首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Analysis of petrologic hypotheses with Pearce element ratios   总被引:6,自引:0,他引:6  
Pearce element ratios can test whether the members of a rock suite are comagmatic and can illustrate the causes of chemical diversity in comagmatic suites. Comagmatic rocks have constant ratios for elements conserved in the system during changes that led to the chemical diversity. In basaltic systems, the incompatible elements, Ti, K, and P, are often conserved. The slope of the trend on a Pearce element ratio diagram is sensitive to the stoichiometry of the crystallizing and segregating phases. A judicious choice of ratios as axes for the diagram provides a signature for the phases involved and estimates of their compositions. In basaltic rocks, diagrams with Ti/K vs P/K can provide a test of the comagmatic hypothesis. Diagrams with 0.5 [Mg + Fe]/K vs Si/K have trends that are distinct for each comagmatic suite and different mineral assemblage. Different suites are distinguished by the intercepts in diagrams, whereas mineral assemblages are recognized by the slopes of the trends. For example, if olivine is the sole crystallizing and segregating phase, the trend will have a slope of 1. Diagrams with [2Ca + Na]/K vs Al/K distinguish plagioclase from augite assemblages and, in conjunction with 0.5 [Mg + Fe]/K diagrams, unravel the crystallization sequences of suites that have suffered three phase crystallization and segregation. Analyses from the Uwekahuna laccolith, Kilauea, the 1955 and 1967–68 eruptions of Kilauea, Diamond Craters Volcanic Field, Oregon, and experimental data on MORB glasses provide illustrations of the interpretations that can be obtained from Pearce element ratios.  相似文献   

2.
The statistics of Pearce element diagrams and the Chayes closure problem   总被引:3,自引:0,他引:3  
Pearce element ratios are defined as having a constituent in their denominator that is conserved in a system undergoing change. The presence of a conserved element in the denominator simplifies the statistics of such ratios and renders them subject to statistical tests, especially tests of significance of the correlation coefficient between Pearce element ratios. Pearce element ratio diagrams provide unambigous tests of petrologic hypotheses because they are based on the stoichiometry of rock-forming minerals. There are three ways to recognize a conserved element: 1. The petrologic behavior of the element can be used to select conserved ones. They are usually the incompatible elements. 2. The ratio of two conserved elements will be constant in a comagmatic suite. 3. An element ratio diagram that is not constructed with a conserved element in the denominator will have a trend with a near zero intercept. The last two criteria can be tested statistically. The significance of the slope, intercept and correlation coefficient can be tested by estimating the probability of obtaining the observed values from a random population of arrays. This population of arrays must satisfy two criteria: 1. The population must contain at least one array that has the means and variances of the array of analytical data for the rock suite. 2. Arrays with the means and variances of the data must not be so abundant in the population that nearly every array selected at random has the properties of the data. The population of random closed arrays can be obtained from a population of open arrays whose elements are randomly selected from probability distributions. The means and variances of these probability distributions are themselves selected from probability distributions which have means and variances equal to a hypothetical open array that would give the means and variances of the data on closure. This hypothetical open array is called the Chayes array. Alternatively, the population of random closed arrays can be drawn from the compositional space available to rock-forming processes. The minerals comprising the available space can be described with one additive component per mineral phase and a small number of exchange components. This space is called Thompson space. Statistics based on either space lead to the conclusion that Pearce element ratios are statistically valid and that Pearce element diagrams depict the processes that create chemical inhomogeneities in igneous rock suites.  相似文献   

3.
Attempts have been made in the recent literature to constrain major element mobility in altered basalts and komatiites using the molecular proportion ratio (MPR) diagrams developed by T.H. Pearce (1970). The method involves ratioing the molecular proportions of two oxides against a third oxide and presenting the results as an oxide-oxide ratio plot. The transformation appears to clean up scatter plots with low correlations and produces highly correlated ratio plots. These plots have been taken to be indicative of igneous fractionation trends and thus of minimal bulk chemical change during alteration. There are however inherent statistical problems in ratio correlation which have received much attention in the mathematical literature. This paper explains the implications of enhanced correlations for work on altered rocks using ratio plots and suggests that extreme caution must be exercised in the interpretation of MPR diagrams.  相似文献   

