首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

2.
Clinopyroxene phenocrysts from the mafic calc-alkaline lavas of Salina (Aeolian arc, southern Tyrrhenian Sea, Italy) have been analysed to determine the hydrogen content and iron oxidation state of this early crystallized phase. The volcanic activity of Salina, starting at 168 ka and developed in several centres up to 24 ka, was dominated by calc-alkaline and high-K calc-alkaline basalts and andesites, with minor dacites and rhyolites. The presence of OH vibrational bands was detected in the IR spectra of clinopyroxenes phenocrysts from Corvo, Rivi-Capo (168–87 ka), Fossa delle Felci (108–59 ka) and Monte dei Porri (57 ka) eruptions. Corvo-Rivi-Capo basalts have clinopyroxenes with the lowest water contents 75–97 ppm H2O by weight, whereas an increase in the hydrogen contents of clinopyroxenes from Fossa delle Felci centre, with 171–286 ppm H2O by weight, and Monte dei Porri with 343–390 ppm H2O by weight, was observed. Mössbauer spectroscopy showed only a limited variation on the Fe3+/Fetot ratio of the studied samples, and a very similar atomic Fe3+ content (0.042–0.047 a.p.f.u.) suggesting that only minor variation on fO2 occurred during the crystallization of these clinopyroxenes. The water content of parental melts, calculated by applying an IVAl-dependent partition coefficient to the measured hydrogen contents of clinopyroxenes, is 0.4–0.8 wt% of water in melt for the Rivi-Capo-Corvo basalts, 0.5–3.7 wt% water in melt for Fossa delle Felci lavas and 1.6–2.6 wt% of water in melt for Monte dei Porri lavas. An increase in the maximum hydrogen contents of clinopyroxenes can be recognized during the evolution of the Salina volcano, with the highest hydrogen content measured in clinopyroxenes from Monte dei Porri where the eruptions were characterized by a high degree of explosivity, suggesting a key role of volatiles.  相似文献   

3.
Hydrogen speciation in synthetic quartz   总被引:1,自引:0,他引:1  
The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH? concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH? is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si → 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework.  相似文献   

4.
Cylinders of synthetic periclase single crystals were annealed at 0.15–0.5 GPa and 900–1200 °C under water-saturated conditions for 45 min to 72 h. Infrared spectra measured on the quenched products show bands at 3,297 and 3,312 cm?1 indicating V OH ? centers (OH-defect stretching vibrations in a half-compensated cation vacancy) in the MgO structure as a result of proton diffusion into the crystal. For completely equilibrated specimens, the OH-defect concentration, expressed as H2O equivalent, was calculated to 3.5 wt ppm H2O at 1,200 °C and 0.5 GPa based on the calibration method of Libowitzky and Rossmann (Am Min 82:1111–1115, 1997). This value was confirmed via Raman spectroscopy, which shows OH-defect-related bands at identical wavenumbers and yields an H2O equivalent concentration of about 9 wt ppm using the quantification scheme of Thomas et al. (Am Min 93:1550–1557, 2008), revised by Mrosko et al. (Am Mineral 96:1748–1759, 2011). Results of both independent methods give an overall OH-defect concentration range of 3.5–9 (+4.5/?2.6) ppm H2O. Proton diffusion follows an Arrhenius law with an activation energy E a = 280 ± 64 kJ mol?1 and the logarithm of the pre-exponential factor logDo (m2 s?1) = ?2.4 ± 1.9. IR spectra taken close to the rims of MgO crystals that were exposed to water-saturated conditions at 1,200 °C and 0.5 GPa for 24 h show an additional band at 3,697 cm?1, which is related to brucite precipitates. This may be explained by diffusion of molecular water into the periclase, and its reaction with the host crystal during quenching. Diffusion of molecular water may be described by logDH2O (m2 s?1) = ?14.1 ± 0.4 (2σ) at 1,200 °C and 0.5 GPa, which is ~ 2 orders of magnitude slower than proton diffusion at identical P-T conditions.  相似文献   

