多在1.3以上;场地覆盖层厚度变化对不同频段地震动加速度反应谱值的放大倍数所产生的影响是不同的,与场地自振周期的相关性很强;在不同的地震动输入环境下,中硬场地对不同频段地震动加速度反应谱的影响是不同的,这一结论对实际的抗震设防工作具有一定参考价值。  相似文献   

12.
Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three-dimensional finite-element analyses. Results of the analyses show that the spatially variable ground motion causes longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the properties of the ground change in the longitudinal direction.  相似文献   

13.
场地条件对地震动参数影响的关键问题   总被引:16,自引:8,他引:8  
场地条件对地震动的影响很大,在地震动幅值(如峰值加速度)和频谱特性(如反应谱特征周期)的变化上均有体现,而我国现行抗震设计规范没有考虑不同场地条件下地震动峰值加速度和加速度反应谱平台值的变化。本文介绍了我国现行抗震设计规范中场地类别的划分方法、场地对地震动参数值的规定和存在的问题。详细分析了土层结构、覆盖层厚度等场地条件对地震动峰值加速度和反应谱的影响,以及已经取得的研究成果。最后,就场地分类、影响地震动参数的场地条件、地震动参数随场地条件调整的方法等,提出了有待进一步研究的问题。  相似文献   

14.
In this paper a probabilistic approach has been adopted to study both the effects of uncertainty in earthquake frequency content and the correlation between earthquake frequency content and ground motion intensity on the response of a single-storey torsionally coupled elastic structure. The earthquake ground motion has been assumed to be a Gaussian, zero mean, stationary random process which is fully characterized by a power spectrum. The ground acceleration power spectrum is idealized as a probabilistic normalized power spectrum computed from actual earthquake records. The advantage of such an idealization is that it enables the effect of the natural frequency as a controlling structural parameter in torsional coupling to be assessed. Comparisons of the dynamic amplifications of eccentricity with those obtained from modern codes of practice and conventional response spectrum analyses have been made. The results of this study have shown that the variation in the frequency content has a significant effect on the response of low frequency structures, while the correlation between the frequency content and the intensity of seismic ground motion is insignificant for the wide range of structures considered. The structure natural frequency has been shown to be an important controlling parameter in the torsionally coupled response of structures subject to seismic loading. The frequency dependence of the dynamic amplification of eccentricity was found not to be reflected in the response spectrum analysis and the torsional provisions of modern building codes.  相似文献   

15.
The main purpose of the paper is the analysis of seismic site effects in various alluvial basins. The analysis is performed considering a numerical approach (boundary element method). Two main cases are considered: a shallow deposit in the centre of Nice (France) [Soil Dyn. Earthquake Engng 19 (2000) 345] and a deep irregular basin in Caracas (Venezuela) [Comput. Geotech. 29 (2002) 573].

The amplification of seismic motion is analysed in terms of level, occuring frequency and location. For both sites, the amplification factor is found to reach maximum values of 20 (weak motion). Site effects nevertheless have very different features concerning the frequency dependence and the location of maximum amplification. For the shallow deposit in Nice, the amplification factor is very small for low frequencies and fastly increases above 1.0 Hz. The irregular Caracas basin gives a much different frequency dependence with many different peaks at various frequencies. The model for Caracas deep alluvial basin also includes a part of the local topography such as the nearest mountain. One can estimate seismic site effects due to both velocity contrast (between the basin and the bedrock) and local topography of the site.

Furthermore, the maximum amplification is located on the surface for Nice, whereas some strong amplification areas also appear inside the basin itself in the case of Caracas. One investigates the influence of this focusing effect on the motion versus depth dependence. This is of great interest for the analysis of seismic response of underground structures. The form and the depth of alluvial deposits are then found to have a great influence on the location of maximum amplification on the surface but also inside the deposit for deep irregular basins. It is essential for the analysis of the seismic response of both surface and underground structures.  相似文献   


16.
渤海海域软土层土对场地设计地震动参数取值具有显著影响.选取渤海中部钻孔剖面作为计算场地模型基础,分别构建软土和硬土场地模型,并通过改变软土层厚度,构造新的场地模型.采用等效线性化方法(EL法)和非线性计算方法(NL法)分别对场地模型进行地震反应分析,分析了海底软土层土对地震动参数的影响.研究结果表明:海底软土层土对地震...  相似文献   

17.
This paper investigates the seismic performance of moment-resisting frame steel buildings with multiple underground stories resting on shallow foundations. A parametric study that involved evaluating the nonlinear seismic response of five, ten and fifteen story moment-resisting frame steel buildings resting on flexible ground surface, and buildings having one, three and five underground stories was performed. The buildings were assumed to be founded on shallow foundations. Two site conditions were considered: soil class C and soil class E, corresponding to firm and soft soil deposits, respectively. Vancouver seismic hazard has been considered for this study. Synthetic earthquake records compatible with Vancouver uniform hazard spectrum (UHS), as specified by the National Building Code of Canada (NBCC) 2005, have been used as input motion. It was found that soil–structure interaction (SSI) can greatly affect the seismic performance of buildings in terms of the seismic storey shear and moment demand, and the deformations of their structural components. Although most building codes postulate that SSI effects generally decrease the force demand on buildings, but increase the deformation demand, it was found that, for some of the cases considered, SSI effects increased both the force and deformation demand on the buildings. The SSI effects generally depend on the stiffness of the foundation and the number of underground stories. SSI effects are significant for soft soil conditions and negligible for stiff soil conditions. It was also found that SSI effects are significant for buildings resting on flexible ground surface with no underground stories, and gradually decrease with the increase of the number of underground stories.  相似文献   

18.
This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.  相似文献   

19.
地震波散射问题的解析解是研究局部场地、地形、盆地等不规则地层结构对地震动参数放大效应影响的重要理论工具。现有解析解大部分在频域内给出,无法直接用于研究不规则地层结构对地震动峰值、反应谱等参数的放大效应。本文基于平面SH波入射下圆弧状沉积盆地动力响应宽频带稳态解析解,通过Fourier变换,获取瞬态响应解析解。基于此,研究El Centro波入射下,沉积盆地对地震动峰值加速度、峰值速度、峰值位移及不同周期反应谱的放大效应。研究结果表明,盆地宽度和深度、沉积介质波速、入射波角度等对盆地放大效应具有显著影响,地震动反应谱谱比最大值超过2.0,且宽度达10 km的较大型盆地对长周期地震动参数具有显著放大效应,对于位于该类盆地的超高层建筑、大型储液罐、大跨度桥梁等长周期结构,应充分考虑盆地对抗震设防参数的影响。  相似文献   

20.
The problem on the dynamic response of a rigid embedded foundation in the presence of an underground rigid tunnel and subjected to excitation of incident anti-plane SH waves is analyzed. By using the exact analytical solution for the two-dimensional SH-wave propagation in and around both the surface rigid foundation and subsurface rigid tunnel, those aspects of the resulting ground motions that are of special interest and importance for seismic resistant design in earthquake analyses have been examined. The computed amplitudes of the resulting periodic ground motions display a very complicated wave-interference between the surface foundation and underground tunnel that lead to observed standing wave patterns, together with abrupt changes in the wave amplitudes and large amplification of the incident motions. Supported by: National Science Foundation grant CMS 97-14859  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号