4.
In petrology, Pearce element ratio (PER) diagrams have been used: i) to determine whether members of a rock suite are co-genetic, ii) to identify the minerals involved in differentiation processes, and iii) to evaluate the extent to which those mineral are involved. The axis coefficients of each diagram are chosen such that sorting of minerals or combinations of minerals will generate unique and predictable trends. Unfortunately, selection of the optimal combination of axis coefficients is a difficult task, especially if the system being investigated has a large number of phases or complicated solid solution minerals. Our work has established a formal set of rules and matrix operations which facilitate the determination of PER diagram axes coefficients. This methodology can be used to determine the unit molar vector displacement caused by the addition or subtraction of a specific mineral, given a set of axis coefficients. It can also be used to create PER diagrams on which minerals have predetermined vector displacements. By designating all vector displacements to be parallel, axis coefficients for assemblage test diagrams can be determined to test the following hypothesis: the observed chemical variation is due to the addition (or removal) of a specific set of minerals. Alternatively, by designating all vector displacements to be mutually perpendicular, phase discrimination diagrams can be created which test whether the observed chemical variations require a specific phase to be involved in differentiation. Phase discrimination diagrams also provide a means to estimate the extent of that involvement. This methodology facilitates construction of powerful yet simple PER diagrams which provide an effective means of testing alternative differentiation hypotheses. Current address: Department of Geological Sciences, Queen's University Kingston, Ontario K7L 3N6, Canada  相似文献   

5.
Pearce element ratios (PER's) have conserved denominators which have not participated in the material transfer processes that cause chemical variations in rocks. Theoretically, there is no truly conserved element (constituent) which can be used as a PER denominator because in every material transfer process all constituents have non-zero concentrations in the phases that are being transferred. Thus, constituents used as denominators of PERs may have undergone at least a small amount of material transfer. This communication investigates the degree to which a non-conserved PER denominator changes the trend of data produced by a material transfer process from that produced by the same process but plotted on a PER diagram with a truly conserved denominator. An equation is developed that utilizes the partition coefficient as the measure of the degree of involvement of the denominator constituent in the phase undergoing transfer. This equation is examined to determine how the magnitude and direction of a PER diagram data trend change with increasing involvement of the denominator constituent in the transferring phase. A set of plagioclase fractionation examples are presented which use different elements as PER denominators and consider the effects that small amounts of these elements in the plagioclase structure will have on the data trend, as a function of the element partition coefficient between crystal and melt. Results demonstrate that the direction of change in slope of a material transfer data trend is a function of the initial relative magnitudes of the numerator constituents on the PER diagram. Additionally, if the amount of involvement of a PER denominator in a separating phase is very small relative to the amount of the numerator constituents in the separating phase, there is no significant change in the data trend caused by material transfer on a PER diagram. Moreover, if the denominator constituent substitutes for a numerator constituent in the phase undergoing transfer, the intercept of the trend of the data may not converge to zero when there is a large partition coefficient, as would be expected from theory. Thus, statistical tests to determine if a PER denominator is conserved, which evaluate whether the intercept is significantly different from zero, may not be very powerful because a large amount of denominator variation is necessary before the intercept of a data trend is forced through the origin, if at all.  相似文献   

6.
The Thompson projection traditionally used by metamorphic petrologists is modified and used to study mineral equilibrium and mass balance relations of igneous rocks. Proportions of minerals in rocks and equilibrium minerals assemblages are predictable from bulk rock compositional data, consequently the projection simplifies chemical studies of plutonic and volcanic rock suites, and mixed plutonic-volcanic suites particularly, because bulk rock compositions can be directly compared with mineral compositions. As an example, changes to bulk magma compositions resulting from differentiation by crystal fractionation (Thingmuli Volcano; Red Hill Dyke) are immediately discernible and tholeiitic calc-alkaline and alkaline differentiation trends are quite distinct on the diagram. As well, minerals which have been removed from a magma during crystal fractionation generally can be identified and their compositions estimated. Magmas the compositions of which result from the mixing of two components (Kilauea Volcano) are easily identified as are the end-member mixing components of the mixed magmas.The diagram is applicable to both igneous and metamorphic rock suites, consequently it should be of particular use to those studying anataxis and granite genesis.  相似文献   