5.
We have performed phase equilibrium experiments in the system forsterite–enstatite–pyrope-H2O with MgCl2 or MgF2 at 1,100 °C and 2.6 GPa to constrain the solubility of halogens in the peridotite mineral assemblage and the fluid–mineral partition coefficients. The chlorine solubility in forsterite, enstatite and in pyrope is very low, 2.1–3.9 and 4.0–11.4 ppm, respectively, and it is independent of the fluid salinity (0.3–30 wt% Cl), suggesting that some intrinsic saturation limit in the crystal is reached already at very low chlorine concentrations. Chlorine is therefore exceedingly incompatible in upper-mantle minerals. The fluorine solubility is 170–336 ppm in enstatite and 510–1,110 ppm in pyrope, again independent of fluid salinity. Forsterite dissolves 1,750–1,900 ppm up to a fluid salinity of 1.6 wt% F. At higher fluorine contents in the system, forsterite is replaced by the minerals of the humite group. The lower solubility of chlorine by three orders of magnitude when compared to fluorine is consistent with increasing lattice strain. Fluid–mineral partition coefficients are 100–102 for fluorine and 103–105 for chlorine. Since the latter values are orders of magnitude higher than those for hydroxyl partitioning, fluid flow from the subducting slab through the mantle wedge will lead to an efficient sequestration of H2O into the nominally anhydrous minerals in the wedge, whereas chlorine becomes enriched in the residual fluid. Simple mass balance calculations reveal that rock–fluid ratios of up to >3,000 are required to produce the elevated Cl/H2O ratios observed in some primitive arc magmas. Accordingly, fluid flow from the subducted slab into the zone of melting in the mantle wedge does not only occur rapidly in narrow channels, but at least in some subduction zones, fluid pervasively infiltrates the mantle peridotite and interacts with a large volume of the mantle wedge. Together with the Cl/H2O ratios of primitive arc magmas, our data therefore constrain the fluid flow regime below volcanic arcs.  相似文献   

6.
Upper-mantle xenoliths in Cenozoic basalts of northwestern Spitsbergen are rocks of peridotite (spinel lherzolites) and pyroxenite (amphibole-containing garnet and garnet-free clinopyroxenites, garnet clinopyroxenites, and garnet and garnet-free websterites) series. The upper-mantle section in the depth range 50–100 km is composed of spinel peridotites; at depths of 80–100 km pyroxenites (probably, dikes or sills) appear. The equilibrium conditions of parageneses are as follows: in the peridotites—730–1180 °C, 13–27 kbar, and oxygen fugacity of − 1.5 to + 0.3 log. un.; in the pyroxenites—1100–1310 °C, 22–33 kbar. The pyroxenite minerals have been found to contain exsolved structures, such as orthopyroxene lamellae in clinopyroxene and, vice versa, clinopyroxene lamella in orthopyroxene. The formation temperatures of unexsolved phases in orthopyroxene and clinopyroxene are nearly 100–150 °C higher than the temperatures of the lamellae–matrix equilibrium and the equilibrium of minerals in the rock. The normal distribution of cations in the spinel structure and the equilibrium distribution of Fe2 + between the M1 and M2 sublattices in the orthopyroxenes point to the high rate of xenolith ascent from the rock crystallization zone to the surface. All studied Spitsbergen rock-forming minerals from mantle xenoliths contain volatiles in their structure: OH, crystal hydrate water H2Ocryst, and molecules with characteristic CH and CO groups. The first two components are predominant, and the total content of water (OH– + H2Ocryst) increases in the series olivine → garnet → orthopyroxene → clinopyroxene. The presence of these volatiles in the nominally anhydrous minerals (NAM) crystallized at high temperatures and pressures in the peridotites and pyroxenites testifies to the high strength of the volatile–mineral bond. The possibility of preservation of volatiles is confirmed by the results of comprehensive thermal and mass-spectral analyses of olivines and clinopyroxene, whose structures retain these components up to 1300 °C. The composition of hypothetic C–O–H fluid in equilibrium (in the presence of free carbon) with the underlying mantle rocks varies from aqueous (> 80% H2O) to aqueous–carbonic (~ 60% H2O). The fluid becomes essentially aqueous when the oxygen activity in the system decreases. However, there is no strict dependence of the redox conditions on the depth of formation of xenoliths.  相似文献   

