首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
裂缝走向是影响裂缝性油藏有效开发的关键参数之一,但在非定向岩心上,裂缝走向无法确定。古地磁分析是一项有效的岩心定向技术,该方法在火山岩及一些剩磁强度较大的泥质岩石中取得了较好的应用效果,但它很少应用于弱磁性的碳酸盐岩岩心定向。论文对济阳坳陷富台潜山的弱磁性碳酸盐岩岩心样品开展了系统的等温剩磁和热退磁测试,成功分离出粘滞剩磁并确定了该区的裂缝发育方向:优势发育北东东和北北西两组方向,3 组次要方向为北西西向、北西向和北北东向;测试结果与FMI资料及构造应力场分析结果一致。本研究拓展了古地磁定向技术在弱磁性岩心中的应用。  相似文献   

2.
This study investigates the tectonic evolution of the Omalos transverse zone, which served as a crustal-scale oblique ramp in the External Hellenides thrust belt on Crete island. The Omalos oblique ramp developed above an inherited Mesozoic fault zone that strikes NE–SW, oblique to the regional SSW-directed tectonic transport. During the Early Miocene–Pleistocene evolution of the thrust belt, the oblique ramp was repeatedly reactivated localizing deformation above the inherited structure. Geological and structural mapping combined with kinematic analysis of ductile and brittle structures suggest that the Omalos oblique ramp generated a local kinematic field, which deviated significantly from the regional kinematic pattern in the thrust belt. The most conspicuous feature in the tectonic evolution of the oblique ramp is a change from a ductile wrench-dominated to a brittle, primarily reverse faulting regime across the brittle–ductile transition, followed by brittle wrench deformation after the final exhumation of high-pressure (HP) rocks. Deflections of transport and compression orientations from the regional pattern are attributed to buttressing against basement-cover offsets produced by the pre-existing fault zone, to oblique ramping, and to transfer faulting, respectively. Our findings are potentially applicable to other examples of crustal-scale oblique thrust ramps in various tectonic settings.  相似文献   

3.
The Caucasus is very important for our understanding of tectonic evolution of the Alpine belt, but only a few reliable paleomagnetic results were reported from this region so far. We studied a collection of more than 300 samples of middle Eocene volcanics and volcano-sedimentary rocks from 10 localities in the Adjaro–Trialet tectonic zone (ATZ) in the western part of the Caucasus. Stepwise thermal demagnetization isolates a characteristic remanent magnetization (ChRM) in 19 sites out of 31 studied. ChRM reversed directions prevail, and a few vectors of normal polarity are antipodal to the reversed ones after tilt correction. The fold test is positive too, and we consider the ChRM primary. Analysis of Tertiary declinations and strikes of Alpine folds in the Adjaro–Trialet zone and the Pontides in Northern Turkey shows a large data scatter; Late Cretaceous data from the same region, however, reveal good correlation between paleomagnetic and structural data. Combining Late Cretaceous and Tertiary data indicates oroclinal bending of the Alpine structures which are locally complicated with different deformation. The overall mean Tertiary inclination is slightly shallower than the reference Eurasian inclination recalculated from one apparent polar wander path (APWP), but agrees with other. This finding is in accord with geological evidence on moderate post-Eocene shortening across the Caucasus. We did not find any indication of long-lived paleomagnetic anomalies, such as to Cenozoic anomalously shallow inclinations further to the east in Central Asia.  相似文献   

4.
We present new paleomagnetic data on Carboniferous volcano-sedimentary rocks from a section located in the northern part of Zaysan Depression (Narym Zone, Eastern Kazakhstan) which are transformed by shear deformation to different degrees. These data suggest that rocks which have experienced shear acquire magnetization whose orientation coincides with the deformation surface (e.g. cleavage etc.). Moreover, it is shown that in steeply inclined strata deformational processes resulted in the shallowing of inclination of the paleomagnetic vectors in stratigraphic coordinates so that finally the characteristic directions may be completely reoriented parallel to the bedding surface. No noticeable mechanical reorientation of mineral grains was observed in deformed rocks both with old paleomagnetic directions deflected away from the original position and with new paleomagnetic directions acquired due to deformation as well (brittle deformation).  相似文献   