7.
Geochemical data can be quantitatively modelled by means of Pearce diagrams. These are graphs of A/Z vs B/Z where A, B and Z are compositional abundances (e.g. wt.% SiO2, wt.% MgO, and ppm La) and Z has the additional property of having constant absolute abundance. In the terminology of igneous petrology, Z (the common denominator variable) could be an incompatible element. The numerators (A and B) may be complex algebraic combinations of elements, or even CIPW normative abundances. The utility of Pearce diagrams lies in the fact that slopes of data distributions equal the bulk AB ratio of minerals lost or gained from a suite of cogenetic rocks. There is no distortion because these plots correct for data closure. Terms of the form Ai·Z0/Zi (where Z0 is the abundance in a reference sample) remove the scaling to Ai caused by the abundance of a particular choice of Z. Subtraction of these terms for different samples (e.g. Ai·(Z0/Zi)-Aj· (Z0/Zj)) quantifies mineral losses and gains. Mathematical analysis shows that limited compatibility of the denominator variable is permitted. A bulk partition value (D) of 0.1 introduces an error of only 10% in values of Ai***-Z0/Zi, and 10° in slope-angle on Pearce diagrams over a crystallization interval of 50%. For D0.01 the error is minimal for a crystallization interval over 90%.  相似文献   

8.
Element interrelations, with particular emphasis on alkaline earth metals, have been studied quantitatively for three alkaline suites of the Eastern Ghats Precambrian belt. Geochemical characterisation brings the Koraput and the Kunavaram suites closer, relative to the Elchuru suite. K-Ba and K-Rb correlations vary during the fractionation process, being strongly positive for the early members and almost noncorrelatable for the late fractions. The covariant relation between Ba and Sr is not well developed in any of the suites. Significant positive correlation between Rb and the degree of differentiation has been observed for the Koraput and the Kunavaram suites but not for the Elchuru suite. Liappears to be fractionated with the early mafic phases and is negatively correlated with Na. Zr shows a significant positive correlation with differentiation in the Elchuru but not in the Koraput suite although Ti/Zr falls remarkably with advancing differentiation for both the suites. P and Ti are mutually positively correlated in all the three suites and both tend to manifest significant negative correlation with progressive fractionation. K-(P + Ti + Sr) seems to be a good indicator of the fractionation process in the suites investigated.  相似文献   

9.
Chemical variation diagrams formed from ratios with a common denominator exhibit induced correlations which can obscure the effects of true compositional variations. Nevertheless, important conclusions have been obtained using Pearce element ratio (and isochron) diagrams, even though these diagrams are formed from axes ratios with a common denominator. In this paper, we consider two approaches to mitigate the effects of induced correlation, and in doing so, demonstrate the validity of geochemical analysis using diagrams formed from ratios with a common denominator. First, we propagate analytical error onto Pearce element ratio diagrams to distinguish chemical variations associated with analytical error from chemical variations related to geological processes. Second, we consider an alternative diagram formed from ratios with different denominators which does not exhibit any induced correlation. We demonstrate both theoretically and by example that results produced using this diagram are identical to those using diagrams with a common denominator. These two lines of evidence confirm that Pearce element ratio (and isochron) diagrams are useful and valid tools in the analysis of geochemical variations.  相似文献   