7.
Minerals of various mantle-derived xenoliths from the Hannuoba basalt in Hebei Province have been studied by means of IR spectroscopy. The results show that all xenoliths from the mantle at depths <75 km contain trace amounts of water (0.45%-11.6×10-2 % H2O). The data of about 0.1% H2O contained in primary pyrolite estimated by earlier studies may be on the high side. The water might enter the frameworks of olivine, pyroxene and garnet earlier than it entered those of amphibole and phlogopite. The presence of water in amphibole and phlogopite may be a local phenomenon of water enrichment, which is related to relatively small-scale magmatic or metasomatic events although they can contain a hundred times more water than pyroxene contains. There is a little more water (1.11%-3.01×10-2 % of H2O mostly) in xenoliths from the Hannuoba basalt than in those from mid-ocean ridge basalt and kimberlites of South Africa (less than 1×10-2 % of H2O mostly). This indicates the heterogeneity of water in time and spa  相似文献   

8.
ABSTRACT

The Xiaohaizi wehrlite intrusion in the early Permian Tarim Large Igneous Province, Northwest China, is characterized by unusual high-An (up to 86) plagioclases. It has been suggested that H2O may have exerted a major control on their formation, but this interpretation requires further direct evidence. Moreover, it remains unclear where the water came from. In order to unravel these questions, we present electron microprobe analyses of minerals and melt inclusions in clinopyroxene macrocrysts in the dikes crosscutting the Xiaohaizi wehrlite intrusion and in situ oxygen isotope data of zircons from the Xiaohaizi wehrlite. The homogenized melt inclusions have restricted SiO2 (45.5–48.7 wt.%) and Na2O + K2O (2.4–3.8 wt.%) contents, displaying sub-alkaline affinity. This is inconsistent with the alkaline characteristic of the parental magma of the clinopyroxenes, suggesting significant modification of melt inclusions by contamination of the host clinopyroxene due to overheating. Nevertheless, the Ca/Na ratios (2.9–4.7) of melt inclusions are the upper limit of the parental magma of the clinopyroxenes due to high CaO (21.5–23.0 wt.%) and very low Na2O (0.22–0.34 wt.%) contents in the host clinopyroxenes. Thermodynamic calculation suggests that under fixed P (2.7 kbar) and T (1000°C), and assumed H2O (~1.5 wt.%) conditions, the Ca/Na ratio of the parental magma cannot generate high-An plagioclase in the wehrlite. The results confirm that H2O exerts a major control. Zircon δ18O (VSMOW) values (2.99–3.71‰) are significantly lower than that of mantle-derived zircon (5.3 ± 0.6‰). Such low zircon δ18O values may be due to incorporation of large amounts of low-δ18O, hydrothermally altered oceanic crust. However, geochemical and Sr-Nd-Pb isotopic data do not support recycled oceanic crust in the mantle source of the Xiaohaizi intrusion. Alternatively this can be explained by incorporation of meteoritic water in the magma chamber. This will increase the H2O content of the liquid that finally crystallize high-An plagioclases.  相似文献   