5.
We have completed a paleomagnetic reconnaissance study of sedimentary and volcanic extrusive rocks collected from two major tectonic zones in northeastern Russia. Paleomagnetic sites were sampled within the fault-bounded structural units of the Khatyrka and Maynitsky superterranes and an overlap sequence of the Khatyrka superterrane. These sampling localities were chosen to allow both within-site and between-site fold tests. Stepwise thermal demagnetization within the temperature range 200–640°C showed a characteristic linear demagnetization path between thermal demagnetization steps of 400°C and 530°C. For thermal steps above 550°C, the magnetic intensity of many samples began to increase rapidly with magnetic directions, which were random between heating steps, suggesting the formation of new magnetic phases in these samples. Paleomagnetic samples collected from basalts and sediments of the Khatyrka superterrane and basalts and gabbros of the Maynitsky superterrane pass fold tests and show significant poleward motion of these superterranes since the formation of their rocks. The observed paleomagnetic paleolatitudes between 24°N or S and 32°N or S can be compared with expected paleolatitudes of 57°N to 79°N. Paleomagnetic results from sites collected from overlapping Senonian rocks pass a fold test at the 99% confidence level and give a pole position not significantly different from that expected from the apparent polar wander path for the Eurasia or North America plates, suggesting that these sedimentary units overlapping the Khatyrka superterrane were deposited along the ancient northeast margin of the Eurasian plate. The declination, in stratigraphie coordinates, shows a maximum clockwise rotation of about 20° when compared with the Eurasian APWP.  相似文献   

6.
The east and west coasts of Pembrokeshire (SW Wales) provide two sections through the Variscan fold and thrust belt. The evolution of these structures is interpreted in terms of a thin-skinned tectonic model. Balanced cross-sections are constructed for the high-level imbricate sequences, and these allow reasonably accurate estimates of shortening to be made. Basement control on structures developed in the Upper Carboniferous cover rocks is minimal, though some thrust ramp positions may be determined by the location of earlier normal faults.The thrust belt may be divided into two parts, according to the depth to the décollement horizon. In the north, imbricate fans developed from a shallow-level detachment (<1 km) which dips gently south. In the southern part, a deeper level of décollement and thicker sedimentary pile gave rise to large-amplitude folds.Shortening is heterogeneous, and both thrust periodicity and fold style are partly determined by rheology. Cumulative tectonic displacement increases to the west across Pembrokeshire, resulting in a net clockwise rotation of about 40°.  相似文献   

7.
The Precambrian geology of west-central Madagascar is reviewed and re-interpreted in light of new field observations, Landsat Thematic Mapper image analysis, and U–Pb geochronology. The bedrock of the area consists of: (1) late Archean (to Paleoproterozoic) migmatite gneiss and schist; (2) Mesoproterozoic stratified rocks (Itremo, Amborompotsy, and Malakialina Groups) perhaps deposited unconformably on the older metamorphic rocks (1, above); (3) Proterozoic ( 1000 Ma–720 Ma) plutonic rocks emplaced into both units above (1 and 2), and; (4) latest Neoproterozoic to middle Cambrian ( 570–520 Ma) granitoids emplaced as regionally discordant and weakly foliated plutons throughout the regions.