10.
The mid-Tertiary ignimbrites of the Sierra Madre Occidental of western Mexico constitute the largest continuous rhyolitic province in the world. The rhyolites appear to represent part of a continental magmatic arc that was emplaced when an eastward-dipping subduction zone was located beneath western Mexico.In the Batopilas region of the northern Sierra Madre Occidental the mid-Tertiary Upper Volcanic sequence is composed predominantly of rhyolitic ignimbrites, but volumetrically minor lava flows as mafic as basaltic andesite are also present. The basaltic andesite to rhyolite series is calc-alkalic and contains 1% K2O at 60% SiO2. Trace element abundances of a typical ignimbrite with 73% SiO2 are Sr 225 ppm, Rb 130 ppm, Y 32 ppm, Th 12 ppm, Zr 200 ppm, and Nb 15 ppm. The entire series plots as coherent and continuous trends on variation diagrams involving major and trace elements, and the trends are distinct from those of geographicallyassociated rocks of other suites. We interpret these and other geochemical variations to indicate that the rocks are comagmatic. Mineral chemistry, Sr isotopic data, and REE modelling support this interpretation.Least squares calculations show that the major element variations are consistent with formation of the basaltic andesite to rhyolite series by crystal fractionation of observed phenocryst phases in approximate modal proportions. In addition, calculations modelling the behavior of Sr with the incompatible trace element Th favor a fractional crystallization origin over a crustal anatexis origin for the rock series. The fractionating minerals included plagioclase (> 50%), and lesser amounts of Fe-Ti oxides, pyroxenes, and/or hornblende. The voluminous ignimbrites represent no more than 20% of the original mass of a mantle-derived mafic parental magma.  相似文献   

11.
A-type granites: geochemical characteristics,discrimination and petrogenesis   总被引:318,自引:3,他引:318  
New analyses of 131 samples of A-type (alkaline or anorogenic) granites substantiate previously recognized chemical features, namely high SiO2, Na2O+K2O, Fe/Mg, Ga/Al, Zr, Nb, Ga, Y and Ce, and low CaO and Sr. Good discrimination can be obtained between A-type granites and most orogenic granites (M-, I and S-types) on plots employing Ga/Al, various major element ratios and Y, Ce, Nb and Zr. These discrimination diagrams are thought to be relatively insensitive to moderate degrees of alteration. A-type granites generally do not exhibit evidence of being strongly differentiated, and within individual suites can show a transition from strongly alkaline varieties toward subalkaline compositions. Highly fractionated, felsic I- and S-type granites can have Ga/Al ratios and some major and trace element values which overlap those of typical A-type granites.A-type granites probably result mainly from partial melting of F and/or Cl enriched dry, granulitic residue remaining in the lower crust after extraction of an orogenic granite. Such melts are only moderately and locally modified by metasomatism or crystal fractionation. A-type melts occurred world-wide throughout geological time in a variety of tectonic settings and do not necessarily indicate an anorogenic or rifting environment.Geological Survey of Canada contribution no. 18886  相似文献   

12.
The Ascutney Mountain igneous complex in eastern Vermont, USA, is composed of three principal units with compositions ranging from gabbro to granite. Sr and O isotopic and major element relationships for mafic rocks, granites, and nearby gneissic and schistose country rock have been investigated in order to describe the petrogenesis of the mafic suite which ranges from gabbro to diorite. The entire complex appears to have been formed within a short interval 122.2±1.2 m.y. ago. The granites with 18O near +7.8 had an initial 87Sr/86Sr of 0.70395(±6) which is indistinguishable from the initial ratio of the most primitive gabbro. Initial 87Sr/86Sr ratios and 18O values for the mafic rocks range from 0.7039 to 0.7057 and +6.1 to +8.6, respectively. The isotopic ratios are highly correlated with major element trends and reflect considerable crustal contamination of a mantle-derived basaltic parent magma. The likely contaminant was Precambrian gneiss similar to exposed bedrock into which the basic rocks were emplaced. A new approach to modelling of assimilation during the formation of a cogenetic igneous rock suite is illustrated. Chemical and isotopic modelling indicate that the mafic rocks were produced by simultaneous assimilation and fractional crystallization. The relative amounts of fractionation and assimilation varied considerably. The mafic suite was not produced by a single batch of magma undergoing progressive contamination; rather, the various rocks probably were derived from separate batches of magma each of which followed a separate course of evolution. The late stage granite was apparently derived from basaltic magma by fractionation with little or no crustal assimilation. The early intrusive phases are much more highly contaminated than the final one. The observed relationships have important implications for the formation of comagmatic complexes and for isotopic modelling of crustal contamination.  相似文献   