9.
Major and trace elements and water contents were analyzed in 16 peridotite xenoliths embedded by the Cenozoic basalts in Pingnan (southeastern Guangxi Province), to constrain the chemical composition and evolution of the lithospheric mantle located in the central part of the South China Block (SCB). The peridotites are mainly moderately refractory harzburgites and lherzolites (Mg#-Ol?=?90.3–91.7) and minor fertile lherzolites (Mg#-Ol?=?88.9–89.9). Clinopyroxenes in the peridotites show LREE-depleted pattern, and commonly exhibit negative anomalies in Nb and Ti, suggesting the peridotites probably represent residues after 1–10% of partial melting without significant mantle metasomatism. Water contents range from 146 to 237 ppm wt. H2O in clinopyroxene, and from 65 to 112 ppm wt. H2O, in orthopyroxene but are below detection limit (2 ppm wt. H2O) in olivine. Calculated bulk water contents, based on the mineral modes and partition coefficient, range from 14 to 83 ppm wt. H2O (average 59 ppm wt. H2O). There is a correlation between melting indices (such as Mg#-Ol, Ybn in clinopyroxene) and water contents in clinopyroxene and orthopyroxene, but no correlation is observed between the whole-rock water contents and the redox state (Fe3+/∑Fe ratios in spinel), suggesting that water contents in the peridotites are mainly controlled by the degree of partial melting rather than by oxygen fugacity. The lithospheric mantle beneath the interior of the SCB may not be compositionally stratified; fertile and moderately refractory mantle coexist at the similar depths. Geochemical data and water contents of the studied peridotites are similar to the proposed MORB source and indicate that the ancient refractory lithospheric mantle was irregularly eroded or reacted by the upwelling asthenosphere, and eventually replaced by juvenile fertile accreted mantle through the cooling of the asthenosphere.  相似文献   

10.
The solubility and incorporation mechanisms of water in synthetic, water-saturated jadeite and Na-rich clinopyroxenes have been experimentally investigated. Infrared spectra for water-saturated jadeite synthesised from 2.0 to 10 GPa show two prominent sharp peaks at 3,373 and 3,613 cm–1 together with several weaker features in the OH-stretching region, indicating that there are at least 5 distinct modes of hydrogen incorporation in the structure. Water solubility in pure jadeite reaches a maximum of about 450 ppm by weight at 2 GPa and slowly decreases with increasing pressure to about 100 ppm at 10 GPa. Solubility can be described by the function cOH=A fH2O0.5 exp (–PVSolid/RT), where cOH is water solubility in ppm H2O by weight, A is 7.144 ppm/bar0.5, fH2O is water fugacity, and VSolid=8.019 cm3/mol is the volume change of the clinopyroxene upon incorporation of OH. Jadeite provides a good model for understanding hydrogen incorporation mechanisms in more complex omphacite compositions. Assignment of absorption bands in IR spectra verifies the importance of cation vacancies on the M2 site in providing mechanisms for hydrogen incorporation. However, results also suggest that substitution of lower valency cations onto the M1 site may also be important. Solid solution of jadeite with diopside and in particular, with Ca-Eskola component leads to a drastic increase of water solubility, and the bulk composition has a more important effect on the capacity of omphacite to store water than pressure and temperature. Omphacite is expected to be the major carrier of water in a subducted eclogite after the breakdown of hydrous minerals.Editorial responsibility: W. Schreyer  相似文献   

11.
Any oxide and silicate mineral which is nominally anhydrous but crystallized in the presence of H2O incorporates traces of H2O in solid solution. In the case of MgO it can be shown that OH? pairs convert into H2+O 2 2? . If the H2 molecules are lost, the O 2 2? remain in the lattice as excess oxygen stabilized by excess cation vacancies. When the O 2 2? anions decay either thermally or by decompression unbound O? states (positive holes) are generated which lead to surface charges and subsurface space charge layers. Calculated space charge profiles are presented. O? concentrations as small as 10–20 ppm suffice to create electric surface fields of the order of 4·107 V·m?1. The diffusion mechanism which derives from these premises incorporates novel features: the cation diffusion is coupled to the counterdiffusion of unbound and vacancy-bound O? states. The cation diffusion is predicted to be very fast because first, it is field-enhanced (electrochemically driven) and second, it is not rate-limited by the intrinsic cation vacancy concentration nor by the counter-diffusion of other cations. The model may apply to cases of inverse zoning and diffusion rim formation in minerals under certain P-T conditions.  相似文献   