The effects of Neoproterozoic orogenic processes are widespread throughout the region and our observations and isotopic measurements provide important constraints on the tectonic history of the region: (i) Archean gneisses and Mesoproterozoic stratified rocks are the crystalline basement and platformal sedimentary cover, respectively, of a continental fragment of undetermined tectonic affinity (East or West Gondwanan, or neither). (ii) This continental fragment (both basement and cover) was extensively invaded by subduction-related plutons in the period from  1000 Ma to  720 Ma that were emplaced prior to the onset of regional metamorphism and deformation. (iii) Continental collision related to Gondwana's amalgamation began after  720 Ma and before  570 Ma. Collision related deformation and metamorphism continued throughout the rest of the Neoproterozoic with thermal effects that lasted until  520 Ma. The oldest structures produced during continental collision were km-scale fold- and thrust-nappes with east or southeast-directed vergence (present-day direction). They resulted in the inversion and repetition of Archean and Proterozoic rocks throughout the region. During this early phase of convergence warm rocks were thrust over cool rocks thereby producing the present distribution of regional metamorphic isograds. The vergence of the nappes and the distribution of metamorphic rocks are consistent with their formation within a zone of west or northwest-dipping continental convergence (present-day direction). (iv) Later upright folding of the nappes (and related folds and thrusts) produced km-scale interference fold patterns. The geometry and orientation of these younger upright folds is consistent with E–W horizontal shortening (present-day direction) within a sinistral transpressive regime. We relate this final phase of deformation to motion along the Ranotsara and related shear zones of south Madagascar, and to the initial phases of lower crustal exhumation and extensional tectonics within greater Gondwana.  相似文献   


8.
《China Geology》2018,1(4):522-539
Continental China has moved dextral Eastward since Cenozoic time, driven by the collision of the Indian with the Eurasian plate. Evidence for this comes from landscape evolution, the distribution of earthquake epicenters, Cenozoic sedimentary and volcanic rocks, and the measurement of GPS velocity vectors, the distribution of crustal stress, paleomagnetic data, and deep mantle structure, among others. This movement commenced around 40 Ma, coupled with thickened lithosphere and widespread stress release along strike-slip faults that bound the continental Chinese block. Because of continued Northward subduction of the Indian plate, manifestation of the dextral movement has intensified since 25 Ma. Far-reaching effects include extensive strike-slip movement on the Tan-Lu fault in Eastern China, formation of the Dabie ultrahigh pressure metamorphic terrane, extensive thrust faults in East China, delamination and thickening of the lithosphere of South China, a possible tectonic doubling of the Middle-Lower Yangtze Valley metallogenic belt, and the formation of the Japan, Huanghai (East China), and South China Sea.  相似文献   

9.
太古宙陆核的完整性对前寒武纪构造演化研究具有重要意义。华北克拉通东部陆块内太古宙陆核构造上受郯庐断裂影响较大,包括前期断裂带南侧NNE向左行走滑和后期断裂带北侧NE向左行走滑。本文还原了郯庐断裂发育之前华北克拉通东部陆块太古宙陆壳的原始格局。构造恢复后古老地体及地体内岩石片麻理均呈NNW走向。通过对弓长岭地区BIF铁矿进行深入的构造解析工作,发现含矿太古宙表壳岩发育大量暗示水平运动的逆冲推覆构造。结合其年代学特征,本文进一步揭示新太古代末期一定规模的侧向挤压构造(水平运动)可能已经在华北克拉通内出现。  相似文献   

10.
Statistical techniques are developed to classify folds into one of three classes: cylindrical, conical, or neither. A translated version of Bingham's distribution on the sphere is applied to orientation data fron conical folds. Iterative least-squares techniques are used to determine the best-fitting small circle (or cone), and confidence intervals for the cone axis and half apical angle are developed. Examples of a cylindrical and a conical fold are given. Another fold is neither cylindrical nor conical and is classified as pseudoconical. Relationships between the Bingham and Fisher distributions are presented.  相似文献   