13.
Highly differentiated igneous rocks can, in some cases, have 56Fe/54Fe ratios that are significantly higher than those of mafic- to intermediate-composition igneous rocks. Iron isotope compositions were obtained for bulk rock, magnetite, and Fe silicates from well-characterized suites of granitic and volcanic rocks that span a wide range in major- and trace-element contents. Sample suites studied include granitoids from Questa, N.M. (Latir volcanic field) and the Tuolumne Intrusive Series (Sierra Nevada batholith), and volcanic rocks from Coso, Katmai, Bishop Tuff, Grizzly Peak Tuff, Seguam Island, and Puyehue volcano. The rocks range from granodiorite to high-silica granite and basalt to high-silica rhyolite. The highest δ56Fe values (up to +0.31‰) are generally restricted to rocks that have high Rb (>100 ppm), Th (>∼15 ppm) and SiO2 (>70 wt.%) but low Fe (<2 wt.% total Fe as Fe2O3) contents. Magnetite separated from these rocks has high δ56Fe values, whereas Fe silicates have δ56Fe values close to zero. Although in principle crystal fractionation might explain the high δ56Fe values, trace-element ratios in high-δ56Fe igneous rocks indicate that crystal fractionation is an unlikely explanation. The highest δ56Fe values occur in volcanic and plutonic rocks that contain independent evidence for fluid exsolution, including sub-chondritic Zr/Hf ratios, suggesting that loss of a low-δ56Fe ferrous chloride fluid is the most likely explanation for the high δ56Fe values in the bulk rocks. Based on magnetite solubility in chloride solutions and predicted Fe isotope fractionations among Fe silicates, magnetite, and ferrous chloride fluids, the increase in δ56Fe values of bulk rocks may be explained by isotopic exchange between magnetite and , which predicts an increase in the δ56Fe values of magnetite upon fluid exsolution. This model is consistent with the δ56Fe values measured in this study for bulk rocks, as well as magnetite and Fe silicates. Our results suggest that fluid exsolution from siliceous hydrous magmas, which sometimes produce porphyry-style Cu, Mo, or Cu-Au mineralization, may be traced using Fe isotopes.  相似文献   

14.
Analytical data for Sr, Rb, Cs, Ba, Pb, rare earth elements, Y, Th, U, Zr, Hf, Sn, Nb, Mo, Ni, Co, V, Cr, Sc, Cu and major elements are reported for eocene volcanic rocks cropping out in the Kastamonu area, Pontic chain of Northern Turkey. SiO2% versus K2O% relationship shows that the analyzed samples belong to two major groups: the basaltic andesitic and the andesitic ones. High-K basaltic andesites and low-K andesites occur too. Although emplaced on continental type basement (the North Anatolian Crystalline Swell), the Pontic eocene volcanics show elemental abundances closely comparable with typical island arc calc-alkaline suites, e.g. low SiO2% range, low to moderate K2O% and large cations (Cs, Rb, Sr, Ba, Pb) contents and REE patterns with fractionated light and almost flat heavy REE patterns. REE and highly charged cations (Th, U, Hf, Sn, Zr) are slightly higher than typical calc-alkaline values. Ferromagnesian elements show variable values. Within the basaltic andesite group the increase of K%, large cations, REE, La/Yb ratio and high valency cations and the decrease of ferromagnesian element abundances with increasing SiO2% content indicate that the rock types making up this group developed by crystalliquid fractionation of olivine and clinopyroxene from a basic parent magma. Trace element concentration suggest that the andesite group was not derived by crystal-liquid fractionation processes from the basaltic andesites, but could represent a distinct group of rocks derived from a different parent magma.  相似文献   