12.
Garnets in UHP eclogites from Bixiling in Dabieshan were investigated by Fourier transform infrared spectroscopy (FTIR). The results indicate that all garnets contain structural water that occurs as hydroxyl (OH) and non-structural molecular water (H2O) possibly in the form of sub-microscopic fluid inclusions. The structural hydroxyl contents range from 92 to 1735 ppm (H2O wt.) and most are between 200 and 1000 ppm. Therefore, garnet in eclogite can recycle surface water into the mantle. Various water contents were observed among different samples of the same outcrop (∼150 m) and in different domains of the same sample (∼1 cm). This variability in structural H2O contents suggests that the mobility of fluids during UHP metamorphism was very limited, and that both subduction and exhumation processes of UHP rocks occurred in a short time interval.  相似文献   

13.
The paper presents new petrographic, major element and Fourier transform infrared (FTIR) spectroscopy data and PT-estimates of whole-rock samples and minerals of a collection of 19 relatively fresh peridotite xenoliths from the Udachnaya kimberlite pipe, which were recovered from its deeper levels. The xenoliths are non-deformed (granular), medium-deformed and highly deformed (porphyroclastic, mosaic-porphyroclastic, mylonitic) lherzolites, harzburgite and dunite. The lherzolites yielded equilibration temperatures (T) and pressures (P) ranging from 913 to 1324 °C and from 4.6 to 6.3 GPa, respectively. The non-deformed and medium-deformed peridotites match the 35 mW/m2 conductive continental geotherm, whereas the highly deformed varieties match the 45 mW/m2 geotherm. The content of water spans 2 ± 1–95 ± 52 ppm in olivine, 1 ± 0.5–61 ± 9 ppm in orthopyroxene, and 7 ± 2–71 ± 30 ppm in clinopyroxene. The amount of water in garnets is negligible. Based on the modal proportions of mineral phases in the xenoliths, the water contents in peridotites were estimated to vary over a wide range from < 1 to 64 ppm. The amount of water in the mantle xenoliths is well correlated with the deformation degree: highly deformed peridotites show highest water contents (64 ppm) and those medium-deformed and non-deformed contain ca. 1 ppm of H2O. The high water contents in the deformed peridotites could be linked to metasomatism of relatively dry diamondiferous cratonic roots by hydrous and carbonatitic agents (fluids/melts), which may cause hydration and carbonation of peridotite and oxidation and dissolution of diamonds. The heterogeneous distribution of water in the cratonic mantle beneath the Udachnaya pipe is consistent with the models of mantle plume or veined mantle structures proposed based on a trace element study of similar xenolithic suits. Mantle metasomatism beneath the Siberian Craton and its triggered kimberlite magmatism could be induced by mantle enrichment in volatiles (H2O, CO2) supplied by numerous subduction zones which surrounded the Siberian continent in Neoproterozoic-Cambrian time.  相似文献   

14.
Dehydration of Orgueil by stepwise calcination produced more than a tenfold change in its Kr B.E.T. surface area, which increased to 120 m2/g, then fell to 40 m2/g. This phenomenon characterizes structures of the montmorillonite type, but not other plausible constituents of Orgueil. It results from vacating of interlayer sites by H2O molecules which are replaced by Kr until finally the sheets collapse, excluding Kr. Differential calorimetric scans of Orgueil also gave a better match for montmorillonite than for other minerals. However, a simple identification as montmorillonite conflicts with chemical analyses of Orgueil phyllosilicates.Exchangeability of H2O in Orgueil was shown by water regain from lab air between calcination cycles and similarily of the cycles. Room temperature dehydration revealed up to 6 per cent free surface adsorbed water. High D/H ratios in CI's may result from D enrichment in OH? groups during equilibration of dispersed phyllosilicate dust with nebula gas at temperatures ?0°C. Adsorption on the very large free and interlayer surface areas of this dust was the major mechanism by which volatiles still uncondensed at the time of gas-dust separation (including planetary primordial Ar, Kr and Xe) were incorporated into solid solar system material.  相似文献   