11.
Xixi Zhao  Masako Tominaga   《Tectonophysics》2009,474(3-4):435-448
Integrated Ocean Drilling Program (IODP) Expeditions 304/305 recovered a total of 1.4 km sequence of lower crustal gabbroic and minor ultramafic rocks from the Atlantis Massif oceanic core complex on the western flank of the Mid Atlantic Ridge (MAR) at 30°N. We conducted an integrated paleomagnetic and rock magnetic study on this sequence to help address the interplay between magmatism and detachment faulting. Detailed thermal and alternating-field demagnetization results demonstrate that stable components of magnetization of mainly reversed polarity with unblocking temperatures below the Curie temperature of magnetite are retained in gabbroic rocks at IODP Site U1309. Several samples also contain multicomponent remanences of both normal and reversed polarities that were acquired over sharply defined blocking temperature intervals, providing evidence for localized reheating of some intervals during both normal and reversed polarity periods. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier rocks recovered at Site U1309D. The overall magnetic inclination of Hole U1309D is -35°, implying significant (up to ~ 50° counterclockwise, viewed to the north) rotation of the footwall around a horizontal axis parallel to the rift axis (010°) may have occurred. The tectonic rotations inferred by the paleomagnetic data suggest that the original fault orientation dipped relative steeply toward the spreading axis and subsequently rotated to a shallower angle. Coupled with the newly published U–Pb zircon ages for Hole U1309D rocks [Grimes, C.B., John, B.E., Wooden, J.L., 2008. Protracted construction of gabbroic crust at a slow-spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole 1309D, (30°N, MAR). Geochem. Geophys. Geosyst. 9, Q08012. doi:1029/2008GC002063], the new paleomagnetic data provide temporal and thermal constraints on the accretion history of the Atlantis Massif.  相似文献   

12.
The Akamas ophiolite is shown to be a distal, off-axis extension of the main outcrop of Cretaceous ophiolite in the Troodos complex of Cyprus. Mantle-sequence harzburgites of both ophiolites share similarly oriented mantle-flow fabrics and the same Tertiary magnetizations acquired during exhumation. However, compared with the Troodos mantle sequence rocks, the Akamas ferromagnetic mineralogy is more oxidized and remanences with lower blocking temperatures were acquired chemically. Paleopoles calculated from published vectors and our own new data define an apparent polar wander path (APWP) for the Troodos microplate. The APWP shows that between 88 and 50 Ma the Troodos microplate was equatorial and the vertical axis for its 60° anticlockwise rotation was located within the microplate. Subsequently, the microplate drifted northward to 34°N with minor anticlockwise rotation at a reduced rate. That requires microplate-rotation about a vertical axis located to the west of Cyprus in the last 50 Ma. The allochthonous Triassic Mamonia terrane docked with the Cretaceous Troodos terrane in SW Cyprus. Within it, disrupted tectonized ophiolite has been regarded as part of a Triassic ocean floor or as sheared fragments of Cretaceous Troodos ophiolite, incorporated into the Mamonia terrane when it docked with the Troodos terrane. Whatever their provenance, their paleomagnetic signals postdate their penetrative deformation and metamorphism and their paleopoles may still be used to track their post-strain motion. Our calculations of paleopoles from published vectors for the Mamonia terrane smear along an extension of the APWP for the Troodos microplate that is, moreover, concentric with the Troodos microplate. This suggests that the paleopole dispersion of the Triassic Mamonia rocks and their post-magnetization disruption occurred during their accretion onto the anticlockwise-spinning Troodos microplate.  相似文献   

13.
In the internal part of the Umbro-Marchean-Romagnan Apennines, the foredeep clastic wedge constituting the Neogene part of the sedimentary cover is completely detached from the underlying Mesozoic–Palaeogene succession. The resulting (Umbro-Romagnan) parautochthon consists of tectonostratigraphic units with a general geometry of broad synclinal blocks separated by narrow faulted anticlines.
Thrust-related structures observed in the field require thrust ramp propagation to have occurred within already folded rocks; therefore, they cannot be restored using simple fault-bend fold or fault-propagation folding models. Evidence for a passive fold origin in the studied rocks suggests that an early detachment folding episode preceded ramp propagation. The latter was facilitated by the enhanced thickness of incompetent material in the cores of detachment anticlines, which became the preferential sites where thrust ramps cut up-section. Depending on the trajectory of such thrust ramps, different types of fault-related structures could develop. Hanging-wall anticlines which give way to monoclinal structures higher up in the section are associated with listric thrust ramps, whereas hanging wall monoclines approximately parallel to the underlying fault surface are associated with straight-trajectory ramps.
This kinematic evolution, which occurred partly during syn-depositional compression, also accounts for the observed lithofacies distribution. The latter reflects an early differentiation of the foredeep trough into sub-basins that are progressively younger towards the foreland. The detachment anticlines that originally bounded such sub-basins were the site of later thrust propagation, leading to a tectonic juxtaposition of different tectonostratigraphic units consisting of broad NW-SE elongate synclinal blocks.  相似文献   