15.
Experimental study of natural alkalic lava compositions at low pressures (pO2QFM) reveals that crystallization of primitive lavas often occurs in the sequence olivine, plagioclase, clinopyroxene, nepheline without obvious reaction relation. Pseudoternary liquidus projections of multiply saturated liquids coexisting with plagioclase (±olivine±clinopyroxene±nepheline) have been prepared to facilitate graphical analysis of the evolution of lava compositions during hypabyssal cooling. Use of (TiAl2)(MgSi2)–1 and Fe3+ (Al)–1 exchange components is a key aspect of the projection procedure which is succesful in reducing a wide range of compositions to a systematic graphical representation. These projections, and the experiments on which they are based, show that low pressure fractionation plays a significant role in the petrogenesis of many alkalic lava suites from both continental and oceanic settings. However, the role of polybaric fractionation is more evident in the major element chemistry of these lava suites than in many tholeiitic suites of comparable extent. For example, the lavas of Karisimbi, East Africa, show a range of compositions reflecting a polybaric petrogenesis from primitive picrites at 1360° C/18 kb and leading to advanced low pressure differentiates. Evolved leucite-bearing potassic members of this and other suites may be treated in a nepheline-diopside-kspar (+olivine+leucite) projection. Compositional curvature on the plagioclase+clinopyroxene+olivine+leucite cotectic offers a mechanism to explain resorption of plagioclase in alkalic groundmass assemblages and the incompatibility of albite and leucite. This projection is useful for evaluating the extent of assimilation of the alkalic portions of crustal granulites. Assimilation appears to have played some role in the advanced differentiates from Karisimbi.  相似文献   

16.
Amphibole-bearing, Late Archean (2.73–2.68 Ga) granitoids of the southern Superior Province are examined to constrain processes of crustal development. The investigated plutons, which range from tonalite and diorite to monzodiorite, monzonite, and syenite, share textural, mineralogical and geochemical attributes suggesting a common origin as juvenile magmas. Despite variation in modal mineralogy, the plutons are geochemically characterized by normative quartz, high Al2O3 (> 15 wt%), Na-rich fractionation trends (mol Na2O/K2O >2), low to moderate Rb (generally<100 ppm), moderate to high Sr (200–1500 ppm), enriched light rare earth elements (LREE) (CeN generally 10–150), fractionated REE (CeN/YbN 8–30), Eu anomaly (Eu/Eu*) 1, and decreasing REE with increasing SiO2. The plutons all contain amphibole-rich, mafic-ultramafic rocks which occur as enclaves and igneous layers and as intrusive units which exhibit textures indicative of contemporaneous mafic and felsic magmatism. Mafic mineral assemblages include: hornblende + biotite in tonalites; augite + biotite ± orthopyroxene ± pargasitic hornblende or hornblende+biotite in dioritic to monzodioritic rocks; and aegirine-augite ± silicic edenite ± biotite in syenite to alkali granite. Discrete plagioclase and microcline grains are present in most of the suites, however, some of the syenitic rocks are hypersolvus granitoids and contain only perthite. Mafic-ultramafic rocks have REE and Y contents indicative of their formation as amphibole-rich cumulates from the associated granitoids. Some cumulate rocks have skeletal amphibole with XMg(Mg/(Mg+ Fe2+)) indicative of crystallization from more primitive liquids than the host granitoids. Geochemical variation in the granitoid suites is compatible with fractionation of amphibole together with subordinate plagioclase and, in some cases, mixing of fractionated and primitive magmas. Mafic to ultramafic units with magnesium-rich cumulus phases and primitive granitoids (mol MgO/ (MgO+0.9 FeOTOTAL) from 0.60 to 0.70 and CT >150 ppm) are comagmatic with the evolved granitoids and indicate that the suites are mantle-derived. Isotopic studies of Archean monzodioritic rocks have shown LREE enrichment and initial 143Nd/144Nd ratios indicating derivation from mantle sources enriched in large ion lithophile elements (LILE) shortly before melting. Mineral assemblages record lower PH2O with increased alkali contents of the suites. This evidence, in conjunction with experimental studies, suggests that increased alkali contents may reflect decreased PH2O during mantle melting. These features indicate that 2.73 Ga tonalitic rocks are derived from more hydrous mantle sources than 2.68 Ga syenitic rocks, and that the spectrum of late Archean juvenile granitoid rocks is broader than previously recognized. Comparison with Phanerozoic and recent plutonic suites suggests that these Archean suites are subduction related.  相似文献   