15.
Nominally anhydrous phases (clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol)) of peridotite xenoliths hosted by the Cenozoic basalts from Beishan (Hebei province), and Fansi (Shanxi province), Western part of the North China Craton (WNCC) have been investigated by Fourier transform infrared spectrometry (FTIR). The H2O contents (wt.) of cpx, opx and ol are 30–255 ppm, 14–95 ppm and ~ 0 ppm, respectively. Although potential H-loss during xenolith ascent cannot be excluded for olivine, pyroxenes (cpx and opx) largely preserve the H2O content of their mantle source inferred from (1) the homogenous H2O content within single pyroxene grains, and (2) equilibrium H2O partitioning between cpx and opx. Based on mineral modes and assuming a partition coefficient of 10 for H2O between cpx and ol, the recalculated whole-rock H2O contents range from 6 to 42 ppm. In combination with previously reported data for other two localities (Hannuoba and Yangyuan from Hebei province), the H2O contents of cpx, opx and whole-rock of peridotite xenoliths (43 samples) hosted by the WNCC Cenozoic basalts range from 30 to 654 ppm, 14 to 225 ppm, and 6 to 262 ppm respectively. The H2O contents of the Cenozoic lithospheric mantle represented by peridotite xenoliths fall in a similar range for both WNCC and the eastern part of the NCC (Xia et al., 2010, Journal of Geophysical Research). Clearly, the Cenozoic lithospheric mantle of the NCC is dominated by much lower water content compared to the MORB source (50–250 ppm). The low H2O content is not caused by oxidation of the mantle domain, and likely results from mantle reheating, possibly due to an upwelling asthenospheric flow during the late Mesozoic–early Cenozoic lithospheric thinning of the NCC. If so, the present NCC lithospheric mantle mostly represents relict ancient lithospheric mantle. Some newly accreted and cooled asthenospheric mantle may exist in localities close to deep fault.  相似文献   

16.
Fluid inclusions and clusters of water molecules at nanometer-to submicron-scale in size have been investigated using transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) in jadeite, quartz and symplectite aegirine–augite, albite, taramite and magnetite corona minerals from ultrahigh-pressure (UHP) jadeite–quartzite at Shuanghe, the Dabie Mountains, China. Fluid inclusions from 0.003 μm to 0.78 μm in size occur in jadeite and quartz crystals, and a small number of fluid inclusions from 0.001 μm to 0.25 μm have also been detected in symplectite-forming minerals. Most of the fluid inclusions have round or negative crystal morphology and contain aqueous fluids, but some contain CO2-rich fluids. They are usually connected to dislocations undetectable at an optical scale. The dislocations represent favorable paths for fluid leakage, accounting for non-decrepitation of most fluid inclusions when external pressure decreased at later stages, although there was partial decrepitation of some fluid inclusions unconnected to defect microstructures resulting from internal overpressure. Non-decrepitation and partial decrepitation of fluid inclusions resulted in changes of original composition and/or density. It is clear that identification of hidden re-equilibration features has significant implications for the petrological interpretation of post-peak metamorphic processes. Micro-FTIR results show that all jadeite and quartz samples contain structural water occurring as hydroxyl ions (OH) and free water (H2O) in the form of clusters of water molecules. The H2O transformed from OH during exhumation and could have triggered and enhanced early retrograde metamorphism of the host rocks and facilitated plastic deformation of jadeite and quartz grains by dislocation movement, and thus the H2O released during decompression might represent early-stage retrograde metamorphic fluid. The nominally anhydrous mineral (NAM) jadeite is able to transport aqueous fluids in concentrations of at least several hundred ppm water along a subduction zone to mantle depths in the form of clusters of water molecules and hydroxyl ions within crystals.  相似文献   