14.
Many of the major lineaments in southern Africa are major ductile shear zones with large displacement, occurring within, though often bounding orogenic belts. An example is the boundary to the Limpopo belt in Botswana and Zimbabwe. However, some of these shear zones only record slight displacement when considered on a crustal scale; they are merely planes recording differential movement on much larger, flat to gently dipping, shear zones where the boundary to the orogenic belt is a low-angle thrust zone. These different types of shear zones are clearly shown in the Pan-African belt of Zambia where large ENE-trending lineaments have been recorded. Recent work has shown the northern group of shears to be large lateral ramps; for example, the rocks of the copper belt are part of an ENE-verging thrust package, the southern boundary of which is a major, oblique to lateral ramp. In southern Zambia shears are more analogous to major transform faults; they form as tear faults separating zones of different thrust vergence. A possible plate tectonic model is given for this part of Africa, showing the different relative plate movement vectors estimated from the geometry of the Pan-African shear zones.  相似文献   

15.
Understanding the Cenozoic vertical-axis rotation in the Tibetan Plateau is crucial for continental dynamic evolution. Paleomagnetic and rock magnetic investigations were carried out for the Oligocene and Miocene continental rocks of the Hoh Xil basin in order to better understand the tectonic rotations of central Tibet. The study area was located in the Tongtianhe area located in the southern part of the Hoh Xil basin and northern margin of the Tanggula thrust system in central-northern Tibet. A total of 160 independently oriented paleomagnetic samples were drilled from the Tongtianhe section for this study. The magnetic properties of magnetite and hematite have been recognized by measurements of magnetic susceptibility vs. temperature curves and unblocking temperatures. The mean directions of the Oligocene Yaxicuo Group in stratigraphic coordinates(Declination/Inclination = 354.9°/29.3°, k = 33.0, α_(95) = 13.5°, N =5 Sites) and of the Miocene Wudaoliang Group in stratigraphic coordinates(Declination/Inclination = 3.6°/36.4°, k = 161.0, α_(95) = 9.7°, N =3 Sites) pass reversal tests, indicating the primary nature of the characteristic magnetizations. Our results suggested that the sampled areas in the Tuotuohe depression of the Hoh Xil basin have undergone no paleomagnetically detectable rotations under single thrusting from the Tanggula thrust system. Our findings, together with constraints from other tectonic characteristics reported by previous paleomagnetic studies, suggest tectonic rotations in the Cuoredejia and Wudaoliang depressions of the Hoh Xil basin were affected by strike-slip faulting of the Fenghuo Shan-Nangqian thrust systems. A closer examination of geological data and different vertical-axis rotation magnitudes suggest the tectonic history of the Hoh Xil basin may be controlled by thrust and strike-slip faulting since the Eocene.  相似文献   

16.
Several thrust faults have been mapped in theYanshan belt ,as the thrust structure was first iden-tified by Wong (1928) (Ji et al .,2005 ; Wang et al .,2005a ;Davis et al .,2001 ,1998 ; Yang et al .,2001 ;Zheng et al ., 2000 ; Chen, 1998 ; Zhang et al .,1986 ; He ,1957 ;Chern and Hsiung,1935) .Becausethe Archean basement was widely involved in thethrust systemof the Yanshan belt ,domestic popularrecognition emphasized the thick-skinned characteris-tics and li mited horizontal displacement…  相似文献   