17.
The most commonly used tectonic discrimination diagrams for granites were introduced by Pearce et al. [Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983.]. Since then, many studies have shown that some granites defy classification or their geochemical assignment does not fit with the geodynamic environment in which they are thought to have formed. In this paper we evaluate the performance of the Pearce et al. tectonic discrimination method, specifically, the most widely-used Rb-(Y + Nb) diagram, using a new data base of over 250 occurrences worldwide, the tectonic settings of which are fairly well known. We conclude that a correlation of geochemistry and tectonic position exists, but that ambiguities and misclassifications arise from one or both of the following factors. First, complex or polyphase orogeny can mix source rocks of different tectonic provenance. This is common in continental arcs and collisional settings, which can be closely associated in space and time with extensional regimes. Second, differentiation can produce compositional trends which cross field boundaries, especially the VAG to WPG boundary. One can minimize this problem by using less felsic, noncumulate members of cogenetic series.

We demonstrate the inherent weaknesses of trace element tectonic discrimination diagrams. Such diagrams are of little use if applied alone, but they can be valuable in combination with other methods such as dating and geologic assessment.  相似文献   


18.
Provenance and tectonic history of the late Eocene‐early Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece, were studied using sandstone framework composition, sedimentological data and sandstone and mudstone geochemistry. The resulting tectonic–sedimentological model is based on the late Eocene–early Oligocene Lemnos Island being in a forearc basin with the outer arc ridge as a major sediment source. Modal petrographic analysis of the studied sandstones shows that the source area comprises sedimentary, metamorphic and plutonic igneous rocks deposited in the studied area in a recycled orogenic environment. Moreover, within the above sediments, the minor occurrence of volcanic fragments suggests little or no influence of a volcanic source. Provenance results, based on major, trace and rare earth element (REE) data, suggest an active continental margin/continental island arc signature. All the samples are LREE, enriched relative to HREE, with a flat HREE pattern and positive Eu anomalies, suggesting that the processes of intracrustal differentiation (involving plagioclase fractionation) were not of great importance. Results derived from the multi‐element diagrams also suggest an active margin character, and a mafic/ultramafic source rock composition, while the positive anomaly of Zr that can be attributed to a passive continental margin source, is most likely associated with reworking and sorting during sediment transfer. Palaeocurrents, with a NE–NNE direction, indicate a northeast flow, towards the location of the late Eocene–early Oligocene magmatic belt in the north‐east Aegean region. Conglomerates are composed of chert, gneiss and igneous fragments, such as basalts and gabbros, suggesting this outer arc ridge as a likely source area. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ?51Vmag-gl = ? 0.63?±?0.09‰ at FMQ ? 1 to ? 0.92?±?0.11‰ (SD) at ≈?FMQ?+?5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.  相似文献   

20.
Soret separation of mid-ocean ridge basalt magma   总被引:8,自引:0,他引:8  
Chemical differentiation of an initially homogeneous mid-ocean ridge basalt (MORB) liquid has been experimentally observed in a temperature gradient above the liquidus. The magnitude of this effect in producing differences in composition is comparable to that of crystal-liquid fractionation for a given temperature difference. However the chemical changes produced by the two processes, Soret and crystal-liquid fractionation, are different. Soret separations resemble those observed in a third process — silicate liquid immiscibility. This similarity is a reflection of the fact that the Soret-separable components are the same network-former/network-modifier structural components which segregate during silicate liquid immiscibility.The differences between Soret and crystal-liquid separations allow the recognition of Soret processes as anomalies in MORB suites which are not compatible with normal crystal fractionation processes. The common occurrence of primary, cumulus, magnesian orthopyroxene in MOR gabbros and the absence of such orthopyroxene as phenocrysts in the coeval erupted MORBS is one such anomaly. The peculiar covariation of plagioclase and olivine compositions in some 3-phase olivine-plagioclase-clinopyroxene MOR gabbros, when compared with normal crystal fractionation results, is another anomaly which may be understood in terms of Soret processes operating in conjunction with normal crystal fractionation. These Soret processes must operate through some sort of convective thermal boundary layer at the margin of a MOR magma chamber to allow Soret diffusive exchange to occur before the temperature contrasts which drive it are dissipated. These driving temperature contrasts are also maintained in part by the periodic replenishment of hot, fresh magma into the MOR magma chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号