17.
The Earth’s uppermost asthenosphere is generally associated with low seismic wave velocity and high electrical conductivity. The electrical conductivity anomalies observed from magnetotelluric studies have been attributed to the hydration of mantle minerals, traces of carbonatite melt, or silicate melts. We report the electrical conductivity of both H2O-bearing (0–6 wt% H2O) and CO2-bearing (0.5 wt% CO2) basaltic melts at 2 GPa and 1,473–1,923 K measured using impedance spectroscopy in a piston-cylinder apparatus. CO2 hardly affects conductivity at such a concentration level. The effect of water on the conductivity of basaltic melt is markedly larger than inferred from previous measurements on silicate melts of different composition. The conductivity of basaltic melts with more than 6 wt% of water approaches the values for carbonatites. Our data are reproduced within a factor of 1.1 by the equation log σ = 2.172 − (860.82 − 204.46 w 0.5)/(T − 1146.8), where σ is the electrical conductivity in S/m, T is the temperature in K, and w is the H2O content in wt%. We show that in a mantle with 125 ppm water and for a bulk water partition coefficient of 0.006 between minerals and melt, 2 vol% of melt will account for the observed electrical conductivity in the seismic low-velocity zone. However, for plausible higher water contents, stronger water partitioning into the melt or melt segregation in tube-like structures, even less than 1 vol% of hydrous melt, may be sufficient to produce the observed conductivity. We also show that ~1 vol% of hydrous melts are likely to be stable in the low-velocity zone, if the uncertainties in mantle water contents, in water partition coefficients, and in the effect of water on the melting point of peridotite are properly considered.  相似文献   

18.
 The solubility of hydroxyl in the α, β and γ phases of (Mg,Fe)2SiO4 was investigated by hydrothermally annealing single crystals of San Carlos olivine. Experiments were performed at a temperature of 1000° or 1100 °C under a confining pressure of 2.5 to 19.5 GPa in a multianvil apparatus with the oxygen fugacity buffered by the Ni:NiO solid-state reaction. Hydroxyl solubilities were determined from infrared spectra obtained of polished thin sections in crack-free regions ≤100 μm in diameter. In the α-stability field, hydroxyl solubility increases systematically with increasing confining pressure, reaching a value of ∼20,000 H/106Si (1200 wt ppm H2O) at the α-β phase boundary near 13 GPa and 1100 °C. In the β field, the hydroxyl content is ∼400,000 H/106Si (24,000 wt ppm H2O) at 14–15 GPa and 1100 °C. In the γ field, the solubility is ∼450,000 H/106Si (27,000 wt ppm H2O) at 19.5 GPa and 1100 °C. The observed dependence of hydroxyl solubility with increasing confining pressure in the α phase reflects an increase in water fugacity with increasing pressure moderated by a molar volume term associated with the incorporation of hydroxyl ions into the olivine structure. Combined with published results on the dependence of hydroxyl solubility on water fugacity, the present results for the α phase can be summarized by the relation C OH = A(T)fnH2Oexp(−PΔV/RT), where A(T) = 1.1 H/106Si/MPa at 1100 °C, n = 1, and ΔV = 10.6×10–6 m3/mol. These data demonstrate that the entire present-day water content of the upper mantle could be incorporated in the mineral olivine alone; therefore, a free hydrous fluid phase cannot be stable in those regions of the upper mantle with a normal concentration of hydrogen. Free hydrous fluids are restricted to special tectonic environments, such as the mantle wedge above a subduction zone. Received: 10 February 1995 / Accepted: 23 October 1995  相似文献   