17.
为了约束龙门山南段的构造运动特征,文章对龙门山南段大川镇附近的下三叠统飞仙关组淡紫灰色泥岩、粉砂岩和宝兴地区的二叠系灰岩开展了古地磁研究。古地磁样品取自10个采样点,其中3个采点为二叠系灰岩;7个采点为飞仙关组淡紫灰色泥岩、粉砂岩。对样品开展了逐步热退磁、岩石磁学(等温剩磁获得曲线和三轴等温剩磁热退磁)及扫描电镜实验。80个样品进行的逐步热退磁实验结果显示,二叠系灰岩样品未分离出稳定的特征剩磁;飞仙关组样品分离出了稳定的特征剩磁,并通过了广义褶皱检验,其特征剩磁的平均方向为:Ds=36.9°,Is=16.5°,α95=5.9°,K=33.8,N=18,对应的古地磁极投在了华南视极移曲线的早三叠世段附近。岩石磁学实验结果表明飞仙关组样品的载磁矿物为磁铁矿,扫描电镜观察展示其为碎屑状的铁氧化物,且无明显成岩后自生特征。结合退磁曲线特征,扫描电镜微观特征,特征剩磁的古地磁极位置和岩石磁学结果,飞仙关组样品的特征剩磁很可能为原生剩磁。该结果表明龙门山褶皱冲断带与四川盆地的没有明显地相对构造旋转运动,自晚三叠世以来,其与龙门山北段以及四川盆地在动力学上是统一的构造单元。  相似文献   

18.
在区域地质调查的基础,通过构造分析、岩浆岩的分布以及构造岩的详细研究,厘定出冀 东青龙一带太古代基底与中元古界盖层之间接触为构造滑脱关系。并认为构造滑脱经历了明显的两期活动,早期为挤压体制下的逆冲—褶皱作用,中元古代地层表现为同倒转褶皱,滑脱带内发育断层泥和断层角砾岩;晚期为伸展体制下伸展滑脱作用,表现为断层泥劈理化发育,指示明显的伸展滑脱特征。研究区太古代基底与中元古界盖层滑脱构造的厘定,对于再造该区构造格局和沉积古地理格局具有重要意义  相似文献   

19.
The distribution of cross-cutting and pseudoconcordant contacts of Paleoproterozoic metagabbro and their Archean host rocks were studied in the central part of the Belomorian province of the Fennoscandian Shield. It was shown that the metagabbro intrusions affected by ductile shearing during nappe stacking exhibit pseudoconcordant contact relationships. As a result of these deformations, Paleoproterozoic intrusions were sheared into boudins and tectonic slices, conformable with the nappe boundaries, while all traces of pre-Paleoproterozoic structures in the host rock complexes were obliterated. It was also shown that the original cross-cutting intrusive contacts can be still observed in intrusions unaffected by Paleoproterozoic nappe stacking. Therefore, analysis of preserved pre-Paleoproterozoic host rock structure may be helpful for reconstructing its Archean tectonic evolution. Based on the spatial distribution of localities with different contact relationships between Paleoproterozoic metagabbro and their host structure in the central part of the Belomorian province, several large domains of different tectonic styles were recognized. It was shown that these differences can be explained by heterogeneous reworking of the Archean basement during the Lapland–Kola collisional orogeny.  相似文献   

20.
In the north‐eastern part of the North China Block, a mafic magmatic belt consisting of mafic–ultramafic rocks and marine sedimentary rocks crops out between the northern Archean Anshan Block and a southern Palaeoproterozoic Block. 40Ar/39Ar amphibole ages around 1.9 Ga from gabbros, and trace element analyses of gabbros, pyroxenite and shale show that these rocks formed along a Palaeoproterozoic active continental margin. The mafic magmatic belt is interpreted as an arc developed above a south‐directed subduction zone, which was subsequently overthrust to the north upon the Anshan Archean Block. This study provides a new example agreeing with increasing evidence supporting plate mobility and thrust tectonics during the Palaeoproterozoic. These new insights must be considered with regard to the formation of the North China Block by magmatic accretion and tectonic collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号