19.
Water partitioning between mantle minerals from peridotite xenoliths   总被引:1,自引:1,他引:1  
The speciation and amount of water dissolved in nominally anhydrous silicates comprising eight different mantle xenoliths has been quantified using synchrotron micro-FTIR spectroscopy. Samples studied are from six geographic localities and represent a cross-section of the major upper mantle lithologies from a variety of tectonic settings. Clinopyroxene contains between 342 and 413 ppm H2O. Orthopyroxene, olivine and garnet contain 169–201, 3–54 and 0 to <3 ppm H2O, respectively. Pyroxenes water contents and the distribution of water between ortho- and clinopyroxene is identical regardless of sample mineralogy (D watercpx/opx = 2.1 ± 0.1). The total water contents of each xenolith are remarkably similar (113 ± 14 ppm H2O). High-resolution spectroscopic traverses show that the concentration and speciation of hydrous defects dissolved in each phase are spatially homogeneous within individual crystals and identical in different crystals interspersed throughout the xenolith. These results suggest that the amount of water dissolved in the silicate phases is in partial equilibrium with the transporting melt. Other features indicate that xenoliths have also preserved OH signatures of equilibrium with the mantle source region: Hydroxyl stretching modes in clinopyroxene show that garnet lherzolites re-equilibrated under more reducing conditions than spinel lherzolites. The distribution of water between pyroxenes and olivine differs according to xenolith mineralogy. The distribution of water between clinopyroxene and olivine from garnet peridotites (D watercpx/oliv(gnt) = 22.2 ± 24.1) is a factor of four greater than mineral pairs from spinel-bearing xenoliths (D watercpx/oliv(sp) = 88.1 ± 47.8). Such an increase in olivine water contents at the spinel to garnet transition is likely a global phenomenon and this discontinuity could lead to a reduction of the upper mantle viscosity by 0.2–0.7 log units and a reduction of its electrical resistivity by a factor of 0.5–0.8 log units.  相似文献   

20.
The present study illustrates the interest of using the elastic recoil detection analysis (ERDA) method to characterize any geological sample matrix with respect to hydrogen. ERDA is combined with Rutherford back scattering (RBS) and particle induced X-ray emission (PIXE), allowing the simultaneous characterization of the matrix with respect to major and trace elements (Z > 15). Analyses are performed by mapping of a 4 × 16 μm2 incident beam of 4He+ on large areas (50 × 200 μm2). The method is almost not destructive and requires no calibration with respect to well known hydrous samples. Hydrous and nominally anhydrous phases in contact with each other in the same sample may both be characterized. The depth of the analyses is limited to several μm beneath the surface, allowing tiny samples to be investigated, provided their sizes are larger than the incident beam. Our setup has been improved in order to allow H determination on a micrometric scale with a 5-15% relative uncertainty and a detection limit of 94 wt ppm H2O. We present multi-elemental mappings on a large panel of samples: (1) natural and analogue synthetic glasses from Stromboli volcano (0.44-4.59 wt% H2O), natural rhyolitic glasses (1466-1616 wt ppm H2O); (2) magmatic rhyolitic melt inclusions from Guadeloupe Island (4.37-5.47 wt% H2O) and their quartz host crystal (2020 ± 230 wt ppm H2O); (3) nominally anhydrous natural (82-260 wt ppm H2O) and experimentally hydrated (240-790 wt ppm H2O) olivines; natural clinopyroxenes (159-716 wt ppm H2O); natural orthopyroxenes (201-452 wt ppm H2O); a natural garnet (90 wt ppm H2O). Results show that ERDA is a strong and accurate reference method that can be used to characterize geological sample from various matrix compositions from high to low water contents. It can be used to calibrate other methods of microanalysis such as Fourier Transform Infrared Spectroscopy (FTIR) or secondary ion mass spectrometry (SIMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号